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Abstract

Allen gives an algebra for representing qualitative temporal information about the rela-
tionships between pairs of intervals. In this paper, we address a fundamental reasoning
task that arises in applications of the algebra: Given (possibly indefinite) knowledge
about the relationships between intervals, find all feasible relationships between two
intervals. We call this the minimal labels problem. Finding the minimal labels can be
viewed as computing the deductive consequences of our knowledge. Determining exact
solutions to this problem has been shown to be (almost assuredly) intractable. Allen
gives an approximation algorithm based on constraint propagation. We present new
approximation algorithms, determine analytically under what conditions the algorithms
are exact, and examine, through some computational experiments, the quality of the
approximate solutions produced by the algorithms. We also give a simple test for predict-
ing when the approximation algorithms will and will not produce good quality approxi-
mations. Finally, we survey three example applications of the interval algebra chosen
from the literature to show where the results of this paper could be useful.
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1. Introduction

Much temporal information is information such as ‘‘The FLQ crisis took place during
Trudeau’s prime ministership’’. Here no quantitative information such as date or duration
information is specified, only the qualitative information that the interval of time associ-
ated with one event occurred during the interval of time of another event. Allen (1983)
gives an algebra for representing such temporal information about the relations between
pairs of intervals. Application areas of the algebra include natural language processing
(Allen, 1984; Song and Cohen, 1988), planning (Allen and Koomen, 1983; Hogge, 1987),
and knowledge representation (Koubarakis et al., 1989).

In this paper, we address a reasoning task that arises in applications of this algebra:
Given (possibly indefinite) knowledge about the relationships between intervals, find all
feasible relationships between two intervals. We call this the minimal labels problem.
Finding the minimal labels can be viewed as computing the deductive consequences of
our knowledge. As an example, consider the following description of events: ‘‘He
informed his friend of the decision during the afternoon but did not inform his family
until after the evening meal.’’ From the given temporal information and the knowledge
that the afternoon is before the evening, we can make the simple inference that the
‘‘inform friend’’ event occurred before the ‘‘inform family’’ event.

Vilain and Kautz (1986, 1989) show that the minimal labels problem is NP-
Complete for the interval algebra, where the problem size is the number of intervals.
This strongly suggests that no polynomial time algorithm exists. Supposing that we still
wish to solve instances of the problem, several alternatives present themselves:

• Exponential algorithms: Solve the problem exactly but devise efficient exponential
algorithms. These may still be practical even though their worst case is exponential.

• Approximation algorithms: Solve the problem approximately using an algorithm
that is guaranteed polynomial. That is, design algorithms that do not behave
badly—in terms of the quality of the produced solution—too often, assuming some
probabilistic distribution of the instances of the problem.

• Easy special cases: Identify interesting special cases of the NP-Complete problem
that are solvable in polynomial time. This alternative often takes the form of limit-
ing the expressive power of the representation language.

In this paper, we inv estigate the latter two alternatives: efficient algorithms for computing
approximations to the minimal labels problem and some special cases where the approxi-
mation algorithms are exact. We consider two versions of the problem: an all-to-all ver-
sion where we determine the minimal labels between every pair of intervals, and a one-
to-all version where we determine the minimal labels between one interval and every
other interval. Below we giv e an overview of our results.

Allen (1983) gives an O(n3) approximation algorithm for the all-to-all minimal
labels problem. We explore better (and, unfortunately, more expensive) approximation
algorithms. In particular, we dev elop an O(n4) algorithm that computes a better approxi-
mation to the minimal labels. We also explore how far we must restrict the expressive
power of the representation language to guarantee that (i) Allen’s algorithm is exact, and
(ii) our approximation algorithm is exact. Vilain and Kautz (1986) define a point algebra
and show that a class of minimal labels problems in the interval algebra can be phrased as
minimal labels problems in their point algebra. Vilain and Kautz (1986) then claim that
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Allen’s algorithm is exact for computing the minimal labels between points. However,
we present a counter-example to their theorem. We characterize the subset of the point
algebra and the interval algebra for which Allen’s algorithm is exact. We also show that
our O(n4) approximation algorithm is exact for Vilain and Kautz’s point algebra and the
subset of the interval algebra that can be translated into the point algebra.

In some applications we are only interested in the minimal labels between a few of
the intervals. If we nevertheless compute the minimal labels between all intervals, we
may be doing too much work. We giv e an algorithm for a one-to-all version of the prob-
lem, where we only determine approximations to the minimal labels between a single
source interval and every other interval. The algorithm produces good quality approxi-
mations for certain classes of problems and is shown to take O(n2) time. As with the all-
to-all algorithms, we characterize how far we must restrict the expressive power of the
representation language to guarantee that our one-to-all approximation algorithm is exact.

To test the quality of the approximations produced by Allen’s and our algorithms,
we performed some computational experiments. We randomly generated instances of the
problem and determined how often an approximation to the minimal label differed from
the true minimal label. We found that how well the approximation algorithms do is heav-
ily dependent on the distribution from which the relations between intervals are randomly
generated. We present a simple test for predicting when the approximation algorithms
will and will not produce good quality approximations.

An outline of the rest of the paper is as follows. Section 2 contains the definitions
and terminology used throughout the paper. Section 3 examines the all-to-all minimal
labels problem, first giving approximation algorithms, then identifying the easy (polyno-
mial time) special cases where the algorithms are exact. Section 4 examines the one-to-
all minimal labels problem, first giving an approximation algorithm, then identifying the
easy (polynomial time) special cases where the algorithm is exact. Section 5 contains the
results of some computational experiments and a test for predicting when the approxima-
tion algorithms will and will not produce good quality approximations. Section 6 surveys
selected applications of the interval algebra with the intent of showing where the results
of this paper will be of use.

2. Definitions and Terminology

In this section we review Allen’s interval algebra and Vilain and Kautz’s point algebra.
We then formalize our reasoning task using networks of binary relations (Montanari,
1974) and give an example. We end with the definitions of two new algebras that will be
prominent in the rest of the paper.

2.1. Specification of the Algebras

A set, together with one or more operations on the set, is called an algebra. The set must
be closed under the operations.

The interval algebra, IA (Allen, 1983) is defined as follows. There are thirteen basic
relations (including inverses) that can hold between two intervals.
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Relation Symbol Inverse Meaning

x before y b bi
x y

x meets y m mi
x y

x overlaps y o oi
x

y

x during y d di
x
y

x starts y s si
x
y

x finishes y f fi
x
y

x equal y eq eq
x
y

We want to be able to represent indefinite information so we allow the relation between
two intervals to be a disjunction of the basic relations. We use sets to list the disjunc-
tions. Let I be the set of all basic relations, {eq, b, bi, m, mi, o, oi, d, di, s, si, f, fi}. IA is
the algebra with underlying set 2I , the power set or set of all subsets of I , unary operator
inverse, and binary operators intersection and composition (denoted ‘‘constraints’’ in
Allen, 1983).

The point algebra, PA (Vilain and Kautz, 1986) is defined as follows. There are
three basic relations that can hold between two points <, =, and >. As in the interval alge-
bra, we want to be able to represent indefinite information so we allow the relation
between two points to be a disjunction of the basic relations. PA is the algebra with
underlying set {∅, <, ≤, =, >, ≥, ≠, ?}, unary operator inverse, and binary operators inter-
section and composition (denoted addition and multiplication in Vilain and Kautz, 1986;
there the operators are defined over bit vector representations of the underlying set). Note
that ≤, for example, is an abbreviation of {<, =} and ? means there is no constraint
between two points, {<, =, >}.

