Finding Small Backdoors in SAT Instances

Zijie Li and Peter van Beek

Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Abstract. Although propositional satisfiability (SAT) is NP-complete,
state-of-the-art SAT solvers are able to solve large, practical instances.
The concept of backdoors has been introduced to capture structural
properties of instances. A backdoor is a set of variables that, if assigned
correctly, leads to a polynomial-time solvable sub-problem. In this paper,
we address the problem of finding all small backdoors, which is essential
for studying value and variable ordering mistakes. We discuss our defi-
nition of sub-solvers and propose algorithms for finding backdoors. We
experimentally compare our proposed algorithms to previous algorithms
on structured and real-world instances. Our proposed algorithms improve
over previous algorithms for finding backdoors in two ways. First, our
algorithms often find smaller backdoors. Second, our algorithms often
find a much larger number of backdoors.

1 Introduction

Propositional satisfiability (SAT) is a core problem in AI. The applications are
numerous and include software and hardware verification, planning, and schedul-
ing. Even though SAT is NP-complete in general, state-of-the-art SAT solvers
can solve large, practical problems with thousands of variables and clauses. To
explain why current SAT solvers scale well in practice, Williams, Gomes, and
Selman [13,14] propose the concept of weak and strong backdoors to capture
structural properties of instances. A weak backdoor is a set of variables for
which there exists a value assignment that leads to a polynomial-time solvable
sub-problem. For a strong backdoor, every value assignment should lead to a
polynomial-time solvable sub-problem.

In this paper, we address the problem of finding all small backdoors in SAT
instances. A small backdoor is a backdoor such that no proper subset is also a
backdoor. This problem is important for studying problem hardness, which is
generally represented as the time used or the number of nodes extended by a SAT
solver. In addition, identifying all small backdoors is a first step to investigating
how value and variable ordering mistakes affect the performance of backtracking
algorithms—the ultimate goal of our research. A variable ordering heuristic can
make a mistake by selecting a variable not in the appropriate backdoor. A value
ordering heuristic can make a mistake by assigning the backdoor variable a value
that does not lead to a polynomial sub-problem.



Backdoors are defined with respect to sub-solvers, which in turn can be de-
fined algorithmically or syntactically. Algorithmically defined sub-solvers are
polynomial-time techniques of current SAT solvers, such as unit propagation.
Syntactically defined sub-solvers are polynomial-time tractable classes, such as
2SAT and Horn. The size of backdoors with respect to purely syntactically de-
fined sub-solvers is relatively large. On the other hand, it is possible that a
simplified sub-problem is polynomial-time solvable before an algorithmically de-
fined sub-solver finds a solution. Therefore, we propose a sub-solver that first
applies unit propagation, and then checks polynomial-time tractable classes.

We propose both systematic and local search algorithms for finding back-
doors. The systematic search algorithms are guaranteed to find all minimal sized
backdoors but are unable to handle large instances. Kilby, Slaney, Thiébaux,
and Walsh [7] propose a local search algorithm to find small weak backdoors.
Building on their work, we propose two local search algorithms for finding small
backdoors. Our first algorithm incorporates our definition of sub-solver with
Kilby et al.’s algorithm. Our second algorithm is a novel local search technique.
We experiment on large real-world instances, including the instances from SAT-
Race 2008, to compare our proposed algorithms to previous algorithms. Our
algorithms based on our proposed sub-solvers can find smaller backdoors and
significantly larger numbers of backdoors than previous algorithms.

2 Background

In this section, we review the necessary background in propositional satisfiability
and backdoors in SAT instances.

We consider propositional formula in conjunctive normal form (CNF). A
literal is a Boolean variable or its negation. A clause is a disjunction of literals.
A clause with one literal is called a unit clause and the literal in the unit clause
is called a unit literal. A propositional formula F is in conjunctive normal form
if it is a conjunction of clauses.

