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Abstract. A problem of intense interest to many sports fans as a season
progresses is whether their favorite team has mathematically clinched
a playoff spot; i.e., whether there is no possible scenario under which
their team will not qualify. In this paper, we consider the problem of
determining when a National Hockey League (NHL) team has clinched
a playoff spot. The problem is known to be NP-Complete and current
approaches are either heuristic, and therefore not always announced as
early as possible, or are exact but do not scale up. In contrast, we present
an approach based on constraint programming which is fast and exact.
The keys to our approach are the introduction of dominance constraints
and special-purpose propagation algorithms. We experimentally evalu-
ated our approach on the past two seasons of the NHL. Our method
could show qualification before the results posted in the Globe and Mail,
a widely read newspaper which uses a heuristic approach, and each in-
stance was solved within seconds. Finally, we used our solver to examine
the effect of scoring models on elimination dates. We found that the scor-
ing model can affect the date of clinching on average by as much as two
days and can result in different teams qualifying for the playoffs.

1 Introduction

As a season progresses, sports fans become intensely focused on the playoff race
and the position of their team in the standings. Sports sections of major newspa-
pers publish the results of the game and announce when teams have qualified for
the playoffs and when they have been eliminated (e.g. the Globe and Mail [6]).
However, the newspapers use a heuristic measure for determining when teams
have qualified for or been eliminated from the playoffs and announcements are
sometimes not made until several days after the team has clinched or been elimi-
nated. Using optimization techniques like constraint programming, it is possible
to determine exactly when teams have qualified for the playoffs.

In this paper, we present the first complete solution to the problem of de-
termining when a National Hockey League (NHL) team has qualified for the
playoffs. The problem of determining when a sports team has mathematically
clinched a playoff spot has been well studied for several sports, including baseball
[14,12,16, 1] and soccer [11]. Schwartz [14] first looked at this problem algorith-
mically for the historical baseball problem. He showed that this simple model can



be solved with a polynomial algorithm. More recently, research has shown that
a wide variety of qualification problems are NP-Complete, including the NHL
problem [8]. Cheng and Steffy [4] looked at the problem of determining qualifica-
tion for the NHL using an integer programming (IP) model but they found that
they could not solve the model when secondary and tertiary tie breaking rules
were applied. We model the problem as a constraint satisfaction problem and
solve the problem using a constraint programming solver based on backtracking
search and constraint propagation. By introducing dominance constraints and
special-purpose propagation algorithms, our model can handle both secondary
and tertiary tie-breaking constraints. Our approach is efficient and can solve all
of the instances from the past two seasons within seconds.

The NHL is composed of thirty teams that are broken into two conferences,
East and West, of fifteen teams. Each of these conferences is composed of three di-
visions with five teams in each division. Teams play eighty-two games spread un-
evenly between division, conference and inter-conference opponents. Each game
in the NHL is formed from 3 periods, called regulation time, and, if the game
is tied at the end of regulation time, a shorter overtime period and a shootout.
The shootout continues until one team has won the game. A team makes the
playoffs if they are a division leader or one of the top five teams that are not
division leaders in their conference.

In the NHL, teams are placed in the standings by the number of points, for
both divisional and overall standings. However, it is possible to have two teams
with the same number of points. The NHL has introduced three different tie
breaking measures. The first tie breaking measure is to compare the number of
wins by each team. If the teams are still tied, the number of points earned against
only those teams that are tied are compared. The third measure compares the
number of wins earned against teams that are still tied.

The NHL qualification problem is defined with respect to a set of completed
games, the number of games left between the teams, the scoring model used,
the points accrued so far by each team and the number of wins. Given these
factors, the NHL qualification problem is the problem of determining if a team
k has qualified for the playoffs. We can find a solution to this problem, known as
a wild-card qualification problem, by determining if there is a possible scenario
for the remaining games that, according to the scoring model, awards sufficient
points to teams other than k to ensure that k cannot be one of the division
leaders or have enough points to earn one of the five wild card spots. If there is
no scenario then k has qualified for the playoffs.