Ladkin and Maddux (1988a, 1988b) consider algebras that are additionally closed
under the operations complement and union and show that the algebras are relation alge-
bras.

2.2. Formalization of the Reasoning Task

We formalize the minimal labels problem using networks of binary relations (Montanari,
1974). Our development follows that found in Dechter et al. (1989) and Ladkin and
Maddux (1988a, 1988b). This approach allows us to use previously known algorithms
and eases their proofs of correctness.

A network of binary relations (Montanari, 1974) is defined as a set X of n vari-
ables {X1, X2, . . . , Xn}, a domain Di of possible values for each variable, and binary rela-
tions between variables that preclude certain combinations of instantiations of the



- 5 -

variables. An instantiation of the variables in X is an n-tuple (x1, x2, . . . , xn), represent-
ing an assignment of xi ∈ Di to Xi. A consistent instantiation of a network is an instan-
tiation of the variables such that the relations between variables are satisfied. A network
is said to be inconsistent if no consistent instantiation exists.

The relation between variables Xi and X j is denoted Rij . We require that
x j R ji xi ≡ xi Rij x j . For the networks of interest here, the Rij will be disjunctions of the
basic relations from one of the algebras. That is,

xi Rij x j ≡ xi R1 x j or . . . or xi Rm x j

The basic relations of the algebras are disjoint. Hence, if an instantiation of variables Xi

and X j satisfies Rij , then one and only one of the disjuncts Rk in Rij is satisfied.

An IA network is a network of binary relations where the variables represent time
intervals, the domains of the variables are the set of ordered pairs of real numbers
{< s, e > s < e}, with s and e representing the start and end points of the interval, respec-
tively, and the binary relations between variables are disjunctions of the basic interval
relations.

A PA network is a network of binary relations where the the variables represent
time points, the domains of the variables are the set of real numbers, and the binary rela-
tions between variables are disjunctions of the basic point relations.

An IA network or a PA network can be represented by a labeled graph where the
vertices V = (1, . . . , n) represent the variables X1, . . . , Xn, and each edge (i, j) ∈ V × V is
assigned an element from the appropriate algebra. We describe the element of the algebra
assigned to an edge as its label. The label on an edge (i, j) specifies the binary relation
between variable Xi and X j . That is, the label on edge (i, j)

{R1, . . . , Rm}

specifies the relation

Rij : Xi R1 X j or . . . or Xi Rm X j

A labeled graph will be described by an n × n adjacency matrix C where entry Cij is the
label on edge (i, j).

An element Rk ∈Cij is feasible with respect to a network if and only if there exists a
consistent instantiation of the network where Rk is satisfied. Given an IA network or a
PA network, the minimal label between two variables Xi and X j in the network is the set
consisting of all and only the Rk ∈Cij that are feasible. The reasoning task is to deter-
mine the minimal labels of the network. Call this the minimal labels problem. An algo-
rithm is exact for a class of input if it, depending on the version of the problem, correctly
finds the minimal labels between all pairs of variables or between one variable and every
other variable, for all instances in that class.

Here is an example of an IA network. Suppose we know that interval A either over-
laps or starts interval B, but we are not sure which, and that interval B meets interval C.
We represent this as follows

BA C
{o, s} {m}

I
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where the label I , the set of all basic relations, shows we have no direct knowledge of the
relation between A and C. As a graphical convention, we never show the edges (i, i), and
if we show the edge (i, j), we do not show the edge ( j, i). For an example of our reason-
ing task, we will find the minimal labels between every pair of intervals. The relations
shown between A and B and between B and C are already the minimal labels. The mini-
mal label between A and C is {b}, the ‘‘before’’ relation. No other basic relation between
A and C is feasible. Thus, in every consistent instantiation of this network A is before C
and B meets C. Further, there exists a consistent instantiation where A overlaps B and
one where A starts B. We show these two possible arrangements of the intervals in the
diagram below.

A A

B C B C

2.3. Additional Terminology

Mackworth (1977) defines three properties of networks that characterize local consis-
tency of networks. A network is node consistent if, for every node i,

∀x (x ∈ Di) → x Rii x

IA and PA networks are always node consistent as Rii is always the equality relation (eq
for IA, = for PA). A network is arc consistent if, for every arc (i, j),

∀x (x ∈ Di) → ∃y (y ∈ D j) and x Rij y

It is clear that IA and PA networks are also always arc consistent. A network is path con-
sistent if, for every triple (i, k, j) of vertices,

∀x∀z x Rij z → ∃y (y ∈ Dk) and x Rik y and y Rkj z

In words, for every instantiation of Xi and X j that satisfies the direct relation, Rij , there
exists an instantiation of Xk such that Rik and Rkj are also satisfied. IA and PA networks
are not always path consistent as the example in the previous section shows.

Freuder (1978) generalizes this to k-consistency. A network is k-consistent if and
only if given any instantiation of any k − 1 variables satisfying all the direct relations
among those variables, there exists an instantiation of any kth variable such that the k val-
ues taken together satisfy all the relations among the k variables. Node, arc, and path
consistency correspond to one, two, and three consistency, respectively. Section 3 con-
tains examples of 3-consistent but not 4-consistent IA networks. Freuder (1982) defines
strong k-consistency as j-consistent for all j ≤ k.

The importance of these definitions is the following. Strong k-consistency implies
that, for every choice of k of the n variables, every pair of values that satisfies a direct
relation appears in some consistent instantiation of the k variables. Hence, if the network
is strongly k-consistent, every basic relation in the relations between variables is feasible
with respect to every possible subnetwork of k variables. In particular, if the network is
strongly n-consistent, the relations between variables are the minimal labels.
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2.4. New Algebras from Old

Vilain and Kautz (1986) show that a class of minimal labels problems in IA networks can
be phrased as minimal labels problems in PA networks. Let SA be the algebra with
underlying set restricted to be the subset of IA that can be translated into relations
between the endpoints of the intervals using only the relations in PA (see the appendix for
an enumeration of SA and the translation into PA; also in Granier, 1988 and Ladkin and
Maddux, 1988a, where the relations are called the ‘‘pointisable’’ relations). The IA net-
works that can be so translated are those whose labels are elements of SA. As an example
translation, the IA network

BA
{d, o, m}

translates into the following PA network (where A− and A+ represent the start and end
points of interval A, respectively)

A−

A+

B−

B+

< <

≠

<

≥

<

We define a new point algebra and new corresponding subset of the interval algebra
that will be of importance throughout the rest of the paper. PAc is the algebra with the
same operators and underlying set as PA with the exception that ≠ is excluded from the
underlying set. The subscript ‘c’ is to indicate that the sets of tuples defining the relations
in PAc are convex. Let SAc be the algebra with the same operators as IA and with under-
lying set restricted to be the subset of IA that can be translated into relations between the
endpoints of the intervals using only the relations in PAc (see the appendix for an enumer-
ation of SAc and the translation into PAc and Noäkel, 1988 for a graphical representation of
SAc).