Given a propositional formula in CNF, the problem of determining whether
there exists a variable assignment that makes the formula evaluate to true is
called the propositional satisfiability problem or SAT. Propositional satisfiability
is often solved using backtracking search. A backtracking search for a solution to
a SAT instance can be seen as performing a depth-first traversal of a search tree.
The search tree is generated as the search progresses and represents alternative
choices that may have to be examined in order to find a solution or prove that
no solution exists. Exploring a choice is also called branching and the order in
which choices are explored is determined by a wvariable ordering heuristic. When
specialized to SAT solving, backtracking algorithms are often referred to as being
DPLL-based, in honor of Davis, Putnam, Logemann, and Loveland, the authors
of one of the earliest works in the field [1].

Let F' denote a propositional formula. We use the value 0 interchangeably
with false and the value 1 interchangeably with true. The notation F[v = 0]
represents a new formula, called the residual formula, obtained by removing all



clauses that contain the literal —v and deleting the literal v from all clauses.
Similarly, the notation F'[v = 1] represents the residual formula obtained by re-
moving all clauses that contain the literal v and deleting the literal —v from all
clauses. Let ag be a set of assignments. The residual formula F[ag] is obtained
by cumulatively reducing F' by each of the assignments in ag.

Ezample 1. For example, the formula, FF = (xV-y)A(xVyVz)A(yV-zVw)A
(mw V =z V) A(—v Vu),is in CNF. Suppose z is assigned false. The residual
formula is given by, Flx = 0] = (=y)A(yV2)A(yV-zVw)A(—wV-zVo)A(-oVau).

As is clear, a CNF formula is satisfied only if each of its clauses is satisfied
and a clause is satisfied only if at least one of its literals is equivalent to true. In
a unit clause, there is no choice and the value of the literal is said to be forced.
The process of unit propagation repeatedly assigns all unit literals the value true
and simplifies the formula (i.e., the residual formula is obtained) until no unit
clause remains or a conflict is detected. A conflict occurs when implications for
setting the same variable to both true and false are produced.

Ezample 2. Consider again the formula F[z = 0] given in Example 1. The unit
clause (—y) forces y to be assigned 0. The residual formula is, F[z = 0,y = 0] =
(2) AN (mzVw) A (—~wV -z Vo)A (—vVu). In turn, the unit clause (z) forces z
to be assigned 1. Similarly, the assignments w = 1, v = 1, and u = 1 are forced.

Williams, Gomes, and Selman [13] formally define weak and strong back-
doors. The definitions rely on the concept of a sub-solver A that, given a formula
F, in polynomial time either rejects the input or correctly solves F'. A sub-solver
can be defined either algorithmically or syntactically. For example, a DPLL-
based SAT solver can be modified to be an algorithmically defined sub-solver
by using just unit propagation, and returning “reject” if branching is required,
“unsatisfiable” if a contradiction is encountered, and “satisfiable” if a solution is
found. Examples of tractable syntactic classes include 2SAT, Horn, anti-Horn,
and RHorn formulas. A formula is 2SAT if every clause contains at most two
literals, Horn if every clause has at most one positive literal, anti-Horn if every
clause has at most one negative literal, and renamable Horn (RHorn) if it can
be transformed into Horn by a uniform renaming of variables.

A weak backdoor is a subset of variables such that some value assignment
leads to a polynomial-time solvable sub-problem.

Definition 1 (Weak Backdoor). A nonempty subset S of the variables is a
weak backdoor in F for a sub-solver A if there exists an assignment ag to the
variables in S such that A returns a satisfying assignment of Flag].

Ezample 3. Consider once again the formula F[z = 0] given in Example 2. After
unit propagation every variable has been assigned a value and the formula F is
satisfied. Hence, x is a weak backdoor in F' with respect to unit propagation.

A strong backdoor is a subset of variables such that every value assignment
leads to a polynomial-time solvable sub-problem.



Table 1. Summary of previous experimental studies, where DPLL means the sub-solver
used was defined algorithmically based on a DPLL solver; otherwise the sub-solver was
defined syntactically using the given tractable class.