The calculation of the points for a team is dependent on the scoring model
that is used. The NHL has used several different scoring models over the years.
A scoring model is defined as a set of tuples defining the possible outcomes, and
subsequent reward, of the games. Each of the NHL scoring models can be viewed
in Table 1. Referring to Table 1, the current or Shootout model allows for two
pairs of outcomes. Either one team wins in regulation time and earns two points
while the other receives none or one team wins in overtime and earns two points
while the other receives one point.



Table 1. The scoring models that have been used by the NHL. The possible outcomes
of an NHL game between two teams (i,5) are A) j wins in regulation time, B) j wins
in overtime, C) tied game, D) ¢ wins in overtime and E) ¢ wins in regulation time.

Scoring Model| A B C D E

Historic Era  [{ (0,2) (1,1) (2,0) }
Overtime {(0,2) (0,2) (1,1) (2,0) (2,0) }
Extra Point  |{ (0,2) (1,2) (1,1) (2,1) (2,0) }
Shootout {(0,2) (1,2) (2,1) (2,0) }
Proposed {(0,3) (1,2) (2,1) (3,0) }

We experimentally evaluated our constraint programming approach on in-
stances from the 2005-06 and 2006-07 seasons. For these seasons, we can show
qualification of teams up to five days earlier than the Globe and Mail [6]. As well,
we studied all of the different scoring models that have been used by the NHL
as well as a model recently proposed at the 2006 meeting of general managers of
the NHL. The NHL has tried various scoring models to increase the competitive-
ness of the league though there exists no data on how these changes affected the
clinching dates. We show that adjusting the scoring model can change the aver-
age qualification date by more than two days. Interestingly, the Toronto Maple
Leafs would have qualified for the playoffs under any other model than that used
by the NHL in 2006-07 season. Another example where the scoring matters is
the Edmonton Oilers in 2005-06 who were Western conference champions but
would not have made the playoffs if the proposed scoring model had been used.

The remainder of the paper breaks down the various parts of the research.
Section 2 introduces the constraint programming model for solving the NHL
elimination problem. Also in this section, the specific dominance constraints
and custom propagation algorithms are introduced. Section 3 presents the ex-
perimental results from our study. Section 4 discusses some concluding remarks.

2 The Model

In this section, we describe the constraint programming model that we used to
solve the NHL qualification problem. We also introduce the techniques that we
used to make the model solvable for realistic problem sizes.

Constraint programming is a technique for solving combinatorial problems.
A problem is defined as a set of variables with a given domain of values and
constraints on the values that those variables can take. The goal of constraint
programming is to find an assignment of values to those variables such that
each of the constraints is satisfied. Typically, these problems are solved with
backtracking search or other search techniques that explore the possible set of
solutions. A more detailed explanation of constraint programming can be found
in either Rossi, van Beek and Walsh [13] or Marriott and Stuckey [10].

A constraint programming approach can often be dramatically improved by
adding dominance constraints and special purpose constraint propagation al-



gorithms. Dominance constraints are constraints that remove feasible solutions
that can be shown to be equal to or worse than another feasible solution [15].
One application of these constraints is in online scheduling for photo-copiers [5].
Constraint propagation is the process of inference by which domains of a variable
is updated due to the constraints on that variable and the values of other vari-
ables referenced by the constraints [3]. Laborie [9] presents one example where
a special purpose propagation algorithm is used in scheduling.

2.1 Basic Notation

To present our constraint programming approach, we first define some notation.
We define a set of teams T with |T| = n. For any team ¢ € T, we define the
number of points to be p; and the number of wins to be w;. We define the initial
points—that is, the points earned before a given moment in the season—as p
and initial wins as w?. We define the number of wins by a team i against a
team j as a w;;. The number of games remaining for a team ¢ is denoted g; and
between two teams ¢ and j is denoted g;;.