Proposition 1. The following properties of SAc (PAc) are easily verified:

(i) The underlying set of SAc (PAc) is closed under the operations inverse, intersection,
and composition.

(ii) Composition distributes over intersection, provided the intersection does not give
the empty set. That is, a ⋅ (b ∩ c) = a ⋅ b ∩ a ⋅ c and (b ∩ c) ⋅ a = b ⋅ a ∩ c ⋅ a, for all
a, b, c in the underlying set of SAc (PAc), if b ∩ c ≠ ∅

Clause (i) of Proposition 1 verifies that SAc and PAc are indeed algebras. Clause (ii) will
prove useful later in the paper.
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3. The All-to-All Problem

3.1. Approximation Algorithms

Allen (1983) gives an O(n3) approximation algorithm for the all-to-all minimal labels
problem that is a special case of path consistency algorithms (Montanari, 1974; Mack-
worth, 1977). In this section we describe Mackworth’s (1977) path consistency algorithm
with some small simplifications because of the properties of IA. We then develop a better
but more expensive algorithm for determining approximations to the minimal labels
between all intervals. The labels computed by the algorithm, as with Allen’s algorithm,
will always be a superset (not necessarily proper) of the minimal labels. The algorithm
computes a better approximation in that there are fewer infeasible relations in the com-
puted labels.

3.1.1. The Path Consistency Algorithm

The path consistency algorithm works as follows (see Fig. 1; a more detailed description
can be found in Allen, 1983 and Mackworth, 1977). The input is the adjacency matrix
description of a network where entry Cij is the label on edge (i, j). Procedure RELATED
PATHS, given an edge (i, j), returns a set of triples representing all the paths of length
two in which edge (i, j) participates. The labels on these paths of length two potentially
constrain the label on the third edge that completes the triangle. We maintain a queue of
triples that still need to be processed. Each time through the loop we process a triple. If
the path of length two does constrain the third edge we update the entry. This updated
edge may further constrain other edges so its set of RELATED PATHS is added to the
queue. But note that only those triples not already in the queue are added. How a triple
is selected does not change the result (Mackworth, 1977, p. 113). It does, however, influ-
ence the amount of work done. In practice, sorting the triples at the start according to
their labels and adding new triples to the front of the queue works well. We defer until
Section 4 a discussion about defining an order over IA.

Theorem 1 (Montanari, 1974; Mackworth and Freuder, 1985). The algorithm in Fig. 1
achieves path consistency and requires O(n3) time, where n is the number of intervals or
points.

To use the path consistency algorithm we need the operations of inverse, intersec-
tion, and composition of relations (equation 3.2 of Fig. 1). These operations have their
usual first-order definitions: inverse: xR−1 y ≡ yRx, intersection: x(R∩S)y ≡ xRy and xSy,
and composition: xR ⋅ Sz ≡ ∃y xRy and ySz. Below we discuss how to make this algorith-
mic and some implementation considerations. Recall that the operands of the algebraic
operations are sets of basic relations. The intersection of two labels is simply set inter-
section. For PA and PAc the tables for the inverse of a label and the composition of two
labels are easily specified as the underlying sets are small (see Vilain and Kautz, 1986).
Similarly for SA and SAc. For IA, howev er, the tables for inverse and composition are too
large to be practical. Hogge’s (1987) approach for inverse is to use a clever bit swapping
technique and for composition is to use four tables with an indexing scheme. Allen’s
approaches take less space but more time. For the inverse of a label, if Cij = {R1, . . . , Rm},
then C−1

ij = {R−1
1 , . . . , R−1

m }. This holds because inverse distributes over union. For the



- 9 -

Input: A matrix C where entry Cij is the label on edge (i, j).

Output: A path consistency approximation to the minimal labels for Cij , i, j = 1, . . . , n.

procedure PC
begin

Q ←
1 ≤ i < j ≤n
∪ RELATED PATHS (i, j)

while Q is not empty do begin

select and delete a path (i, k, j) from Q (3.1)

t ← Cij ∩ Cik ⋅ Ckj (3.2)

if (t ≠ Cij) then begin
Cij ← t
C ji ← INVERSE (t)
Q ← Q ∪ RELATED PATHS (i, j)

end
end

end

procedure RELATED PATHS (i, j)
return { (i, j, k), (k, i, j) 1 ≤ k ≤ n, k ≠ i, k ≠ j }

Fig. 1. Path Consistency Algorithm (Mackworth, 1977)

composition of two labels, take the union of the pairwise composition of the basic rela-
tions,

Cik ⋅ Ckj ≡ {R ⋅ S R ∈Cik , S ∈Ckj} (3.3)

(see Allen, 1983 for the composition table for the basic relations; there equation 3.3 is
denoted constraints and the composition table for the basic relations is denoted the transi-
tivity table). Equation 3.3 holds because composition of relations distributes over union
of relations.

3.1.2. Improving the Approximation

Where does the path consistency algorithm fail? Determining this will help us develop
better approximation algorithms. Recall that IA networks are guaranteed to be node and
arc consistent. Thus, if an IA network is also made path consistent, then the network is
strongly three consistent. Strongly three consistent means that the network has the prop-
erty that every Rk ∈Cij is feasible with respect to every possible subgraph of three ver-
tices. For IA networks this is insufficient for even deciding whether the network is con-
sistent. We giv e an example from Allen (1983) ascribed to Henry Kautz.
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D

A C

B

{m, s} {m, s}

{o}

{d, di} {d, di}

{f, fi}
Applying the algorithm of Fig. 1 results in no changes to the labels; the network is path
consistent. However, the network is inconsistent. The minimal labels are all {∅}.

As mentioned, the path consistency algorithm, as an approximation, ensures that the
Rk ∈Cij are locally feasible—feasible not necessarily with respect to the entire graph, but
with respect to every possible subgraph of three vertices. Another way to view the com-
bined effect of equation (3.2) and equation (3.3) for the composition of relations is that
Cij gets updated to be the set of the Rk ∈Cij that are feasible with respect to the triangle
(i, k, j). That is, we ensure that every Rk ∈Cij is feasible with respect to every possible
subgraph of three vertices (or 3-cliques in the graph) and we only ask for the composition
of labels on edges that share a vertex.

The simple idea for improving the approximation is then to ensure that every
Rk ∈Cij is feasible with respect to every possible subgraph of four vertices (or 4-cliques)
and we only ask for the composition of labels on triangles that share an edge. Equation
(3.2a) and the definition of composition over triangles (equation 3.3a) ensure that Cij gets
updated to be the set of the Rk ∈Cij that are feasible with respect to the subgraph of four
vertices (i, k, l, j):

∆ikl ⋅ ∆klj ≡ { (P ⋅ S) ∩ (Q ⋅ T ) P ∈Cik , R ∈Ckl , T ∈Clj , (3.3a)

Q ∈ (P ⋅ R) ∩ Cil , S ∈ (R ⋅ T ) ∩ Ckj }

The algorithm iterates until this property holds for all possible subgraphs of four
vertices. Procedure RELATED PATHS must also be altered. Instead of returning all
paths of length two in which edge (i, j) participates it now must return all structures of
four vertices in which the edge participates, taking into account symmetries to prevent
redundant computation. The necessary changes to the algorithm of Fig. 1 are summa-
rized in Fig. 2.