Sub-solvers Instance domains
Williams et al. [13] |DPLL structured
Interian [6] 2SAT, Horn random 3SAT
Dilkina et al. [2] DPLL, Horn, RHorn |graph coloring, planning, game theory, auto-
motive configuration
Paris et al. [9] RHorn random 3SAT, SAT competition
Kottler et al. [8] 2SAT, Horn, RHorn |SAT competition, automotive configuration
Samer & Szeider [11]|Horn, RHorn automotive configuration
Ruan et al. [10] DPLL quasigroup completion, graph coloring
Kilby et al. [7] DPLL random 3SAT
Gregory et al. [4] DPLL planning, graph coloring, quasigroup
Dilkina et al. [3] DPLL planning, circuits

Definition 2 (Strong Backdoor). 4 nonempty subset S of the variables is a
strong backdoor in F' for a sub-solver A if for all assignments ag to the variables
in S, A returns a satisfying assignment or concludes unsatisfiability of Flas].

A minimal backdoor for an instance is a backdoor S such that for every other
backdoor S’, |S] < |S’|. A small backdoor refers to a backdoor S such that no
proper subset of S is also a backdoor. A minimal backdoor can be viewed as a
global minimum, and a small backdoor can be viewed as a local minimum.

3 Related Work

In this section, we review previous work on algorithms for finding weak and
strong backdoors in SAT and their experimental evaluation (see Table 1).

In terms of algorithms, Williams, Gomes, and Selman [13, 14] present a sys-
tematic algorithm which searches every subset of variables for a backdoor. We
modify this algorithm to find minimal backdoors. Interian [6] and Kilby, Slaney,
Thiébaux, and Walsh [7] propose a local search algorithm for finding backdoors.
Our algorithms build on Kilby et al’s. We discuss this all in detail in Section 4.

In terms of experimental results, Dilkina, Gomes, and Sabharwal [2] show
that strong Horn backdoors can be considerably larger than strong backdoors
with respect to DPLL sub-solvers. Kottler, Kaufmann, and Sinz [8] compare
2SAT, Horn and RHorn and find that RHorn usually results in smaller backdoors.
Samer and Szeider [11] compare Horn and RHorn strong backdoors and find
as well that RHorn gives smaller backdoors. In general, previous experimental
results show that backdoors with respect to syntactically defined sub-solvers have
larger sizes than backdoors with respect to algorithmically defined sub-solvers.

In contrast to previous work, which consider DPLL, 2SAT, Horn, and RHorn
sub-solvers independently, we combine syntactic and algorithmic sub-solvers into
a single sub-solver. We also propose improved algorithms and experimentally
evaluate our proposals on larger, more varied instances.



Table 2. Algorithms for finding weak and strong backdoors.

Exact Our exact algorithm for finding minimal weak backdoors in satisfiable
instances;

STRONG  Our exact algorithm for finding minimal strong backdoors in unsatisfiable
instances;

KiLpy Kilby et al.’s [7] local search algorithm for finding small weak backdoors;

KiLBYImP Kilby et al.’s [7] algorithm that incorporates our definition of sub-solver;

TABU Our proposed local search algorithm for finding small weak backdoors.

4 Algorithms for Finding Backdoors

In this section, we introduce how we define sub-solvers and describe several
algorithms for finding backdoors (see Table 2).

In our proposed framework, we define the sub-solver both algorithmically
and syntactically. Specifically, given a partial assignment to a subset of variables
S, we first apply unit propagation and then check the following conditions to see
if the resulting formula F' belongs to a polynomial-time tractable class:

if F is satisfied;

if F is 2SAT;

if F is satisfied after assigning 0 (false) to every unassigned variable;
4. if F is satisfied after assigning 1 (¢rue) to every unassigned variable.

W=

If one of the above conditions is true, then S is a backdoor set. The first two
conditions are trivial. The third condition covers (a superset of) Horn formula,
while the last condition covers (a superset of) anti-Horn formula. If F' is a Horn
formula, it can be satisfied by assigning 0 to all variables unless it has unit clauses
with a single positive literal. However, after unit propagation, F' is guaranteed to
have at least two unassigned literals in each clause. A similar reasoning applies
if F' is anti-Horn. In specifying our algorithms, we make use of the following low
level procedures, where F'is a CNF formula and v is a Boolean value.

isSatisfied(F) return true iff F is already satisfied;

is2SAT(F) return true iff F' is a 2SAT formula;
isSat2SAT(F) return true iff F' is a satisfiable 2SAT formula;
setVal(F,v) return true iff F is satisfied after assigning v to every

unassigned variable.

