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Abstract Constraint programming is a methodology for solving diffi-
cult combinatorial problems. In the methodology, one makes three de-
sign decisions: the constraint model, the search algorithm for solving the
model, and the heuristic for guiding the search. Previous work has shown
that the three design decisions can greatly influence the efficiency of a
constraint programming approach. However, what has not been explic-
itly addressed in previous work is to what level, if any, the three design
decisions can be made independently. In this paper we use crossword
puzzle generation as a case study to examine this question. We draw
the following general lessons from our study. First, that the three design
decisions—model, algorithm, and heuristic—are mutually dependent. As
a consequence, in order to solve a problem using constraint programming
most efficiently, one must exhaustively explore the space of possible mod-
els, algorithms, and heuristics. Second, that if we do assume some form
of independence when making our decisions, the resulting decisions can
be sub-optimal by orders of magnitude.

1 Introduction

Constraint programming is a methodology for solving difficult combinatorial
problems. A problem is modeled by specifying constraints on an acceptable so-
lution, where a constraint is simply a relation among several unknowns or vari-
ables, each taking a value in a given domain. Such a model is often referred to
as a constraint satisfaction problem or CSP model. A CSP model is solved by
choosing or designing an algorithm that will search for an instantiation of the
variables that satisfies the constraints, and choosing or designing a heuristic that
will help guide the search for a solution.

As previous work has shown, the three design decisions—model, algorithm,
and heuristic—can greatly influence the efficiency of a constraint programming
approach. For example, Nadel [13] uses the n-queens problem to show that there
are always alternative CSP models of a problem and that, given the naive chrono-
logical backtracking algorithm, these models can result in different problem solv-
ing performances. Ginsberg et al. [9] use one possible model of crossword puzzle
generation (model mo in our notation) to study the effect on performance of var-
ious backtracking algorithms and variable ordering heuristics. Smith et al. [17]



use Golomb rulers to study the effect on performance of alternative models, al-
gorithms and heuristics. Finally, a variety of studies have shown how the relative
performance of various search methods and heuristics vary with properties of a
random binary CSP instance such as domain sizes, tightness of the constraints,
and sparseness of the underlying constraint graph (e.g., [2,6,8,10,18]).

However, what has not been explicitly addressed in previous work is to what
level, if any, the three design decisions can be made independently. There are
three possible levels of independence in the design decisions: complete indepen-
dence, one-factor independence, and conditional independence (see, e.g., [4]).
Suppose that there are four choices each for the model, the algorithm, and the
heuristic. Complete independence would mean that choosing the best model, the
best algorithm, and the best heuristic could all be done independently and a to-
tal of 4 +4 + 4 = 12 tests would need to be performed to choose the best overall
combination. One-factor independence would mean that, while two of the design
decisions might depend on each other, the third could be made independently
and a total of 4 + (4 x 4) = 20 tests would need to be performed to choose the
best overall combination. Conditional independence would mean that two of the
design decisions could be made independently, given the third design decision
and a total of 4 x (4 + 4) = 32 tests would need to be performed to choose the
best overall combination. Finally, if none of the independence conditions hold
and the design decisions are mutually dependent a total of 4 x 4 x 4 = 64 tests
would need to be performed to choose the best overall combination. Thus, it
is clear that the level of independence of the design decisions can have a large
impact if we seek the best overall combination of decisions.

In this paper we use crossword puzzle generation as a case study to exam-
ine the interdependence of the choice of model, backtracking search algorithm,
and variable ordering heuristic on the efficiency of a constraint programming
approach. We perform an extensive empirical study, using seven models, eight
backtracking algorithms, and three variable ordering heuristics for a total of
34 different combinations (not all algorithms can be applied on all models).
The goal of our study is to examine to what extent the design decisions can be
made independently. We draw the following general lessons from our study. First,
that the three design decisions—model, algorithm, and heuristic—are mutually
dependent. In other words, neither complete independence, one-factor indepen-
dence, nor conditional independence hold. As a consequence, in order to solve a
problem using constraint programming most efficiently, one must exhaustively
explore the space of possible models, algorithms, and heuristics. Second, that
if we do assume some form of independence when making our decisions, the
resulting decisions can be sub-optimal. As one example, if the model is chosen
independently of the algorithm and the heuristic, the result can be orders of
magnitude less effective as the best algorithm and heuristic cannot overcome a
poor choice of model.



