An Improved Machine Learning Approach for
Selecting a Polyhedral Model Transformation

Ray Ruvinskiy and Peter van Beek

Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract. Algorithms in fields like image manipulation, signal process-
ing, and statistics frequently employ tight CPU-bound loops, whose per-
formance is highly dependent on efficient utilization of the CPU and
memory bus. The polyhedral model allows the automatic generation of
loop nest transformations that are semantically equivalent to the origi-
nal. The challenge, however, is to select the transformation that gives the
highest performance on a given architecture. In this paper, we present an
improved machine learning approach to select the best transformation.
Our approach can be used as a stand-alone method that yields accu-
racy comparable to the best previous approach but offers a substantially
faster selection process. As well, our approach can be combined with the
best previous approach into a higher level selection process that is more
accurate than either method alone. Compared to prior work, the key dis-
tinguishing characteristics to our approach are formulating the problem
as a classification problem rather than a regression problem, using static
structural features in addition to dynamic performance counter features,
performing feature selection, and using ensemble methods to boost the
performance of the classifier.

1 Introduction

Loops are a fundamental part of many scientific computing algorithms, with
applications in image manipulation, sound and signal processing, and statistical
simulations, among others. Loops in such algorithms are usually tight—they
are computationally intensive and run for many iterations without blocking to
perform high-latency operations such as disk or network 1/0.

To achieve high performance, such loops must be structured so as to effec-
tively utilize architectural features including instruction level parallelism, branch
prediction, instruction and data prefetch capabilities, and multiple cores. Man-
ually transforming the code to take advantage of architectural features results
in code that is difficult to read and maintain. It also requires CPU architecture
expertise that an application developer may not have. Previous work has fo-
cused on methods for automatically selecting transformations that preserve the
semantics of the original code while optimizing the runtime of the loop nest on
a given CPU architecture (see the description of related work in Section B]).

We focus on the polyhedral model, a mathematical framework wherein loop
nests can be represented with polyhedra and loop transformations are expressed
as algebraic operations on polyhedra [I4[T5]. This enables the generation of a
search space of loop transformations that preserve the semantics of the original
loop. Park et al. [13] use supervised machine learning to select a transformation
from the overall transformation space, using as features hardware performance
counter values obtained while profiling the candidate program. In particular,
they use regression models to predict the speed-up of an arbitrary transforma-
tion from the search space over the original program. Park et al. propose a
five-shot approach, where binaries generated by applying each of the best five
transformations suggested by the model are run, and the transformation that
has the fastest runtime is chosen. Their five-shot approach, however, can result
in an excessively long selection phase.

We present an improved machine learning approach that achieves perfor-
mance comparable to the best results reported by Park et al. without the need
for a five-shot selection process—it is sufficient to use the single transforma-
tion selected by our classifier—and the selection process is substantially faster.
As well, our approach can be combined with Park et al.’s five-shot approach
into a higher level siz-shot selection process that is more accurate than either
method alone. The key contributing factors to the improvements offered by our
method include: formulating the problem as a classification problem rather than
a regression problem, using static structural features in addition to dynamic
performance counter features, performing feature selection, and using ensemble
methods to boost the performance of the classifier.

2 Background

In this section, we review the necessary background in the polyhedral model.
For more background on this topic, see, for example, [15].

The polyhedral model is a mathematical framework used to represent loops as
polyhedra and facilitate loop transformations [4[T4/T5]. Algebraically, a polyhe-
dron encompasses a set of points in a Z™ vector space satisfying the inequalities,

D={z|z€Z" Az +a >0},

where A is a matrix while z and a are column vectors. In the polyhedral model,
A is a matrix of constants, x is a vector of iteration variables, a is a vector of
constants, 0 is the zero vector, and the inequality operator (>) compares the
vectors element-wise.

To be mapped to the polyhedral model, a block of statements must be re-
stricted such that it is only enclosed in if statements and for loops. Pointer
arithmetic is disallowed (but array accesses are allowed). Function calls must
be inlined and loop bounds are restricted to affine functions of loop iterators
and global variables. While these limitations appear onerous at first glance, such
computational kernels play a large role in scientific and signal processing [2/6].