4.1 Exact Algorithms: EXACT and STRONG

We describe exact algorithms, which are suitable for small instances with small
backdoors. Algorithm EXACT takes as input a formula F' and finds all backdoors
of size at most k by performing an exhaustive search. We run algorithm EXACT
with £k =1,2,...,n — 1, until minimal backdoors are found.

The algorithm calls procedure expand(V, S, k), which explores the variables of
F'in a depth-first manner. Given a set of variables V', a set of minimal backdoors



S, and a positive integer k, the procedure returns true iff V' is a backdoor and as
a side-effect, S is updated. Given a value assignment to the variablesin V', V is a
backdoor if there is no conflict after unit propagation and the resulting formula
F is in one of the polynomial-time tractable classes. The procedure recursively
calls itself with one more variable added to V and k — 1.

Algorithm: EXACT(F, k)

S — 0

for i < 0 to n — 1 do expand({x;}, S, k);
return S;

Procedure: expand(V, S, k)

foreach value assignment ayv of V do

if unit propagation of av does not result in conflicts then
L if isSatisfied(F') V isSat2SAT(F) V setVal(F, 0) V setVal(F, 1)

then S «— SUV; return true;

if £ <1 then return false;

j < index of the last variable in V;

for i — (j+1) ton—1do expand(V U{x;}, S, k—1);
return false;

The EXACT algorithm can easily be modified to give algorithm STRONG,
which finds minimal strong backdoors in unsatisfiable instances. The idea is that
if every value assignment to a set of variables V results in conflicts during unit
propagation, then we are able to conclude the unsatisfiability of the instance.
Thus, V is added to the list of strong backdoors.

4.2 Local Search Algorithms: KiLBY, KiLBYIMP, and TABU

The exact algorithms based on depth-first search are complete, but do not scale
up to instances with larger backdoors. Here we discuss local search algorithms.
In the local search algorithms each search state s is a backdoor, and the cost of
a node s is the cardinality of the backdoor s.

Kilby et al. [7] propose algorithm KILBY for finding small weak backdoors
using local search. Given a formula F', the DPLL solver Satz-rand is first used to
solve F', recording the set W of branching literals and the solution M. The set
W is an initial backdoor as Satz-rand is able to solve F[W] without branching.
Then, algorithm KiLBY takes the inputs ', W, and M to find small backdoors.
The set B is the current smallest backdoor. The algorithm has three constants:
RestartLimit, which controls the number of restarts, a technique for escaping
from local minima; IterationLimit, which controls the amount of search between
restarts; and CardMult, which defines the neighbors of the current candidate
backdoor W. In each iteration, the algorithm randomly selects from M a set Z
of |W| x CardMult literals that are not in W. The set Z of literals is appended to
W, and procedure minWeakBackdoor is called to reduce the set W U Z of literals
into a small backdoor, which is the next search state.



Algorithm: KiLBY(F, W, M)

S« 0, B~ W;
RestartLimit < 2; RestartCount < 0; IterationLimit «— \/n X 3; CardMult — 2;

while RestartCount < RestartLimit do
RestartCount «— RestartCount + 1;

W «— B,
for i < 0 to IterationLimit do
Z «— |W| x CardMult literals chosen randomly from M \ W;
W « minWeakBackdoor(F, W U Z);
if |W| < |B| then S — SUW;
if |W| < |B| then B — W; RestartCount « 0;

return S;

Procedure: minWeakBackdoor(F, I)

W — 0
while I # 0 do
Choose literal € I; I «— I\ {l};

if DPLL applied to F[W U I] requires branching then
// The following if statement is added in our sub-solver;

1 if —is2SAT(F) A —setVal(F,0) A —setVal(F,1) then
L W= Wu{lh

return W;

Kilby et al. use a simple sub-solver, which applies Satz-rand’s unit propaga-
tion. We modify their algorithm KILBY to use the more sophisticated sub-solver
we define. Algorithm KiLBYIMP is the local search algorithm that results from
adding Line 1 in procedure minWeakBackdoor. One further difference is that our
DPLL solver is Minisat, where Minisat has a powerful pre-processor.