We define C; to be the set of teams in the conference that includes i and
C; = Cj if and only if ¢ is in the same conference as j. We define D,,, to be the
set of teams in division m, where m is one of the six divisions.

2.2 The Basic Model

To specify a constraint programming model, one must specify the variables and
their associated domains along with the constraints on the values those variables
may take. The variables used in our constraint model, their domains and a short
description are shown in Table 2. More complete descriptions of the variables
are presented as necessary through the remainder of this section. The following
model is described with respect to the current or Shootout scoring model. Small
modifications are made to make this constraint model work for the other scoring
models. For the remainder of this section, we will refer to the team being tested
for qualification as k.

The most basic variable in our model is z;; with domain equal to [0... g;;]
to represent the number of wins by a team ¢ over a team j. Cheng and Steffy
[4] observe that if elimination is possible then it always occurs when the worst
possible outcome happens to k. Under the current scoring model and with the
notion that an elimination solution is found in the worst case for k, we know
that a team will always win games against k earning at least one point and,
when playing other teams, the worst case situation is for both teams to earn at
least one point [4]. Using this observation, we note that it is sufficient under this
model to keep track of the number of wins to calculate the number of points
earned.

Given that there is a symmetric variable for wins by j over ¢ with the same
domain, we define the following constraint on the x variables,

Tij + Tji < Gij- (1)



Table 2. Variables within the constraint model.

Variable|Domain |Description

Tij [0...g:;]|The number of wins by ¢ over j

b; [0,1] 1 if 4 is better than k else 0

dm Do The division leader for division m

divem, [0, 1] 1 if the leader of division m is not better than & else 0

Note that constraint 1 is an inequality. The reason for this is to simplify the
addition of dominance constraints.

We must represent the quantities used in the elimination problem in terms
of our decision variables. We define the number of wins by a team 7 against j as,

wij = Wiy + Tij, (2)

and the total number wins for a team i as,

w; = Z wij. (3)

jeT

We can also represent the number of points earned by a team i in a similar
manner. One exception is team k, which must not win any games. Therefore,
team k does not earn any more points. The number of points earned by a team
1 against j is denoted as,

O .
o pij+x¢j+g¢jz;ék
le - {p?j i=k" (4)

and the number of points earned by a team ¢ as,

L P+ Ejeci (zij + 9i5) + 22j¢0i gij i # k (5)
= p? i=k’

Now that we have defined the wins and points in terms of x;;, we can look at
the constraints on the variable in terms of the qualification problem. The first
constraint that can be derived is that k should win no games in the worst case
solution. This can be denoted as,

Vi wi; = 0. (6)

The objective function that we are using in this case is the wild card objective,
so in order to determine if a team can be eliminated we must keep track of the
number of teams better than k. We define a binary variable b; to be true if and
only if team i is better than k. A team is better than k if the team has more points
than k or better tie breakers than k. Before we show this constraint, we have
to define two sets that are used in the tie-breaking procedure. The secondary



tie-breaking set is the set of teams that have identical numbers of points and
wins and is denoted as,

TBf:{j|j€C¢/\pi:pj/\wi:wj}.

The tertiary tie-breaking set is the set of teams that are in the secondary tie-
breaking set and have identical number of points earned between teams in the
secondary set. The tertiary tie-breaking set is defined as,

TBY={jlj€ TBIN > py= Y. piy}
yETB? yETB?

Once we have the tie-breaking sets defined, we can define the constraint between
b; and x;; as,
Vi pi > pr
V (pi = pr ANwi > wy)

Vpi=peAwi=wp A Y pi > Y i)

jeTB? jETB?
V (pi = pr Aw; = wi A Z Pij = Z Prj N
JETB? jETB?
D wi> ) wy)
JETB} JETB}
< b =1. (7)

A division leader is a team that has the most points in its division and beats
any other division member with sufficient points on tie-breakers. We define a
variable d,,, with domain D,,, to be the division leader for division m. We define
the maximum number of points in a division m to be maxp,,. For conciseness,
the secondary and tertiary tie-breakers are omitted for constraints 8, 10, 13 and
14. We define the constraint between z;; and d,, as,