Loop bounds determine the iteration domains of the statements in consider-
ation. An iteration domain represents the values taken on by the loop iterators
for all iteration instances. The following example shows a simple nested loop and
its associated iteration domain.

Ezample 1. Given the source code,

int A[n][m];
int B[m][n];
for (i=0;1i < n;it++)
for (j = 0; j < m; j++)
if (i < j)
Afi]fj] = nsm=BIj][i};

the iteration domain Dg of statement S in the polyhedral model becomes,

10 1
. . -1 0 . n

Dg = (Z) (?)eZQ, 0 1 (?>+ 1|>o0
ARY 0 —1|V m
11 0

The first two inequalities reflect the bounds imposed by the outer loop; the next
two inequalities are the bounds imposed by the inner loop; and the last inequality
reflects the logic of the conditional.

In the polyhedral model, a timestamp is associated with each statement in-
stance. The relative order of the timestamps represents dependencies between
the execution order of the instances. If two instances share a timestamp, no
ordering between them need be enforced and they can be executed in parallel.

A multi-dimensional affine schedule specifies the execution order of each
statement instance that respects the dependency information [I4/I5]. There are
often many possible schedules, and each schedule, or polyhedral transformation,
can be viewed as a program transformation. It is possible to algorithmically gen-
erate the set of schedules, where each schedule preserves the semantics of the
original loop nest. Some schedules can be described as a sequence of well-known
loop optimizations including: tiling [I8], fusion [9], unrolling, prevectorization
[10], and parallelization. However, there are also valid schedules that are not
representable as a sequence of known loop optimizations.

Ezample 2. Consider the following semantically equivalent program transforma-
tion of the source code shown in Example[I]

for (c0 = 0; c0 <= n/32; c0++)
for (c1 = 0; c1 <= m/32; cl1++)
for (i = 32%c0; i < min(n,32%(c0+1)); i++)
for (j = 32xcl; j < min(m,32x(c14+1)); j++)
if (i <)
Ali][I] = nxmsBj][i];

The original source code shown in Example [l could have poor cache behavior
for larger values of n, possibly incurring a cache miss on every access of an
element of matrix B. The transformed source code is an example of tiling. While
more complicated, the transformed code can be algorithmically generated and
could have significantly better cache performance.

Two schedules, or polyhedral transformations, can differ dramatically in
performance on an architecture. However, selecting the appropriate polyhedral
transformation is difficult even for machine architecture experts as the individual
components can interact with each other and cannot be chosen independently.

3 Related Work

There are two main approaches to automatically selecting a high-performance
polyhedral transformation: hand-crafted and machine learning approaches.

For hand-crafted approaches, Lim and Lam [II] propose an algorithm to
select a transformation that maximizes parallelism and minimizes synchroniza-
tion. However, their algorithm has super-exponential complexity in the worst
case. Pouchet et al. [I4IT5] present search-based approaches to selecting a trans-
formation: an exhaustive search and a genetic algorithm. Pouchet et al. [16]
subsequently improve this approach to use a combination of analytic models,
where they are available and effective, and empirical search for cases where ana-
lytic models do not account for important properties of the hardware that have a
significant impact on performance. These search-based approaches all suffer from
scalability concerns, as the size of the search space is large enough to make it im-
practical to explore the space iteratively and evaluate different transformations
by compiling and running them.

For machine learning approaches, Park et al. [I3] use regression models to
predict the runtime of a polyhedral transformation of a source program and so
select a transformation. The search space is limited to the transformations sup-
ported out-of-the-box by the Polyhedral Compiler Collection version 1.1 (PoCC)
software: loop tiling, loop fusion, loop unrolling, loop prevectorization, and loop
parallelization. Considering every combination of the transformations results in
a search space of several hundred transformations. As in Cavazos et al. [3], Park
et al. use hardware performance counters as features. Park et al. propose a tech-
nique called five-shot which requires running the program being optimized five
times. For some programs their approach can be excessively time consuming,
which may serve as a barrier to the uptake of the technique. Our approach
builds on but improves Park et al. to either remove this deficiency or to improve
the accuracy. In Section B we perform an extensive empirical comparison.