Theorem 2. Procedure AAC, the path consistency algorithm with the changes of Fig. 2,
ensures the labels are minimal with respect to all subgraphs of four vertices and requires
O(n4) time, where n is number of intervals or points.
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Input: A matrix C where entry Cij is the label on edge (i, j).

Output: An approximation to the minimal labels for Cij , i, j = 1, . . . , n.

procedure AAC

select and delete a 4 − tuple (i, k, l, j) from Q (3.1a)

t ← Cij ∩ ∆ikl ⋅ ∆klj (3.2a)

procedure RELATED PATHS (i, j)
return { (k, i, j, l) 1 ≤ k < l ≤ n, k, l ≠ i, j } ∪

{ (i, j, l, k), (k, l, i, j) 1 ≤ k, l ≤ n, k ≠ l, k, l ≠ i, j }

Fig. 2. New All-to-All Consistency Algorithm. Shown are changes to the path consis-
tency algorithm.

Proof. A label is minimal with respect to all subgraphs of four vertices if, for every
4-tuple (i, k, l, j) of vertices,

∀xi∀x j xi Rij x j → ∃xk∃xl xu Ruv xv, u, v = i, j, k, l

Let a singleton labeling be a labeling of a graph such that the labels on edges are single-
ton sets (sets containing a single basic relation). The effect of equations (3.2a) and (3.3a)
is to test, for each Rk ∈Cij , whether there exists a singleton labeling of the subgraph of
four vertices that is path consistent. By Theorem 3 and the fact that the basic relations
are in SAc, this is sufficient to test whether a consistent instantiation exists.

The proof of the time bound is similar to that for the path consistency algorithm (Mack-
worth and Freuder, 1985) and is omitted.

The algorithm also achieves strong four consistency for SA and PA networks (see
the inductive proof of Theorem 4 and Corollary 2). But it is easy to find examples of IA
network of size four that are minimal but not four consistent. This corrects a claim in
(van Beek, 1989) where the algorithm is also said to achieve four consistency for IA net-
works. Freuder (1978) gives an algorithm for achieving k-consistency for any k for gen-
eral networks of relations.

The idea for developing the initial better approximation algorithm can be general-
ized to develop successively more expensive algorithms that compute progressively better
approximations. But this is of theoretical interest only since higher orders of consistency
quickly become impractical for all but the smallest problems.

3.2. Easy (Polynomial Time) Special Cases

In this section we explore how far we must restrict the expressive power of the represen-
tation language to guarantee that (i) the path consistency algorithm is exact, and (ii) the
new all-to-all consistency algorithm is exact.
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3.2.1. Easy Special Cases of the Path Consistency Algorithm

Montanari (1974) shows that the path consistency algorithm is exact for a restricted class
of binary relations. However, the relations of interest here do not all fall into this class.
Valdés-Pérez (1986, 1987) shows that the path consistency algorithm correctly finds the
minimal labels when applied to networks that are labeled only with the basic relations of
IA.

Vilain and Kautz (1986) claim something stronger. Vilain and Kautz assert (Theo-
rem 4, p. 380) that the path consistency algorithm correctly finds the minimal labels for
PA networks. If their claim is true we can also find the minimal labels for SA networks
by first translating into a PA network, finding the minimal labels, and then translating
back. However, their claim is false. Here we present a counter-example demonstrating
that the path consistency algorithm is not exact for PA networks. The counter-example
also shows that path consistency is not exact for SA networks if, instead of first translat-
ing into a PA network, we use the interval algebra representation directly. Below is the
graphical representation of the example SA network.

D

A C

B

L

{b, d, o, f, fi}

{b, d, o, s}

L L

{eq, b, di, o, s, si, fi}

where
L = {d, di, o, oi, m, f, fi}
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The adjacency matrix representation of the translation into a PA network is the following.

A− A+ B− B+ C− C+ D− D+

A− = < ≠ ≤ ≤ < ≠ ≤

A+ > = > ? ≠ ? > ?

B− ≠ < = < ≠ < ≠ ≠

B+ ≥ ? > = ≥ ? > ≥

C− ≥ ≠ ≠ ≤ = < ? ≠

C+ > ?  > ? > = > >

D− ≠ < ≠ < ?  < = <

D+ ≥ ? ≠ ≤ ≠ < > =

Applying the algorithm of Fig. 1 results in no changes; the network is already path
consistent. However, the relation ≤ between A− and B+ is not the minimal label, thus
demonstrating that the path consistency algorithm is not exact for PA networks. The min-
imal label is <. This change is also reflected in the original interval algebra representa-
tion: the minimal label between vertex A and vertex B is {d, di, o, oi, f, fi}, with the
meets relation having been removed because it is not feasible. Interestingly, the path con-
sistency algorithm is also not exact when applied to the interval algebra representation of
this example, whereas the algorithm we proposed in the previous section does determine
the minimal labels. To reiterate, the counter-example shows that the path consistency
algorithm does not correctly compute the minimal labels for SA and PA networks. Lad-
kin and Maddux (1988a, 1988b) show that path consistency is sufficient for deciding
whether a PA network is inconsistent. They giv e an O(n2) algorithm for finding a consis-
tent instantiation of a path consistent PA network.

We next prove that the path consistency algorithm is exact for SAc networks. A
corollary shows that path consistency is exact for PAc networks as well, where PAc is the
point algebra that excludes the ≠ relation. The following theorem on the intersection of
convex sets will be useful in the proof of exactness.

Helly’s theorem. (ref. Chvátal, 1983). Let F be a finite family of at least n+1 convex
sets in Rn. If every n+1 sets in F have a point in common, then all the sets in F have a
point in common.

Theorem 3. The path consistency algorithm correctly finds the minimal labels between
all pairs of intervals when applied to SAc networks.

Proof. The theorem is proved by showing that if all labels are from SAc and the network
is path consistent, then the network is k-consistent for all k ≤ n. Hence, the network is
strongly n-consistent and the labels between vertices are the minimal labels.



- 14 -

Basis: k = 1, 2, or 3. True for k = 1, 2 since SAc networks are always node and arc con-
sistent and for k = 3 by the assumption of path consistency.

Inductive step: We assume strongly (k − 1)-consistent and show k-consistent, and thus
strongly k-consistent. The domain of variable Xi is the set of ordered pairs of real num-
bers < X s

i , Xe
i > with X s

i < Xe
i . The inductive assumption implies that variables

X1, . . . , Xk−1 can be consistently instantiated. Let < s1, e1 > , . . . ,  < sk−1, ek−1 > be an
instantiation such that

< si , ei > Rij < s j , e j > i, j = 1, . . . , k − 1

is satisfied. To show that the network is k-consistent, we must show that there exists at
least one instantiation of variable Xk such that

< si , ei > Rik < X s
k , Xe

k > i = 1, . . . , k − 1 (3.4)

is satisfied. We do so as follows. The < s1, e1 > , . . . ,  < sk−1, ek−1 > restrict the allowed
instantiations of Xk . These restrictions, because the network is labeled with elements of
SAc, can be expressed as conjunctions of the relations {< , ≤ , = , ≥ , > , ?} between the
endpoints of the intervals. For example, if the relation R1k is the disjunction of the
‘‘before’’ and the ‘‘meets’’ relations,

(< s1, e1 > before < X s
k , Xe

k >) or (< s1, e1 > meets < X s
k , Xe

k >)

the bounds on the instantiations of X s
k and Xe

k are

s1 < X s
k , e1 ≤ X s

k , s1 < Xe
k , e1 < Xe

k , and X s
k < Xe

k

For each i in equation (3.4) we get bounds on instantiations of X s
k and Xe

k . The key is that
all these bounds define convex sets so by Helly’s theorem it is sufficient to show that any
three bounds have a point in common to show that they all have a point in common.
There are two cases depending on whether one of the three bounds is X s

k < Xe
k .