Vm [p; = maxp, A Bj(j # i A p; = mazpm Awj > w;) S dpy =1 (8)

We need to ensure that the team that must be eliminated does not become a
division leader as this guarantees a playoff spot even if there are many teams
with more points. Therefore, we add the following constraint,

VYm dpy, # k. 9)

Once we have division leaders and none of them are k, we need to determine if
we need to count that team in elimination, by setting div,, = 1, as a division
leader always makes the playoffs. The division constraints ensure that a div,,
variable is true only if the division leader is not better than k. There are two
situations where div,, is true. The first is when the division leader has less points
than k and the constraint is denoted as,

VYm mazxpy, < pr = divy, = 1. (10)



The second situation is when the division leader has the same number of points
as k but is placed lower on tie-breakers. The constraint ensuring this situation
is defined as,

Ym maxpm = pr A wq, < wi = div, = 1. (11)

The last constraint on the model ensures that the team is eliminated under
the wild card objective. There must be eight teams in front of k either by placing
better than k or by being a division leader. The following constraint captures
this relationship,

4
> b+ Y divy, > 8, (12)
m=1

i€Cy
where ¢ is the number of divisions.

The basic model is a complete and correct model for the NHL qualification
problem. If there does not exist a solution to the CSP then k has qualified for
the playoffs. However, the model as it stands is inefficient and could not solve
realistic instances within a time bound of fifteen hours. Once we improved the
model using dominance constraints and special purpose constraint propagation
algorithms, we could solve all of the instances within seconds.

2.3 Dominance Constraints

It can be observed that if a team has earned more points than k& then it is
unnecessary for that team to win any more games because under the worst case
assumption k£ will not win any more games and thus earn no more points. This
means that once a team has passed k either by points or tie-breakers, that team
could lose the remainder of their games to other opponents and still be better
than k. This leads to the following dominance constraint,

Vi p; > pr \/(pi =pr N w; > wk) =
Vjl(mbound(zi;) = wij = 0) A (w50 = gij — ij)]- (13)

By a similar token, if a team can no longer earn more points than k& then there
is no need for that team to win any more games against opponents that could
earn more points than k. Therefore, we can introduce another constraint that
deals with this situation. But first, we introduce notation for maximum number
of points and wins possible for a team i. We denote the maximum number of
possible points and possible wins as mp; and mw;, respectively. The dominance
constraint is given by,

Vi mp; < pr V(mp; = pr A mw; < wg) =
Vj[(mbound(zi;) = wij = 0) A (x5 = gij — ij)]- (14)



2.4 Calculating Tie-Breakers and Division Leaders

To calculate the sets needed for both the tie-breakers and division leaders re-
quires the values for x;; to be set for all teams. However, it is often possible
to determine the result of the calculation earlier and avoid calculating the sets.
This means that special purpose propagation algorithms must be used to ensure
constraints are propagated as early as possible.

Observe in constraint 7, secondary and tertiary tie-breakers need the sets of
teams tied after primary and secondary tie-breaking, respectively. However, it is
not always impossible to calculate these quantities during search and thus these
tie-breakers can not be fully resolved during search. When either the points or
wins changes for a team 4, instead of waiting for all x variables to be completely
set to propagate values, the solver uses only the first two disjunctive clauses to
determine if b; values should be set. In many cases, this negates the need to
calculate the sets explicitly. Any decisions on teams still tied are delayed until
all of the x variables have been assigned values, if necessary. If there are still
teams tied, the secondary and, if needed, the tertiary tie-breakers are applied.