We also propose a novel algorithm TABU, which uses local search techniques,
including Tabu Search, a best improvement strategy, and auxiliary local search.
The search state W is the current candidate backdoor, and tabulList is a list of
previously visited search states. The tabu tenure is set to 30 to prevent our TABU
from revisiting the last 30 search states. When the tabu list is full, the oldest state
is replaced by the new state. The procedure searchNeighbors(W, S, M) evalu-
ates the neighborhood of W and updates W with the best improving neighbor
not in tabulList. The while loop stops if no new small backdoors have been found
in the last RestartLimit iterations. The procedure localImprovement(S, M) is
an auxiliary local search over the neighborhood of newly found small backdoors.

The procedure searchNeighbors(W, S, M) explores all IterationLimit neigh-
bors of the current backdoor W to find a best non-tabu candidate backdoor. This
is in contrast to Algorithm KILBY, which selects the first neighbor s’ encountered
in the neighborhood of s without considering the cost of §'; i.e., |s’|. The value
of minCost is the minimal size of backdoors in Neighbor. If minCost is no larger
than the size of the current smallest backdoor, then all the backdoors in Neighbor
of size minCost are added to the list of small backdoors S. A small backdoor
of size minCost is randomly selected from Neighbor to be the next search state.



When minCost is larger than the size of the current smallest backdoor, the search
can escape from local minima by making worse moves. If every non-tabu candi-
date backdoor in Neighbor has a larger size than the current smallest backdoor,
the search moves to a best candidate backdoor from Neighbor.

Algorithm: TABU(F, W, M)
W <+ minWeakBackdoor (F, W);

preSize «— |S|; RestartLimit < 2; RestartCount < 0; tabuList < (;

while RestartCount < RestartLimit do
RestartCount < RestartCount + 1;

cost < searchNeighbors(W, S, M);
if cost = 0 then break;
tabulList «— tabulList U W
if |S| > preSize then RestartCount < 0;
preSize — |S|;
tabuList +— (;
localImprovement (S, M);
return S;

Procedure: searchNeighbors(W, S, M)

IterationLimit < /n X 2; CardMult < 2; Neighbor «— 0, Cost «— {;
for i — 0 to IterationLimit do
Z «— |W| x CardMult literals chosen randomly from M \ W;
W <« minWeakBackdoor (F, W U Z);

if W & tabuList then
Neighbor < Neighbor U W,
Cost «— Cost U |W]|;

if | Neighbor| = 0 then return 0;
minCost «— min(Cost);
if minCost < current smallest backdoor size then
| S« SU{B € Neighbor | |B| = minCost};
W « select a backdoor from Neighbor with size minCost randomly;
return minCost;

The procedure localImprovement(S, M) is an auxiliary local search that
attempts to find more minimal backdoors by replacing variables in s. The inspi-
ration for the procedure is the observation that some variables appear in most
backdoors and some backdoor sets only differ from each other by one variable.

Procedure: localImprovements(S, M)
foreach new backdoor B € S, B ¢ tabulList do
tabuList «— tabuList U B;

foreach literal | € {M \ B} do
B < minWeakBackdoor (F, BUI);

if |B| < current minimum backdoor size then S «— S U B;



Table 3. Size, percentage, and number of minimal backdoors found by the Exact
algorithm when applied to small real-world instances with n variables and m clauses.

Instance n m |BD size (%)|# BDs
grieu-vimpc-s05-24s|  576(49478| 3 (0.52%) 143
een-tip-sat-texas-tp-5e[17985| 153| 1 (0.01%) 2
anomaly| 48| 182| 1 (2.08%) 2

medium| 116 661 1 (0.86%) 5

huge| 459| 4598| 2 (0.44%)| 89

bw_large.a| 459| 4598| 2 (0.44%) 89

bw_large.b| 1087|13652| 2 (0.18%) 7

5 Experimental Evaluation

In this section, we describe experiments on structured and real-world SAT in-
stances to compare the algorithms shown in Table 2. The set of satisfiable test
instances consists of planning instances from SATLIB [5] and all but six of the
satisfiable real-world instances from SAT-Race 2008 (the instances excluded were
those that Minisat was unable to solve within the competition time limit). The
set of unsatisfiable test instances is from the domain of automotive configura-
tion [12]. The instances were all pre-processed with Minisat, which can sometimes
greatly reduce the number of clauses. The experiments were run on the Whale
cluster of the SHARCNET system (www.sharcnet.ca). Each node of the cluster
is equipped with four Opteron CPUs at 2.2 GHz and 4.0 GB memory.