Case 1: Each of the three bounds is strictly in one or the other of X s
k and Xe

k , the bound
that involves both is not included. Because each bound is only in one variable it is suffi-
cient to show that any two bounds have a point in common to show that together the three
bounds have a point in common. But any two bounds are always part of a single triangle
and have a point in common by the assumption of (strong) path consistency.

Case 2: Tw o of the bounds are strictly in one or the other of X s
k and Xe

k , the third bound is
X s

k < Xe
k . In this case, all three bounds are always part of a single triangle and again have

a point in common by the assumption of (strong) path consistency.

Hence, all the bounds have a point in common and there exists at least one instantiation
of Xk that satisfies equation (3.4) for all i. Because we require that x j R ji xi ≡ xi Rij x j we
have also shown that < X s

k , Xe
k > Rki < si , ei > , i = 1, . . . , k − 1 is satisfied. Hence, we

have shown that, for any consistent instantiation of k − 1 variables, there exists an instanti-
ation of any kth variable such that

< si , ei > Rij < s j , e j > i, j = 1, . . . , k

is satisfied. Hence, the network is k-consistent. This proves the inductive step and thus
the theorem.
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Corollary 1. The path consistency algorithm correctly finds the minimal labels between
all pairs of points when applied to PAc networks, where PAc is the point algebra that
excludes the ≠ relation.

Proof. The proof is similar. Here we need only show that the intersection of any two
bounds is non-empty and this follows directly from path consistency.

Thus, any algorithm that achieves path consistency is exact for SAc and PAc. Aho et
al. (1974) give an algorithm for the algebraic path problem that achieves path consistency
if certain conditions hold. SAc and PAc can be shown to meet these conditions with one
provision. Composition does distribute over intersection provided the intersection of two
labels is not equal to the empty set (Proposition 1). Clearly, this will not always be true.
Does this restrict the applicability of the algorithm? Fortunately not. In the algorithm,
the intersection of two labels to get the empty set means the network is inconsistent. If
this occurs the algorithm can stop and report inconsistency.

3.2.2. Easy Special Cases of the New Consistency Algorithm

In this section we show that our new all-to-all consistency algorithm (AAC) is exact for
SA and PA networks. The strategy is to first identify why path consistency is not suffi-
cient and where the proof of Theorem 3 fails for SA and PA networks (recall PA includes
≠, PAc does not).

In the proof of Theorem 3 for the exactness of path consistency for SAc and PAc net-
works the inductive step showed that if k − 1 of the variables were consistently instanti-
ated then, for any choice of a kth variable, that variable could be instantiated such that all
k variables together were consistently instantiated. Showing this relied on the fact that
the bounds on the instantiations of the kth variable defined convex sets. If ≠ is permitted
in the language of the point algebra, the bounds no longer define convex sets. If the net-
work is path consistent and not inconsistent, the intersection of any two bounds cannot be
empty, but the intersection of three can be empty. Here is an example PA network.

A

B

C

D

≤ ≤ ≤

≠

≤ ≤

Fig. 3. PA Network Counter-Example
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The network is path consistent. Let A, B, and C be instantiated as a, b, and c such that a
= b = c. The instantiation is consistent. The bounds on the instantiation of D are a ≤ D, b
≠ D, and c ≥ D. Using standard interval notation and substitution of equals the three
bounds are [a, +∞ ), (−∞ , a) ∪ (a, +∞ ), and (−∞ , a]. It is easily seen that any two of
the bounds have a point in common but together the three bounds have no point in com-
mon. If the network was also minimal with respect to all subgraphs of four vertices, say
by applying algorithm AAC, the relation between A and C would be < and this counter-
example could not occur.

Fig. 3 shows one counter-example of four vertices. But are there other counter-
examples of size n ≥ 4? The following lemma answers this question and is the basis of a
proof that the all-to-all consistency algorithm is exact for SA and PA networks.

Lemma 1. Any path consistent PA network for which the labels between vertices are not
the minimal labels has a subgraph of four vertices isomorphic to the network in Fig. 3.

Proof. The networks under consideration are k-consistent for k = 1, 2, 3. For the labels of
a network not to be the minimal labels there must exist some k ≥ 4 such that the network
is strongly (k − 1) consistent but not k-consistent. That is, any k − 1 variables can be con-
sistently instantiated but the intersection of the bounds on the instantiation of a kth vari-
able are empty, they do not have a point in common.

Summarizing, we know that (i) every two bounds have a point in common, by the
assumption of path consistency, (ii) the intersection of all the bounds is empty, and (iii) at
least one of the bounds must involve a ≠, otherwise the bounds would define convex sets.
But, the sets defined by the bounds and intersections of the bounds are almost convex:
except for at most k − 1 holes. So, for the intersection of all the bounds to be empty, it
must be that one of the bounds asserts ≠ and the intersection of two or more bounds is
exactly a point, that point being a hole. But if the intersection of a finite number of inter-
vals is a point then some two of them must also intersect to be a point. Hence, three of
the bounds must be [a, +∞ ), (−∞ , a) ∪ (a, +∞ ), and (−∞ , a]. And it is easily shown by
enumeration that the network in Fig. 3 is the only four-vertex path-consistent network
that, up to isomorphism, gives rise to these bounds.

The counter-example then is unique and cannot occur if the network is minimal with
respect to all subgraphs of four vertices. This leads to the following theorem.

Theorem 4. The all-to-all consistency algorithm of Fig. 2 correctly finds the minimal
labels between all pairs of intervals when applied to SA networks.

Proof. The proof of theorem 4 follows the inductive proof of theorem 3 except that we
can no longer rely on Helly’s theorem and the convexity of the sets defined by the bounds
to show the bounds have a point in common. The key is that, by the discussion in the
proof of Lemma 1, the only way to have k ≥ 3 bounds pairwise have a point in common
but together not have a point in common, is to have the three bounds shown in the exam-
ple above. These bounds cannot arise if the SA network is minimal with respect to all
subgraphs of four vertices. Hence, the bounds have a point in common.
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Corollary 2. The all-to-all consistency algorithm of Fig. 2 correctly finds the minimal
labels between all pairs of points when applied to PA networks.

We remark that Ghallab and Mounir Alaoui (1989) also give a procedure for PA net-
works. It is based on a structure called a maximal indexed spanning tree and is shown to
work well in practice.

4. The One-to-All Problem

The algorithms given in the previous section compute approximations to the minimal
labels between every interval and every other interval (the all-to-all version of the prob-
lem). If we are only interested in the minimal labels between one interval and every other
interval or between two particular intervals then, in computing the minimal labels
between all intervals, we may be doing too much work. In this section we present an effi-
cient algorithm for the one-to-all version of the problem and show that the algorithm is
exact for a useful subset of the interval algebra and of the point algebra.