Observing constraints 9, 10 and 11, it can be seen that it is only necessary to
know which team is a division leader if the elimination team is possibly a division
leader or it is possible for a division leader to have an equivalent or lesser number
of points. That means that in all other situations we can avoid calculating which
team is actually a division leader. This also means that anytime a team in a given
division acquires more points than the elimination team, the division leader will
not be a factor. This relationship can be described as the following constraint,

i i€ D Ni€Cp A(pi > prV (pi =px Aw; > wyg)) = divy, =0. (15)

While constraint 10 uses the maximum number of points earned by any team
in a given division, it is also possible to look at a more relaxed version of this
constraint. Instead of determining the maximum number of points once all of the
games have been assigned, it is also possible to determine the maximum possible
number of points earned by any team in that division at any time. We denote
this quantity mp,,. Using this new quantity, we can reformulate a relaxed version
of constraint 10 that can be used at any point during search and is defined as,

VYm mpy, < pr = divy, = 1. (16)

2.5 Different Scoring Models

The previous section described the constraint model for the NHL’s current scor-
ing model. Only minor changes must be made to adapt the other models that
have been used by the NHL. Two new variables must be introduced to deal
with ties for the historic and overtime models and with overtime wins for the
proposed model. Also, the calculation of the wins and points must be modified
to deal with the new variables when appropriate.



3 Experimental Results

3.1 Overview

We implemented our model using the constraint programming solver built by
ILOG [7]. To test the model and to ensure that it can solve practical instances,
we tested the solver on all possible elimination instances from the 2005-06 and
2006-07 seasons. We compared our calculated results against those shown in the
Globe and Mail [6]. Finally, we modified the constraint model to handle all of
the scoring models that have been used by the NHL and compared the results.

3.2 Problem Instances

To generate the qualification problem instances, we took the results from the
2005-06 and 2006-07 seasons and broke down the results into separate days. To
create instances from the results for each day of the season, we calculated the
number of points and wins earned up to that point in the season. Given the
win-loss records, the points accrued so far and the remaining games, we created
instances for each day of the season.

3.3 Comparison against the Globe and Mail

We ran each of the problem instances for the 2005-06 and 2006-07 seasons and
determined the date of qualification for each of the teams. We could determine
for every team whether they had qualified for the playoffs at every point in the
season in just under two and half minutes. For most instances, the time it took
was a fraction of a second. We found that, when comparing the results to the
results posted in the Globe and Mail, we were able to show qualification earlier
for nine teams during the 2005-06 season and for four teams during the 2006-07
season while never, of course, being later than the Globe and Mail. The results of
this experiment are shown in Table 3. In Table 3, entries with multiple dates are
due to Sunday editions or unreported results in which it was unclear on which
day the result would have been reported.

We show qualification earlier than the Globe and Mail by as much five and
four days for the 2005-06 and 2006-07 seasons, respectively. Note that the largest
discrepancy between our results and their results is found for the first team to
qualify in both seasons. It is possible that this is due to the paper not realizing
that teams had clinched playoff spots. Even disregarding these results, we still
found discrepancies as large as four days and two days for the 2005-06 and
2006-07 seasons, respectively.

3.4 Comparisons of Scoring Models

Once the solver has been designed for one scoring model, it is relatively straight-
forward to translate the model to other scoring systems. The instance generator
was modified to calculate the points correctly for each of the different scoring



Table 3. The results of qualification compared against the published Globe and Mail
results. Only results that differ are shown.

2005-06 2006-07
Team Optimal Globe and Mail || Team Optimal Globe and Mail
Ottawa Mar 22 Mar 27 Buffalo | Mar 18 Mar 22
Montreal | Apr 14 Apr 18 Atlanta | Apr 2 Apr 4
Buffalo Apr 4 Apr 5 Detroit | Mar 24 Mar 25 or 26
New Jersey| Apr 12 Apr 14 Nashville| Mar 23 Mar 24

Calgary Apr8 Apr9or 10
Colorado | Apr 13 Apr 15
San Jose Apr 13 Apr 14
Dallas Mar 31 Apr1,2or3
Nashville Apr 9 Apr 10

Table 4. Average days remaining by scoring system for the 05-06 and 06-07 seasons

Average Days Remaining
Scoring Model|2005-06 2006-07
Historic 12.75 11.75
Overtime 11.56 12.81
Extra Point 11.75 10.63
Current 11.94 10.75
Proposed 13.13 10.13

models and we ran the instances for all of the scoring models used by the NHL
as well as the recently proposed model. The results of this experiment can be
found in Table 4. We found that the average number of days remaining in a
given season can vary by more than two days in a given season depending on
the scoring model used.