More recently, Park et al. [I2] extend this work to include two additional
loop optimizations—wavefront and SIMD vectorization—using a newer version
of PoCC (version 1.2) and to propose a six-shot approach that consists of run-
ning the program six times, each time for a different regression classifier. Unfor-
tunately, we were not successful at integrating version 1.2 into our experimental

setup and no experimental results comparing the six-shot to the original five-shot
proposal have been reported. Our experimental results reproduce and compare
against the original five-shot approach using version 1.1 of PoCC. However, as
there is evidence that the six-shot approach only gives incrementally better per-
formance over the five-shot approach, and the six-shot approach retains the same
inherent deficiency, we believe our comparison and conclusions still hold.

Additionally, there is a considerable body of work on using machine learning
more generally in optimization in compilers including selecting a loop unroll
factor [17], selecting compiler optimization settings [3], and selecting a loop tiling
size [20]. In our approach we adapt some of the features previously proposed for
selecting loop tile size [20].

4 An Improved Machine Learning Approach

Our proposal is an extension of the work by Park et al. [I3]. The key distin-
guishing characteristics to our approach compared to Park et al.’s work are
using static structural features in addition to dynamic performance counter fea-
tures (Section L)), formulating the problem as a classification problem rather
than a regression problem (Section [.2]), performing feature selection to exclude
features that hold little or no predictive value for the class (Section 4], and
using ensemble methods to boost the performance of the classifier (Section EL5]).

4.1 Initial Feature Set

As in previous work, we use hardware performance counters as features [3/13].
Over 90 program counters are available on the architecture used in our exper-
imental setup. We selected a subset of those we deemed to be promising (see
Table [Il). Hardware performance counter values are collected by running a bi-
nary compiled from the unmodified program source on representative input.
These values are then normalized by taking ratios and manually discretized. We
also added static memory access features that are extracted from the program
source structure and reflect the program’s memory access patterns, as proposed
by Yuki et al. [20].

4.2 Class Value

Rather than using regression models to predict speed-up, we express the problem
as a binary classification problem by considering which of two transformations
results in faster runtime for a given source program. More formally, given a
source program P and two transformations, T4 and T, the transformation
pair (T4, Tp) is labeled 1 if P has a faster runtime having had T4 applied
rather than having had T applied; otherwise, the pair is labeled 0. A complete
training example then consists of the feature values for the benchmark, the
transformation pair, and the class of the transformation pair. A decision tree
classifier is learned from the data.

Table 1: Performance counter features ¢; and memory access features m;.

feature|description
co |ratio of L1 cache misses to L1 cache accesses
c1 ratio of L2 cache misses to L2 cache accesses
ca |ratio of L3 cache misses to L3 cache accesses
c3 |ratio of total CPU cycles to retired instructions
cs |ratio of cycles when no instructions were retired to total CPU cycles
cs |ratio of L3 cache accesses to total CPU cycles
ce |ratio of L3 cache misses to total CPU cycles
c7 |ratio of all resource-related stall cycles to total CPU cycles
cs |ratio of load buffer stall cycles to total CPU cycles
co |ratio of stall cycles due to reservation station being full to total CPU cycles
c10 |ratio of stall cycles to reorder buffer being full
c11 |ratio of conditional branch instructions executed to retired instructions
c12 |ratio of mispredicted branches executed to retired instructions
mo |number of prefetched memory reads
mi |number of non-prefetched memory reads
mg |number of loop-invariant memory reads
m3 |number of prefetched memory writes
my |number of non-prefetched memory writes
ms |number of loop-invariant memory writes

Once the classifier is constructed, it is used to choose a polyhedral transfor-
mation as follows. For a previously unseen program P, the classifier labels all
transformation pairs (T4, 1), for all transformations T4 and Ts in the trans-
formation search space. Subsequently, for every transformation T4, the number
of times a tuple (T4, Tg), where Ts is any transformation other than T4, is pre-
dicted to have the label 1 is recorded as scorer,. The transformation with the
highest score is selected as the best transformation suggested by the classifier.
In effect, a voting algorithm is used, with transformations being voted on within
the context of every transformation pair combination. The transformation with
the most votes is considered the winner. This is referred to as pairwise prefer-
ence ranking or round robin ranking [5]. Other approaches to combining pairwise
preferences exist (e.g., algorithms to calculate class probabilities [I9]) but are
not explored in the context of this paper.