4.1. A One-to-All Approximation Algorithm

The algorithm (see Fig. 4) is an adaptation of Dijkstra’s (1959) algorithm for computing
the shortest path from a single source vertex s to every other vertex. The algorithm main-
tains a list, L, of vertices to be processed that have not yet had their labels fixed. Each
time through the while loop we choose a vertex, v, from L such that the label on the edge
(s, v) is a minimum and use the label to update the remaining unfixed labels. In Dijkstra’s
algorithm this minimum label is now considered fixed. As a result, it produces poor qual-
ity approximations when applied to IA networks.

In the algorithm of Fig. 4, a label is allowed to change after it has been tentatively
fixed and perhaps further constrain other labels. This is accomplished through two sim-
ple changes to Dijkstra’s algorithm: (i) the for loop now cycles through all vertices, V ,
rather than just through the unfixed vertices and (ii) a vertex is added to L if its edge label
changes. These changes to Dijkstra’s algorithm also appear in Edmonds and Karp (1972)
in the context of finding shortest paths where negative arc lengths are allowed. Johnson
(1973) showed that, if the labels are integers, these changes make the algorithm exponen-
tial in the worst case. In this context, though, the algorithm is O(n2).

Theorem 5. The one-to-all consistency algorithm of Fig. 4 requires O(n2) time, where n
is the number of intervals or points.

Proof. Initially our free list, L, is all the vertices. A vertex, t, is put back on the free list
only if the label on edge (s, t) loses one or more of its elements. A label can have at most
13 elements initially, so each vertex can reappear on the free list at most 13 times. For
each element in L we do O(n) work. Hence O(n2).

The one-to-all consistency algorithm requires the operation of finding the minimum
of a set of labels. The final result of the algorithm is independent of how the minimum is
chosen, but the choice does affect the number of iterations. In practice, choosing the
minimum based on the following order on the set of all labels halved the number of itera-
tions of the algorithm compared to a random choice. We assign weights to the 13 basic
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Input: A source vertex s and a matrix C where entry Cij is the label on edge (i, j).

Output: An approximation to the minimal labels for Csj , j = 1, . . . , n.

procedure OAC
begin

L ← V − { s }
while L is not empty do begin

select a vertex v from L such that Csv is a minimum
L ← L − { v }
for each t in V do begin

l ← Cst ∩ Csv ⋅ Cvt

if (l ≠ Cst) then begin
Cst ← l
L ← L ∪ { t }

end
end

end
end

Fig. 4. One-to-All Consistency Algorithm

interval relations based on the sum of the cardinality of the basic relation successively
composed with every possible label. The weight of a basic relation is a measure of how
restrictive the relation is. With suitable scaling we get the following weights for the 13
basic relations: (1, eq), (2, fi), (2, f), (2, mi), (2, m), (2, si), (2, s), (3, bi), (3, b), (3, di),
(8, d), (8, oi), (8, o). The weight of a label is then the sum of the weights of its elements.
This same weighting was also found to be useful for pre-sorting the labels in the all-to-all
algorithms.

4.2. Easy (Polynomial Time) Special Cases

In this section we explore how far we must restrict the expressive power of the represen-
tation language to guarantee that our one-to-all approximation algorithm (OAC) is exact.
Note that the all-to-all algorithms compute approximations to the minimal labels between
all pairs of vertices, but even the labels we are not interested in help us by further con-
straining the labels we are interested in. OAC does not do this; it uses less information to
compute its approximations. Hence, in general its approximations are poorer than those
of the all-to-all algorithms. Surprisingly though, OAC is exact for the same subset of IA
for which the path consistency algorithm (PC) is exact.

Theorem 6. The one-to-all consistency algorithm of Fig. 4 correctly finds the minimal
labels between a source interval and every other interval when applied to SAc networks,
provided the network is consistent.
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Proof. We will prove that, for those labels computed by OAC, the results are equivalent
to those of PC. Then, since PC is exact by Theorem 3, so is OAC.

Let Csj , j = 1, . . . , n be the labels computed by OAC with source s. At completion of the
algorithm the following is true,

Csj ⊆ Csk ⋅ Ckj , j, k = 1, . . . , n (4.1)

Suppose, to the contrary, that there exists a Cst such that PC would compute a better
approximation than OAC. We know that,

Cst ⊆ Csv ⋅ Cvt , v = 1, . . . , n (4.2)

For such a Cst to exist, there also must exist some path v, w1, w2, . . . , wm, t that OAC does
not look at but PC would look at, and that constrains the label on the edge (v, t) and inval-
idates equation (4.2). That is, a path such that

Csv ⋅ (Cvw1
⋅ Cw1w2

⋅ . . . ⋅ Cwmt ∩ Cvt) ⊂ Cst

But by distributivity (clause (ii) of Proposition 1) we have,

l. h. s. = Csv ⋅ Cvw1
⋅ Cw1w2

⋅ . . . ⋅ Cwmt ∩ Csv ⋅ Cvt

By associativity,

= (((Csv ⋅ Cvw1
) ⋅ Cw1w2

) ⋅ . . . ⋅ Cwmt) ∩ Csv ⋅ Cvt

Applying equation (4.1) repeatedly,

⊇ Cst ∩ Csv ⋅ Cvt

= Cst

A contradiction.

From clause (ii) of Proposition 1 stating a distributivity property of PAc, the point
algebra that excludes the ≠ relation, we have also proved that OAC is exact for PAc net-
works.

Corollary 3. The one-to-all consistency algorithm of Fig. 4  correctly finds the minimal
labels between a source point and every other point when applied to PAc networks, pro-
vided the network is consistent.

The proof of the theorem and the corollary uses the property that composition distributes
over intersection. By Proposition 1 this property is true for SAc and PAc, respectively,
only if it can be guaranteed that the intersection of two labels will never result in the
empty set. This corresponds to guaranteeing that the network is consistent. It is easy to
show that the above theorem is false if the network is inconsistent.

Thus, to know whether the algorithm has computed the minimal labels we must first
know the answer to the decision problem: is the network inconsistent. In (van Beek,
1990) we give an O(n2) algorithm that answers this decision problem for SA and PA net-
works (and thus for SAc and PAc networks) and so can be used effectively with the one-
to-all algorithm given here. Alternatively, there are applications where it is safe to
assume that the network will be consistent (see Section 6 where we discuss an example
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application where this is reasonable: extracting the temporal relations between events
mentioned in a narrative—the assumption is that the narrative is coherent).

Finally, for the all-to-all problem we have demonstrated polynomial time algorithms
that correctly find the minimal labels for SAc, PAc, SA, and PA networks. For the one-to-
all problem we have demonstrated it only for SAc and PAc networks. An interesting prob-
lem for future work is to develop one-to-all algorithms that correctly find the minimal
labels for SA and PA networks.

5. Experimental Results and a Predictive Test

In this section we present the results of some computational experiments comparing the
quality of the solutions produced by Allen’s and our approximation algorithms. The
experiments give a partial answer to the question: With what degree of confidence can we
rely on the less expensive approximate solutions? We also present a simple test for pre-
dicting when the approximation algorithms will and will not produce good quality
approximations.