The most interesting effect of changing the scoring model was to observe
which teams qualified for the playoffs. In the case of the 2006-07 season, we can
note that the Toronto Maple Leafs would have qualified for the playoffs under
any other scoring model then the one used that season all other things being
equal (see Table 5). Another interesting note is that Edmonton, who were the
Western Conference Champions in 2005-06, would not have made the playoffs if
the proposed scoring model had been imposed and their spot would have gone to
divisional rivals Vancouver (see Table 6). It should be noted that these results
assume that the games would end in the same way regardless of the scoring
system. However, research in economics has shown that teams will modify the
way they play depending on the scoring model [2]. Even given this fact, it is
interesting to note that some team strategies would have been good enough to
secure a playoff spot under any scoring model while other teams strategies only
ensure qualification under the current scoring model, for example, Tampa Bay
in 2006-07.



Table 5. Date of clinching under different scoring models in the Eastern conference of
the NHL in 2006-07

Team Historic Overtime Extra Point Current Proposed
East

Toronto Apr8 Apr8 Apr 8 — Apr 9
Ottawa Mar 19 Mar 18 Mar 21 Mar 25 Mar 21
Montreal — Apr 8 — — Apr 7
Buffalo Mar 24 Mar 21 Mar 23  Mar 18 Mar 22
Boston — — — — —
NY Islanders| Apr 8 — — Apr 9 —
NY Rangers — — Apr 9 Apr6 Apr7
Tampa Bay — — — Apr 6 —
Florida Apr 6 — — — —
Atlanta Apr7 Aprl Apr 2 Apr2 Apr7
Carolina — Apr 2 Apr 6 — —

Table 6. Date of clinching under different scoring models in the Western conference
of the NHL in 2005-06

Team |Historic Overtime Extra Point Current Proposed
Vancouver| — — — — Apr 14
Edmonton| Apr 14 Apr 14 Apr 18 Apr 14 —
Calgary Apr6 Apr6 Apr 6 Apr8 Apr6

4 Conclusion and Future Work

This paper looks at the problem of determining qualification in the NHL. We
present the first complete and efficient solution to the NHL qualification problem.
The key to scaling up our constraint programming approach was a combination
of dominance constraints and special purpose algorithms for dealing with tie-
breakers and division leaders. By introducing the dominance constraints to the
model, we significantly reduced the amount of search necessary to find a solution
or to confirm that no solution was possible. As well, we avoided costly work
associated with tie-breakers and division leaders by strategically delaying the
calculation of secondary and tertiary tie-breakers and by avoiding the calculation
of the actual division leaders as much as possible.

We implemented the proposed model using a constraint programming pack-
age developed by ILOG [7]. Using the 2005-06 and 2006-07 seasons, we developed
a set of problem instances to verify that our solver could solve realistic problems.
We found that solving an individual instance only took a fraction of a second
and that all instances of the 2005-06 and 2006-07 seasons could be solved in a
several minutes while respecting all tie-breaking rules.



Using the data from the problem instances, we found that we could announce
results as much as five and four days earlier than the Globe and Mail [6] for the
2005-06 and 2006-07 seasons, respectively. We also extended our work to look at
the effect of scoring model on playoff qualification for the first time. We found
that qualification under scoring models could vary by by more than two days.
We also found that changing the scoring model caused different teams to qualify
for the playoffs.

In the future, we will extend this work to look at not just the decision problem
of deciding qualification but also the optimization problem of determining the
number of games that must be won to earn a playoff spot. This idea was first
proposed by Ribeiro and Urrutia [11] for the Brazilian Soccer championship,
which uses a different scoring model and playoff objective.
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