4.3 Data Collection

Benchmarks from Polybench/C E, a suite of computational kernels with loop
nests, are used to train and test the classifier. The PAPI[library is used to
collect performance counter values for each benchmark. Each benchmark is com-
piled using the gcc compiler version 4.7.2 at the highest standard optimization

! http://www.cs.ucla.edu/~pouchet/software/polybench
2http://icl.cs.utk.edu/papi/index.html

http://www.cs.ucla.edu/~pouchet/software/polybench
http://icl.cs.utk.edu/papi/index.html

level, —03. No other gcc flags are used. The benchmarks are then executed.
The wall time runtime and selected hardware performance counter values are
recorded. Each benchmark is run enough times for the sum of the runtimes of
the executions to reach at least 10 seconds.

Subsequently, the Polyhedral Compiler Collection version 1.1 (PoCC) B is
used to generate the transformation search space. PoCC has numerous options
for various optimizations. We considered different values for the fusion, OpenMP,
tiling, vectorization, and loop unrolling options. In addition, we included the
identity transformation, where the original source code is not altered.

PoCC generates one source file per transformation per benchmark. The source
files are compiled, generating a binary. The binary is executed and the wall time
runtime is recorded. A training example is then generated for every pair of trans-
formations in each benchmark. The format of a training example is cg, ..., ¢12,
mo, ..., ms, identity 4, tiling 4, openmp 4, vectorization a, unroll 4, identity g,
tiling g, openmp g, vectorizationp, unrollp, class. The features cg, ..., c1o are
the discretized performance counter values for the benchmark, and mg, ..., ms
are the memory feature values for the benchmark. The features identity 4, ...,
unroll 4, are the feature values for the first transformation in the pair, and the fea-
tures identity g, . . ., unroll g, are the feature values for the second transformation
in the pair. Identity is a binary feature, and its value is 1 if the transformation
is an identity transformation and 0 otherwise. Tiling is an enumerated feature
corresponding to the tiling setting used in the transformation. The tiling setting
consists of the tiling factors for the top three nested loops. Possible tiling factors
are 1 (no tiling) or 32. This gives 8 values for the tiling setting in total. Openmp
and wvectorization are binary features reflecting their presence or absence in the
transformation. The unroll value of unroll is the loop unrolling factor used (8,
4, or 0 for no unrolling). The feature class is the binary classification. If the
runtime of the first transformation in the pair is less than the runtime of the
second transformation, class is 1; otherwise, it is 0. The transformations T4, Tp
and T, Ty are treated as distinct pairs, and a separate training example is
generated for each. The two pairs will belong to opposite classes.

4.4 Feature Selection

Feature selection (see, e.g., [7] and references therein) is used to select features
that have predictive value. A classifier is generated using every combination of
two features and evaluated for every benchmark. The classifiers are then sorted
in order of the number of benchmarks where the classifier suggested a transfor-
mation with a better runtime than the expected runtime of a randomly selected
transformation for the benchmark (see lines 2-8 of Algorithm [I). The random
selection process is repeated 100 times. In contrast to Park et al. [12], who found
that on average feature selection only degraded performance, feature selection is
an integral component of our overall approach.

3http://www.cs.ucla.edu/~pouchet/software/pocc

http://www.cs.ucla.edu/~pouchet/software/pocc

Algorithm 1: Feature selection and classifier evaluation.