5.1 Experiments on Finding Weak Backdoors

Algorithm EXACT is able to find all minimal backdoors for instances with small
backdoors (see Table 3). The sizes of minimal backdoors in the blocks world
instances are smaller than those reported by Dilkina et al. [3] who report per-
centages between 1.09% to 4.17% even though they used clause learning in ad-
dition to unit propagation. The reason is that our sub-solver not only applies
unit propagation, but also tests for polynomial-time syntactic classes. Systematic
algorithms do not scale up to instances with larger backdoors, though.

We also compared the small backdoors found by the local search algorithms,
KiLBy, KiLBYIMP, and TABU. With different initial solutions as inputs, the local
search algorithms were run repeatedly until a cutoff time was reached. Only the
smallest backdoors found by the algorithms were recorded. The cutoff time was
set to 3 hours for instances with fewer than 10,000 variables (see Table 4) and
15 hours for larger instances (see Table 5). For each instance, the algorithm
that found the smallest backdoors among the three local search algorithms is
highlighted, with the largest number of backdoors used to break ties.

When the cutoff time was reached, we waited for the algorithms to finish
the current iteration. Because TABU takes longer to complete one iteration than
KILBY and KiLBYIMP, the time when TABU found small backdoors in some SAT-
Race 2008 instances was a little longer than 15 hours. The longest time recorded



Table 4. Size, percentage, and number of small backdoors found by the local search
algorithms within a cutoff of 3 hours when applied to real-world instances with n
variables (n < 10,000) and m clauses.

KiLBy KiLByImp TABU
Instance n m__ [BD size (%)[# BDs|BD size (%)][# BDs|BD size (%)[# BDs
SAT Competition 2002
apex7_gr_res_wh.shuffled|{1500] 11136| 77 (5.13%) 147 (3.13%) 4| 53 (3.53%)| 42885

dp10s10.shuffled |8372| 8557| 9 (0.11%)| 10520| 9 (0.11%)| 9573 9 (0.11%)|59399
bart11.shuffled| 162 675 15 (9.26%)| 4190| 14 (8.64%)| 2903|14 (8.64%)|45044
SAT-Race 2005 and 2008
grieu-vmpe-s05-24s| 576| 49478 3 (0.52%) 143| 3 (0.52%) 143| 3 (0.52%) 143
grieu-vmpe-s05-27r| 729| 71380 4 (0.55%) 710| 4 (0.55%) 660| 4 (0.55%)| 3271
simon-mixed-s02bis-01|2424| 13793| 8 (0.33%) 566| 8 (0.33%) 566| 8 (0.33%)|10440
simon-s02b-r4b1k1.2|2424| 13811 8 (0.33%) 394 7 (0.29%) 3| 7 (0.29%) 16
Blocks world planning
bw_large.c|3016| 50237 4 (0.13%)| 1934| 3 (0.10%) 15| 3 (0.10%) 15
bw_large.d|6325|131607| 6 (0.10%) 790| 5 (0.08%) 69| 6 (0.10%) 640

Logistics planning
logistics.a| 828| 3116| 2

logistics.b| 843| 3480| 1
logistics.c|1141| 5867| 2
logistics.d|4713| 16588| 2

(242%)]  147]20 (2.42%)| 6675] 24 (2.90%)|584257
(1.90%)| 1688[15 (1.78%)| 9789| 16 (1.90%)| 7634
(2.28%) 18(25 (2.19%)| 387| 28 (2.45%)|424467
(0.53%)|  39[22 (0.47%)| 61| 28 (0.59%)| 36610

was 168 seconds after the 15-hour cutoff time. It is possible that KiLBY and KiL-
BYIMP would have found smaller backdoors during this leeway. Although TABU
takes longer in one iteration than KiLBY and KiLBYIMP, TABU is sometimes able
to find a larger number of backdoors in the given time, and for instances that
have small backdoors of size less than 10, a remarkably larger number. For many
more of these real-world instances, KILBYIMP outperformed KILBY and TABU in
finding small backdoors. Both KiLBY and KiLBYIMP select the first candidate
backdoor encountered. The TABU algorithm searches the entire neighborhood
for the best improvement, which can be too expensive when the backdoor size
and the total number of variables are large.