Distribution 1: About 75% of the time the uncertainty added is I , the set of all basic rela-
tions, and the remaining time consists of sets of from 0 to 3 of the basic relations.
Distribution 2: All elements of IA are equally likely to be added as uncertainty.

Distribution 1 Distribution 2

n OAC PC AAC OAC PC AAC

20 6.0 0.0 0.0 72.7 66.0 36.7
30 10.7 0.0 0.0 88.7 41.3 9.3
40 18.0 1.3 0.7 95.3 12.0 3.3
50 12.7 0.0 0.0 90.7 4.0 2.0
60 18.0 0.7 0.0 84.0 0.0 0.0

Fig. 5. Percentage differences between the approximation algorithms and an exact
algorithm for various problem sizes. 150 tests performed for each problem size, n.

We randomly generated IA networks of size n as follows. We first generated an
‘‘instantiation’’ by randomly generating values for the end points of n intervals. This was
turned into a consistent instantiation of an IA network by determining the basic relations
which were satisfied by this instantiation. Finally, we then added indefiniteness to the
relations between intervals by adding basic relations.

We then applied the three approximation algorithms, chose a particular edge, deter-
mined the minimal label on that edge using an exact backtracking algorithm, and
recorded whether the less expensive approximate solutions differed from the exact solu-
tion.

We found that how well the algorithms do is heavily dependent on the distribution
from which the indefiniteness is randomly generated. Fig. 5 summarizes the results for
two distributions. Distribution one was chosen to approximate instances that may arise in
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Fig. 6. Percentage differences between the approximation algorithms and an exact
algorithm for various percentage of labels in SAc. 250 tests performed for each subin-
terval; problem size is 25.

a planning application (as estimated from a block-stacking example in Allen and
Koomen, 1983). The important parameter in the planning application is that the relations
between most of the actions are originally unconstrained (represented as I , the set of all
basic relations). The values of n were also chosen to represent practical values. Fortu-
nately, for the class of problems that may arise in the planning application, experimental
results suggest that for a reassuringly large percentage of the time we can use the path
consistency algorithm with near impunity: the outcome is the same as that of using an
exact algorithm. With a different distribution, however, up to two-thirds of the labels on
av erage were not the minimal labels.

We note that the choice of how to generate random instances of the problem was
largely dictated by what kinds of problems could be solved exactly in a reasonable
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amount of time. It would be interesting to know if it is true in general that the quality of
the approximation improves as the problem size increases (as exhibited in Fig. 5). There
are indications that if some of the labels on edges of a random instance have, before
adding indefiniteness, at least two feasible elements, this is not the case but few experi-
ments were performed because exact solutions could not be computed in a reasonable
amount of time.

We present a simple test for predicting when the approximation algorithms will and
will not produce good quality approximations. Let SAc be the subset of IA discussed ear-
lier for which the path consistency algorithm is exact. Computational evidence shows a
strong correlation between the percentage of the total labels that are from SAc and how
well the OAC, PC, and AAC algorithms approximate the exact solution. Recall that The-
orem 3 (Theorem 6) states that PC (OAC) is exact when all the labels are from SAc so we
cannot improve on that. But, as the percentage of the total labels that are from SAc nears
zero, up to three-fifths of the labels (on average) assigned by PC and more than four-fifths
of the labels assigned by OAC are not the minimal labels (see Fig. 6). Thus we have an
effective test for predicting whether it would be useful to apply a more expensive algo-
rithm.

6. Applications

In this section we survey three example applications of Allen’s interval algebra, IA. The
applications were chosen from the literature to show where the results of this paper could
be useful.

Example 6.1.

Koubarakis et al. (1989) use the interval algebra in a knowledge representation language
for software development applications to allow the representation of and queries about
the history of the domain and about the system’s beliefs about that history. They use only
the thirteen basic relations, foregoing representational completeness in favor of guaran-
teed exact answers in quick time. (To be precise, their system maintains in a PAc network
the relations between the end points of every interval.) However, the basic interval rela-
tions are also a subset of SAc. Hence, our result that the path consistency algorithm is
exact for SAc and PAc networks shows that the expressive power of their temporal lan-
guage could be expanded without compromising efficiency or exactness. As well, the
one-to-all algorithm, whether we first translate into PAc networks or reason directly with
SAc networks, may be of significant use in a system that allows queries about the tempo-
ral relations between events in the domain. This will be especially true as the problems to
be represented grow larger.

Example 6.2.

Song and Cohen (1988) use the interval algebra in their solution to a problem in natural
language processing: extracting and representing the temporal relations between the
ev ents mentioned in a narrative. In narrative, the relations between events are sometimes
explicitly stated using adverbs or connectives but at other times are left vague. Song and
Cohen restrict their representation language to the thirteen basic relations plus two
defined relations—precedes (defined as {b, o, m}) and includes (defined as {eq, d, s,
f})—to capture vagueness. It turns out, however, that this subset of IA is also a subset of
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SAc. Thus, once we have extracted the possibly vague relations between some of the
ev ents mentioned in the narrative, we can determine exactly the strongest possible asser-
tions about the relations between all of the events using the path consistency algorithm.
As well, we can use the one-to-all algorithm to respond to queries about the ordering of
two specific events (such as ‘‘Is event A before event B?’’).

Example 6.3.

The interval algebra is used in planning (Allen and Koomen, 1983; Hogge, 1987). In
classical planning actions are viewed as instantaneous and thus the only allowed relations
between actions are < , > , and =. Viewing actions as having temporal extent and using IA
to represent the relations between actions allows plans to have actions that overlap.
Given a plan library with temporal constraints, Hogge gives the following three steps for
using his planner: (i) specify the planning problem as a set of facts, goals, and temporal
constraints between them, (ii) run the planner, (iii) select among the possible temporal
orderings of the operators applied in the plan. The full interval algebra is used in Hogge’s
planner (whether useful planning can be done with the possible relations restricted to SA
and SAc is worth further exploration).

Before search begins for a plan (step (ii) above), the planner tests whether the prob-
lem specification is temporally consistent. During the search for a plan, the planner adds
an operator to the plan if, among other things, the resulting expanded network is tempo-
rally consistent. The all-to-all consistency algorithm (AAC) may be useful here as it
detects inconsistent networks that the path consistency algorithm does not. Doing these
checks for consistency will take resources, but if the temporal constraints between the
goals are inconsistent, it is important to detect this early.

Suppose a disjunction of possible temporal relations between operators is deter-
mined by the planning component. A temporal ordering of the operators must be selected
(step (iii) above). Allen (1983) suggests using a backtracking algorithm to choose an
ordering. The backtracking algorithm tests the consistency of the ordering of the opera-
tors selected so far, and backtracks to select again if an inconsistency is detected. In (van
Beek, 1990) we use the result that looking at paths is sufficient for deciding whether a PA
network is inconsistent (a result that follows from Corollary 1 and Lemma 1) as an aid in
the design of a backtracking algorithm that is shown to be useful for planning problems
(see that reference for the details).