1 foreach b € Benchmarks do

2 foreach f1, fo € Features do

3 foreach b’ € (Benchmarks — {b}) do

4 Learn a classifier using fi, fo and data from Benchmarks — {b,b'};

5 Test the classifier using data from ¥’;

6 end foreach

7 Tally number of benchmarks for which the classifier using the feature
combination f1, fo was judged effective;

end foreach

9 Sort feature combinations in descending order by number of benchmarks for

which they were judged effective;

10 Take top 21 feature combinations and construct a decision tree from each
combination using data from Benchmarks — {b};

11 Construct an ensemble classifier that classifies the data using the 21 trees
and predicts the class by a majority vote of all 21 trees;

12 Use the ensemble classifier to predict best transformation for b;

13 Report the accuracy of the predicted transformation for b;

14 end foreach

The selected features and the number of times a feature occurred in a feature
pair that was selected for the classifier ensemble are the following.

feature |Co C1 C3 C4 Cj Cg C7 012|m1 ms3 mgq Mms
number|8 4 316 21 3[4 3 2 1

The two features that appear the most often are the number of L1 cache misses
normalized with respect to the number of L1 cache accesses and the number of
L3 cache accesses normalized with respect to total CPU cycles. On the other
hand, the number of L3 cache accesses normalized with respect to L3 cache
misses does not appear at all. It is not immediately obvious why L1 cache misses
are significant while L3 cache misses are not and why overall L3 cache accesses
are significant while overall L1 cache accesses are not. This may be related to
architectural peculiarities. It is also interesting to note that prefetched memory
writes are significant, while prefetched memory reads are not. Again, this may be
related to the architecture on which the experiments were run. Such subtleties
regarding feature significance are not intuitive, and they become apparent only
as a result of the feature selection process.

4.5 Classifier Ensembles

The performance of a classifier can often be boosted by generating multiple
classifiers (or base-learners from smaller feature sets) and combining their results
[1l pp. 419-421]. Such combinations of classifiers are known as ensembles. The
simplest way to combine the outputs of an ensemble of classifiers is voting, and

the simplest and most widely-used voting technique is simple voting, where all
classifiers are equally weighted [Il pp. 424-425].

A simple voting approach is used to construct a classifier ensemble for pre-
dicting the label of a transformation pair (T4,Ts). The top n classifiers as
determined in the feature selection stage vote to predict the class. (In addition
to ensembles of decision trees containing pairs of features, we also considered
ensembles of decision stumps but these did not lead to improved performance.)
Each classifier’s vote is weighted equally. A value of 21 is used for n. The value
is determined empirically, and it is found that a value of 21 performs better than
a lower value, while values between 21 and 40 all perform relatively equally well
(see lines 9-11 of Algorithm [).

5 Experimental Evaluation

We present an empirical evaluation of our proposal against a baseline and the
current state-of-the-art approach. Our experimental results were obtained on an
Intel Core i7: Nehalem microarchitecture, Lynnfield Performance Desktop, model
870, 4 cores, and clock rate of 2.93 GHz. We show that on a benchmark suite of
computational kernels with loop nests, our method is competitive for accuracy
(Section [BI), offers a substantially faster selection process (Section (2), and
can be combined with the best previous approach into a higher level selection
process that is more accurate than either method alone (Section B3)).

The results presented for linear regression (LR) and support vector machine
regression (SVM), for both the one-shot and five-shot approaches, are our best
efforts to reproduce the results reported in Park et al. [I3]. One-shot results
evaluate the transformation predicted to be the best by the given method. Five-
shot results take the best runtime of the top five results as predicted by the given
method; i.e., the binary corresponding to each of the top five results is run and
the binary that has the best runtime is used.

5.1 Evaluation of Selection Accuracy

A nested leave-one-benchmark-out approach [8] pp. 245-247] was used to evaluate
our overall approach (see Algorithm [I]). For each benchmark, the data sets of
all other benchmarks are used as the training data, while the data set of the
benchmark in question is used as the test data. C4.5[is used to generate decision
trees from the training data.