Williams et al. [13] experimented on practical instances with fewer than
10,000 variables and showed that such instances had relatively small backdoors.
We extend their result to the SAT-Race 2008 instances, which have a huge num-
ber of variables and clauses. The SAT-Race 2008 instances have backdoors that
consist of hundreds of variables. However, the backdoor size is usually less than
0.5% of the total number of variables. Thus, our results agree with Williams et
al. that practical instances generally have small tractable structures.

5.2 Experiments on Finding Strong Backdoors

In previous work [11, 2], unsatisfiable SAT benchmarks from automotive config-
uration [12] were used in the experiments. Among the 84 unsatisfiable instances,
Minisat concludes the unsatisfiability of 71 instances after pre-processing. We ap-
plied the STRONG algorithm to find minimal strong backdoors for the remaining
13 instances (see Table 6). The sizes of minimal strong backdoors range from



Table 5. Size, percentage, and number of small backdoors found by the local search
algorithms within a cutoff of 15 hours when applied to real-world instances with n
variables (n > 10,000) and m clauses. An entry of timeout indicates that the local
search algorithm failed to find any small backdoor within the cutoff time.

KIiLBY KiLByImp TABU
Instance n m BD size (%) |# BDs| BD size (%) |# BDs| BD size (%) |# BDs
1bm-2002-041-k80 104450| 238773| 252 (0.24%) 10154 (0.15%)| 53| 184 (0.18%) 2
ibm-2002-11r1-k45 156626 290625 307 (0.20%) 3|282 (0.18%) 7| 344 (0.22%) 2
ibm-2002-18r-k90 175216 370661 360 (0.21%) 3(331 (0.19%) 6| 496 (0.28%) 1
ibm-2002-20r-k75 151202 319192| 319 (0.21%) 4/275 (0.18%) 17| 384 (0.25%) 1
ibm-2002-22r-k75 191166| 399095 453 (0. 24%) 4/424 (0.22%) 3| 551 (0.29%) 2
ibm-2002-22r-k80 203961| 427792 499 (0.25%) 1|/466 (0.23%) 4| 605 (0.30%) 1
ibm-2002-23r-k90 222291| 469900 537 (0.24%) 2|534 (0.24%) 1] 624 (0.28%) 2
ibm-2002-29r-k75 64686 258748| 81 (0.13%) 11| 58 (0.09%) 26 9 (0.09%) 1
ibm-2004-01-k90 64699 201260| 148 (0.23%) 2| 87 (0.13%) 5 93 (0.14%) 8
ibm-2004-1-11-k80 262808| 565220 696 (0. 27%) 4/648 (0.25%) 1| 732 (0.28%) 1
ibm-2004-23-k100 207606| 481764 524 (0.25%) 2(455 (0.22%) 1| 618 (0.30%) 4
ibm-2004-23-k80 165606 379170 465 (0.28%) 2(441 (0.27%) 1| 550 (0.33%) 1
ibm-2004-29-k55 37714 123699 67 (0.18%) 16 52 (0.14%) 21| 49 (0.13%)| 6381
ibm-2004-3_02_3-k95 73525 169473| 1297 (1.76%) 1/238 (0.32%) 2| 251 (0.34%) 1
mizh-md5-47-3 65604] 153650(179 (0.27%) 1/179 (0.27%) 1| 265 (0.40%) 1
mizh-md5-47-4 65604| 153778|184 (0.28%) 2| 190 (0.29%) 1] 232 (0.35%) 2
mizh-md5-47-5 65604 153896|181 (0.28%) 2(181 (0.28%) 2| 235 (0.36%) 1
mizh-md5-48-2 66892| 157184|203 (0.30%) 1/203 (0.30%) 1| 289 (0.43%) 1
mizh-md5-48-5 66892| 157466|189 (0.28%) 6|189 (0.28%) 6| 238 (0.36%) 1
mizh-sha0-35-3 48689| 115548| 258 (0.53%) 1| 254 (0.52%) 2238 (0.49%) 1
mizh-sha0-35-4 48689 115631| 237 (0.49%) 1| 237 (0.49%) 1210 (0.43%) 1
mizh-sha0-36-1 50073 120102| 261 (0.52%) 1| 261 (0.52%) 1]219 (0.44%) 1
mizh-sha0-36-3 50073| 120212 249 (0.50%) 1| 260 (0.52%) 4/209 (0.42%) 5
mizh-sha0-36-4 50073 120279| 237 (0.47%) 1| 237 (0.47%) 1220 (0.44%) 1
post-c32s-gedm16-22 | 129652| 88631 12 (0.01%)| 133| 12 (0.01%)| 133 11 (0.01%)| 126
velev-fvp-sat-3.0-b18 | 35853| 968394] 228 (0.64%) 3[212 (0.59%) 1| 227 (0.63%) 1
velev-vliw-sat-4.0-b4 520721|13348080 timeout timeout 933 (0.18%) 1
velev-vliw-sat-4.0-b8 521179(13378580 timeout timeout timeout
een-tip-sat-nusmv-t5.B| 61933  42043| 109 (0.18%) 6| 88 (0.14%) 35| 92 (0.15%)| 14318
een-tip-sat-vis-eisen 18607| 12801 8 (0.04%)| 6087 8 (0.04%)| 16466| 8 (0.04%)|36941
narain-vpn-clauses-8 [1461772| 4572347 timeout timeout timeout
palac-sn7-ipc5-h16 114548 218043 10 (0.01%) 46 10 (0.01%) 46| 10 (0.01%)| 1533
palac-uts-106-ipc5-h34 | 187667| 606674| 10 (0.01%)| 152| 10 (0.01%)| 152| 10 (0.01%) 102
schup-12s-motst-2-k315| 507145 590065 timeout timeout timeout
simon-s03-w08-15 132555 269328| 233 (0.18%) 26115 (0.09%) 31| 152 (0.12%) 4