We may also want to allow the user greater input in the selection process. The user
could iteratively eliminate disjunctions of possible relations between operators by, at each
stage, choosing a single basic relation from the disjunction of possible basic relations
between two operators and propagating this choice by running the path consistency algo-
rithm. The iterative procedure would stop when no disjunctions remain. A complication
is that the procedure may need to backtrack. This would happen if one of the user’s
choices turned out to be infeasible, but this was only discovered at a later stage. How-
ev er, the results of the computational experiments suggest that this would be a rare occur-
rence. The experiments show that the path consistency algorithm almost always deter-
mines the minimal labels for problems that arise in planning. Hence, at each step the user
can almost always only choose an element of a label that is feasible.
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7. Conclusions

We reviewed a popular representation and reasoning framework for qualitative temporal
information introduced by James Allen. We then addressed a fundamental reasoning task
that arises in applications of this algebra: Given (possibly indefinite) knowledge about the
relationships between intervals, find all feasible relationships between two intervals.
Allen gives an approximation algorithm based on constraint propagation. We presented
an algorithm for computing better approximations for the all-to-all version of the problem
and a test for predicting when this more expensive algorithm is useful. We presented an
algorithm for the one-to-all version of the problem and a test for predicting when this less
expensive algorithm is useful. We gav e a counter example to a result in the literature and
identified easy (polynomial time) special cases of both versions of the problem.

Acknowledgements. We thank Peter Ladkin for many fruitful discussions and the refer-
ees for their detailed comments which improved the paper. We also thank Marc Vilain
for showing how to improve one of the proofs and Rina Dechter for asking a question that
led to the correction of an overly strong claim.

Appendix

Below we enumerate SA, the subset of IA that can be translated, using the relations
{< , ≤ , = , ≥ , > , ?, ≠}, into conjunctions of relations between the endpoints of the inter-
vals. We partition the elements into two sets dependent on whether ≠ is required in the
translation. Thus, SAc is enumerated as well. We remark that SAc contains the 13 basic
relations of IA plus all the entries in the composition table of the basic relations (see
Allen, 1983). A− and A+ represent the start and end points of interval A, respectively, and
A− < A+ and B− < B+ are true for every translation. In the interests of succinctness, if R is
shown, the inverse of R is not (except, of course, if R is its own inverse).
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A−B− A−B+ A+B− A+B+ A−B− A−B+ A+B− A+B+

{eq} = < > = {eq,d,s,f} ≥ < > ≤
{b} < < < < {eq,o,s,fi} ≤ < > ≤
{d} > < > < {b,o,m,fi} < < ? ≤
{o} < < > < {b,o,m,s} ≤ < ? <
{m} < < = < {d,o,m,s} ? < ≥ <
{s} = < > < {d,oi,mi,f} > ≤ > ?
{f} > < > = {eq,o,m,s,fi} ≤ < ≥ ≤
{eq,f} ≥ < > = {b,d,o,m,s} ? < ? <
{eq,s} = < > ≤ {b,di,o,m,fi} < < ?  ?
{b,m} < < ≤ < {eq,b,o,m,s,fi} ≤ < ? ≤
{d,f} > < > ≤ {eq,d,o,s,f,fi} ? < > ≤
{d,s} ≥ < > < {eq,d,oi,s,si,f} ≥ < >  ?
{o,m} < < ≥ < {eq,d,o,m,s,f,fi} ? < ≥ ≤
{o,s} ≤ < > < {eq,d,oi,mi,s,si,f} ≥ ≤ > ?
{o,fi} < < > ≤ I −{bi,di,oi,mi,si} ? < ? ≤
{eq,f,fi} ? < > = I −{bi,d,oi,mi,f} ≤ < ?  ?
{eq,s,si} = < >  ? I −{b,bi,m,mi} ? < >  ?
{b,o,m} < < ? < I −{b,bi,mi} ? < ≥ ?
{d,o,s} ? < > < I −{bi,mi} ? < ?  ?
{d,oi,f} > < >  ? I −{b,bi} ? ≤ ≥ ?
{o,m,fi} < < ≥ ≤ I −{bi} ? ≤ ? ?
{o,m,s} ≤ < ≥ < I ? ? ? ?

{b,o} < < ≠ < {d,di,o,oi,f,fi} ≠ < >  ?
{d,o} ≠ < > < {d,di,o,oi,m,mi} ≠ ≤ ≥ ≠
{d,oi} > < > ≠ {d,di,o,oi,s,si} ? < > ≠
{s,si} = < > ≠ {b,bi,d,di,o,oi,m} ≠ ≠ ? ≠
{f,fi} ≠ < > = {b,d,di,o,oi,f,fi} ≠ < ≠ ?
{b,d,o} ≠ < ≠ < {b,d,di,o,oi,m,mi} ≠ ≤ ? ≠
{b,di,o} < < ≠ ≠ {b,d,di,o,oi,s,si} ? < ≠ ≠
{b,o,s} ≤ < ≠ < {d,di,o,oi,m,f,fi} ≠ < ≥ ?
{b,o,fi} < < ≠ ≤ {d,di,o,oi,m,s,si} ? < ≥ ≠
{d,o,m} ≠ < ≥ < {eq,b,d,o,s,f,fi} ? < ≠ ≤
{d,oi,mi} > ≤ > ≠ {eq,b,di,o,s,si,fi} ≤ < ≠ ?
{b,d,o,m} ≠ < ? < I −{eq,m,mi,s,si} ≠ ≠ ≠ ?
{b,d,o,s} ? < ≠ < I −{eq,s,si,f,fi} ≠ ? ? ≠
{b,di,o,fi} < < ≠ ? I −{eq,m,mi,f,fi} ? ≠ ≠ ≠
{b,di,o,m} < < ? ≠ I −{eq,bi,mi,s,si} ≠ ≠ ≥ ?
{d,di,o,oi} ≠ < > ≠ I −{eq,bi,mi,f,fi} ? ≠ ≥ ≠
{d,o,f,fi} ≠ < > ≤ I −{eq,bi,m,s,si} ≠ ? > ?
{d,oi,s,si} ≥ < > ≠ I −{eq,bi,m,f,fi} ? ? > ≠
{b,d,di,o,oi} ≠ < ≠ ≠ I −{eq,b,bi,s,si} ≠ ≤ ≥ ?
{b,d,o,f,fi} ≠ < ≠ ≤ I −{eq,b,bi,f,fi} ? ≤ ≥ ≠
{b,di,o,s,si} ≤ < ≠ ≠ I −{eq,mi,s,si} ≠ ≠ ? ?
{d,di,o,oi,m} ≠ < ≥ ≠ I −{eq,mi,f,fi} ? ≠ ? ≠
{d,o,m,f,fi} ≠ < ≥ ≤ I −{eq,bi,s,si} ≠ ≤ ? ?
{d,oi,mi,s,si} ≥ ≤ > ≠ I −{eq,bi,f,fi} ? ≤ ? ≠
{eq,b,o,s,fi} ≤ < ≠ ≤ I −{eq,s,si} ≠ ? ? ?
{b,bi,d,di,o,oi} ≠ ≠ ≠ ≠ I −{eq,f,fi} ? ? ? ≠
{b,d,di,o,oi,mi} ≠ ≤ ≠ ≠ I −{bi,m,mi} ? < ≠ ?
{b,d,di,o,oi,m} ≠ < ? ≠ I −{m,mi} ? ≠ ≠ ?
{b,d,o,m,f,fi} ≠ < ? ≤ I −{bi,m} ? ≤ ≠ ?
{b,di,o,m,s,si} ≤ < ? ≠ I −{mi} ? ≠ ? ?
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