Following Park et al., as a measure of accuracy we use percentage of optimal:
the ratio of the runtime of the benchmark binary obtained by applying the
optimal transformation in the search space to the runtime of a benchmark binary
obtained by applying a transformation selected by the approach being evaluated.
The ratio is expressed as a percentage, with a value of 100% indicating that the
transformation selected is the optimal transformation in the search space. The

4 http://www.rulequest . com/Personal

http://www.rulequest.com/Personal

Table 2: Percentage of optimal on benchmark kernels for the identity transfor-
mation; and the transformations chosen by the linear regression (LR), support
vector machine (SVM), and decision tree vote (DTV) methods.

. . LR SVM
benchmark identity 1-shot 5-shot|1-shot 5-shot DTV
2mm 15.9] 76.9 100.0| 96.7 100.0| 77.8
3mm 19.0 99.4 99.4| 75.1 89.0({100.0
adi 73.3| 46.5 54.1| 40.8 48.8/100.0
bicg 73.6| 68.1 68.1| 33.7 100.0({100.0
cholesky 68.3] 99.6 99.6| 95.6 99.2| 95.6
correlation 5.1| 54.8 60.4| 60.4 99.4| 98.8
covariance 4.8] 589 73.0{ 381 57.5|100.0
doitgen 46.6| 32.0 67.7| 66.6 100.0| 31.7
durbin 70.5| 98.7 99.4| 98.6 98.7| 97.9
dynprog 59.2| 83.8 84.5| T77.6 81.3| 77.6
fdtd-2d 50.6| 98.7 98.7| 17.5 62.8]| 55.0
fdtd-apml 70.0{ 979 97.9| 100.0 100.0| 99.3
floyd-warshall 71.3| 62.9 74.9| 100.0 100.0|{100.0
gemm 11.4] 98.2 100.0] 69.1 83.5| 96.9
gemver 28.8| 65.7 100.0| 96.7 98.6| 65.7
gesummv 73.7| 66.8 67.0| 100.0 100.0| 83.7
gramschmidt 9.3| 44.3 44.3| 13.3 43.7| 43.5

jacobi-1d-imper 77.2| 93.8 94.4| 94.7 99.1] 99.1
jacobi-2d-imper 49.2| 80.3 80.6] 98.8 98.9| 68.2

lu 65.7| 785 79.0| 41.5 41.5/100.0
ludcmp 69.4| 83.6 99.6| 95.9 99.6| 86.0
mvt 31.9| 98.0 98.0] 90.8 99.6| 53.3
reg-detect 70.4| 86.7 99.7| 98.2 98.2| 98.2
seidel-2d 424 49.6 50.2| 61.4 61.4/100.0
symm 70.0 98.4 98.5| 97.3 98.3| 985
syr2k 35.4| 51.3 52.1| 51.5 84.6 90.0
syrk 19.2| 41.4 44.8| 27.8 90.5| 89.5
trisolv 80.8| 57.3 57.7| 62.6 100.0/100.0
trmm 25.2| 574 58.5| 35.9 100.0| 90.6
average 47.9| 734 794| 70.2 87.4| 86.1

optimal transformation is found by applying every transformation in the search
space to the benchmark source code, running the resulting binaries, recording
the runtimes, and selecting the transformation corresponding to the binary with
the lowest runtime. As a baseline, we use the runtime of the stock benchmark
with no modifications to the source code, referred to as identity.

Table @] contrasts the accuracy, expressed as percentage-of-optimal, of the
identity transformation, the one-shot and five-shot approaches for linear and
SVM regression, and our decision tree voting approach. TableBlshows the speed-
up over the identity transformation for every benchmark for the five-shot SVM

Table 3: Speed-up on benchmark kernels over the identity transformation using
the SVM five-shot (SVM) and decision tree vote (DTV) methods.