1 to 3, which are smaller than the sizes reported in [11,2]. We found smaller
backdoors because we applied a systematic search algorithm, and we defined
sub-solvers both syntactically and algorithmically.

6 Conclusion

We presented exact algorithms for finding all minimal weak backdoors in satisfi-
able instances and all minimal strong backdoors in unsatisfiable instances. Build-
ing on Kilby et al.’s local search algorithm KILBY, we described our improved
local search algorithms KiLBYIMP and TABU for finding small weak backdoors.
We empirically evaluated the algorithms on structured and real-world SAT in-
stances. The experimental results show that our algorithms based on our pro-
posed sub-solvers can find smaller backdoors and significantly larger numbers



Table 6. Size and number of minimal strong backdoors found by the STRONG algorithm
when applied to automotive configuration instances with n variables and m clauses.

of

BD|BD BD|BD
Instance n | m |size| # Instance n | m |size| #
C168_FW_SZ_128/1698|5425| 3| 6 C168_ FW_SZ_ 66 |1698(5401| 1| 3
C202_FS_RZ_44 |1750(6199| 2| 26 C202_.FW_SZ_87 |1799(8946| 3| 90
C210_.FS_RZ_23 |[1755|5778| 3| 17 C210_-FS_RZ_38 1755|5763| 2| 4
C210_.FS_SZ_103 [1755|5775| 2| 3 C210.FW_RZ_30 1789|7426 3| 16
C210_-FW_RZ_57 |1789|7405| 2| 4 C210_-FW_SZ_106 |1789|7417| 2| 3
C210_.FW_SZ_128(1789|7412| 1| 3 C210_.FW_UT_8630(2024(9721| 1| 2
C220_.FV_SZ_65 [1728|4496| 1| 2

backdoors than previous algorithms. In future work, we intend to use our

algorithms for finding backdoors to study value and variable ordering mistakes
and their effect on the performance of backtracking algorithms.
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