benchmark |SVM DTV benchmark SVM DTV
2mm 6.3 4.9 gesummv 14 14
3mm 4.7 5.3 gramschmidt 4.7 4.7
adi 0.7 1.4 jacobi-1d-imper| 1.3 1.3
bicg 14 14 jacobi-2d-imper| 2.0 14
cholesky 1.5 14 lu 0.6 1.5
correlation 19.4 19.3 ludcmp 14 1.2
covariance 11.9 20.7 mvt 3.1 1.7
doitgen 2.2 07 reg-detect 14 14
durbin 14 14 seidel-2d 1.5 24
dynprog 14 13 Ssymim 14 14
fdtd-2d 1.2 1.1 syr2k 24 2.2
fdtd-apml 14 14 syrk 4.7 5.2
floyd-warshall] 1.4 1.4 trisolv 1.2 1.2
gemm 7.3 8.5 trmm 4.0 3.6
gemver 34 23 median 1.5 14

average 3.3 35

regression and the one-shot decision tree voting. The results of our reproduction
of Park et al.’s work are similar to the results reported in their paper; thus, we
have some confidence in their correctness. Our one-shot decision tree vote and
the five-shot SVM approach perform about equally well.

5.2 Evaluation of Selection Speed

Table [contrasts the runtime (seconds) needed to select a transformation using
the support vector machine and decision tree vote methods. For both methods,
the untransformed code is first run to gather the feature values. These feature
values are then fed into a classifier to predict the best transformations. Gather-
ing the feature values is the most time consuming phase as enabling the program
counter features slows the execution, in proportion to the number of program
counters enabled. Park et al. [12] use 56 program counter features 1. We effec-
tively used feature selection to narrow this down to 8 program counters and 4
structural features. The speedups range from 3.7 to 15.8, with an average of
7.2. The maximum wall clock speed up was for the 3mm benchmark. Park et
al. took 1154.3 seconds (approximately 18 minutes) whereas ours took 182.8
seconds (approximately 3 minutes), for a speedup ratio of six times faster.

5 Park et al. [13] do not provide details on which program counters were used in their
experiments, so we are relying instead on the expanded version of their paper [12]
where they use 56 program counters, 47 of which are available on our architecture.

Table 4: Runtime (seconds) on benchmark kernels needed to select a transfor-
mation using the SVM five-shot (SVM) and decision tree vote (DTV) methods.
Also shown is the ratio of the two runtimes. The average ratio is 7.2.

benchmark SVM DTV ratio benchmark SVM DTV ratio
2mm 857.8 131.6 6.5 gesummyv 204 33 6.2
3mm 1154.3 182.8 6.3 gramschmidt [487.1 75.9 6.4
adi 79.0 9.8 8.1 jacobi-1d-imper| 20.7 4.0 5.2
bicg 176 2.5 7.0 jacobi-2d-imper| 15.2 1.8 8.4
cholesky 154 19 9.1 lu 96.5 6.1 15.8
correlation 264.2 444 6.0 ludcmp 51.3 13.7 3.7
covariance 310.3 46.1 6.7 mvt 184 2.1 88
doitgen 68.4 10.3 6.6 reg_detect 178 1.8 9.9
durbin 50.3 8.2 6.1 seidel-2d 308 41 75
dynprog 72.8 10.6 6.9 symm 686.4 91.5 7.5
fdtd-2d 90.8 13.0 7.0 syr2k 222.3 334 6.7
fdtd-apml 747 9.1 82 syrk 163.1 25.0 6.5
floyd-warshall] 81.3 9.8 8.3 trisolv 319 75 43
gemm 361.7 69.8 5.2 trmm 164.0 27.6 5.9
gemver 19.8 2.3 8.6

5.3 A Six-Shot Selection Process

The per-benchmark breakdown in Table [2 reveals that while, on average, our
one-shot DTV method is competitive with Park et al.’s five-shot SVM method,
the different approaches do better on different benchmarks. For examples, DTV
obtains 100% on 1lu when SVM obtains only 41.5%, and SVM obtains 100% on
doitgen when DTV obtains only 31.7%.

That the two methods have different strengths suggests that combining them
would be advantageous. We define a siz-shot selection process which consists of:
(i) run the five best transformations predicted by Park et al.’s SVM approach
and record the best transformation, the transformed binary that has the fastest
runtime, (ii) run the transformed binary predicted by our one-shot DTV ap-
proach, and (iii) report the fastest of the two transformations from steps (i) and
(ii). The result is a six-shot selection process that is more accurate than either
method alone: The accuracy is boosted from 87.4% and 86.1% for the SVM and
DTV methods, respectively, to within 95.0% of optimal, on average. Note that
adding step (ii) has a proportionally negligible effect on the overall runtime.

6 Conclusion

We presented an improved machine learning approach within the polyhedral
framework to select the transformation of a loop nest that gives the highest
performance on a given architecture. On a benchmark suite of computational
kernels our DTV method achieves accuracy results competitive with Park et

al.’s [I3] five-shot SVM regression approach, the best previous approach, while
speeding up the selection process by a factor of 7.2 on average. As well, when the
DTV approach is combined with Park et al.’s five-shot approach into a higher
level six-shot selection process the new six-shot selection process is more accurate
than either method alone. On the benchmark suite, the accuracy of the combined
six-shot process, as measured by percentage from optimal, was boosted to 95.0%
as compared to 86.1% and 87.4% when our method and Park et al.’s method,
respectively, are used as stand-alone methods.

References

1.

Alpaydin, E.: Introduction to Machine Learning. The MIT Press, 2nd ed. (2010)

2. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The poly-

10.

11.

12.

13.

14.

15.

16.

hedral model is more widely applicable than you think. In: Proceedings of
ETAPS’10/CC’10 (2010)

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F.P., Temam, O.:
Rapidly selecting good compiler optimizations using performance counters. In:
Proceedings of CGO’07. pp. 185-197 (2007)

Feautrier, P.: Automatic parallelization in the polytope model. The Data-Parallel
Programming Model, LNCS 1132, Springer. pp. 79-103 (1996)

Firnkranz, J., Hillermeier, E.: Pairwise preference learning and ranking. In: Pro-
ceedings of ECML-03. pp. 145-156 (2003)

Girbal, S., Vasilache, N., Bastoul, C., Cohen, A., Parello, D., Sigler, M., Temam,
O.: Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies. Intl J. of Parallel Programming 34, 2006 (2006)

Guyon, 1., Elisseeff, A.: An introduction to variable and feature selection. J.
Mach. Learn. Res. 3, 1157-1182 (2003)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
mining, Inference and Prediction. Springer, 2nd ed. (2009)

Kennedy, K., McKinley, K.S.: Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In: Proc. of LCPC’94. pp. 301-320 (1994)
Larsen, S., Amarasinghe, S.: Exploiting superword level parallelism with multime-
dia instruction sets. In: Proceedings of PLDI’00. pp. 145-156 (2000)

Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization
with affine transforms. In: Proceedings of POPL’97. pp. 201-214 (1997)

Park, E., Cavazos, J., Pouchet, L.N., Bastoul, C., Cohen, A., Sadayappan, P.:
Predictive modeling in a polyhedral optimization space. Intl J. of Parallel Pro-
gramming 41, 704-750 (2013)

Park, E., Pouche, L.N., Cavazos, J., Cohen, A., Sadayappan, P.: Predictive mod-
eling in a polyhedral optimization space. In: Proc. of CGO’11. pp. 119-129 (2011)
Pouchet, L.N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the
polyhedral model: Part II, multi-dimensional time. In: Proceedings of PLDI’08.
pp. 90-100 (2008)

Pouchet, L.N., Bastoul, C., Cohen, A., Vasilache, N.: Iterative optimization in
the polyhedral model: Part I, one-dimensional time. In: Proceedings of CGO’07.
pp. 144-156 (2007)

Pouchet, L.N., Bondhugula, U., Bastoul, C., Cohen, A., Ramanujam, J., Sadayap-
pan, P.; Vasilache, N.: Loop transformations: convexity, pruning and optimization.
SIGPLAN Not. 46, 549-562 (2011)

17.

18.

19.

20.

Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised clas-
sification. In: Proceedings of CGO’05. pp. 123-134 (2005)

Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of
PLDI'91. pp. 30-44 (1991)

Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5, 975-1005 (2004)

Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson, C., Eichenberger, A.E.,
O’Brien, K.: Automatic creation of tile size selection models. In: Proceedings of
CGO’10. pp. 190-199 (2010)

	 An Improved Machine Learning Approach for Selecting a Polyhedral Model Transformation