2 CSP Models for Crossword Puzzles

In crossword puzzle generation, one is required to fill in a crossword puzzle
grid with words from a pre-defined dictionary such that no word appears more
than once. An example grid is shown in Figure 1. In this section, we present
the seven different CSP models of the crossword puzzle problem that we used
in our experiments. A constraint satisfaction problem (CSP) consists of a set
of variables, a domain of possible values for each variable, and a collection of
constraints. Each constraint is over some subset of the variables called the scheme
of the constraint. The size of this set is known as the arity of the constraint.

1 2 3
4 5 6
9 10 11 12 13

14 15 16 17 18

20 21

Figure 1. A crossword puzzle grid.

Model mq. In model m; there is a variable for each unknown letter in the
grid. Each variable takes a value from the domain {a,...,z}. The constraints
are of two types: word constraints and not-equals constraints. There is a word
constraint over each maximally contiguous sequence of letters. A word constraint
ensures that the sequence of letters forms a word that is in the dictionary. The
arity of a word constraint reflects the length of the word that the constraint
represents. For example, the word at “1 Across” in Figure 1 has three letters
and will result in a 3-ary constraint over those letter variables. The tuples in the
word constraints represent the words that are of the same length as the arity
of the constraint in the pre-defined dictionary. There is a not-equals constraint
over pairs of maximally contiguous sequences of letters of the same length. A
not-equals constraint ensures that no word appears more than once in the puzzle.
The arity of a not-equals constraint depends on whether the corresponding words
intersect. For example, the words at “9 Across” and “3 Down” will result in a
9-ary constraint over those letter variables.



Model mj . Model m] is model m; with additional, redundant constraints.
One technique to improve the performance of the forward checking algorithm
is to add redundant constraints in the form of projections of the existing con-
straints. (Projection constraints are not as effective for algorithms that maintain
generalized arc consistency.) In model mf, for each word constraint C' and for
each proper subset S of the variables in the scheme of C in which the variables
are consecutive in the word, we add a redundant constraint which is the projec-
tion of C onto S. For example, for the constraint over the three letter variables
x1, T2, and zg which form the word at “1 Across” in Figure 1, projection con-
straints would be added over x; and z2, and over z2 and x3. The tuples in these
constraints would represent the valid prefixes and valid suffixes, respectively, of
the three-letter words in the dictionary.

Model ms. In model m, there is a variable for each unknown word in the grid.
Each variable takes a value from the set of words in the dictionary that are of
the right length. The constraints are of two types: intersection constraints and
not-equals constraints. There is an intersection constraint over a pair of distinct
variables if their corresponding words intersect. An intersection constraint en-
sures that two words which intersect agree on their intersecting letter. There
is a not-equals constraint over a pair of distinct variables if their correspond-
ing words are of the same length. A not-equals constraint ensures that no word
appears more than once in the puzzle. All of the constraints in model mo are
binary. Although a natural model, model my can be viewed as a transformation
of model m; in which the constraints in m; become the variables in ms. The
transformation, known as the dual transformation in the literature, is general
and can convert any non-binary model into a binary model [16].

Model mg. In model mg3 there is a variable for each unknown letter in the grid
and a variable for each unknown word in the grid. Each letter variable takes
a value from the domain {a,...,z} and each word variable takes a value from
the set of words in the dictionary that are of the right length. The constraints
are of two types: intersection constraints and not-equals constraints. There is
an intersection constraint over a letter variable and a word variable if the letter
variable is part of the word. An intersection constraint ensures that the letter
variable agrees with the corresponding character in the word variable. There is a
not-equals constraint over a pair of distinct word variables if their corresponding
words are of the same length. All of the constraints in model mg are binary. Model
ms can be viewed as a transformation of model m; which retains the variables in
the original problem plus a new set of variables which represent the constraints.
The transformation, known as the hidden transformation in the literature, is
general and can convert any non-binary model into a binary model [16].

A CSP problem can be encoded as a satisfiability (SAT) problem (see, e.g.,
[19]). To illustrate the encoding we use in this paper, consider the CSP with
three variables z, y, and z, all with domains {a, b, c}, and constraints z # y,
x # z,and y # z. In the SAT encoding a proposition is introduced for every
variable in the CSP and every value in the domain of that variable: z,, xp, ¢, Y,



Yb, Ye, and zg, 2p, zc. The intended meaning of the proposition z,, for example,
is that variable x is assigned the value a. Clauses (or constraints) are introduced
to enforce that each variable must be assigned a unique value. For example, for
the variable z, the following clauses are introduced: z, V zp V 2., £, = —xp,
T, = ., and x, = —x,.. Clauses are introduced to specify the illegal tuples in
the constraints. For example, for the constraint z # y, the following clauses are
introduced: ©, = Y4, Tp = “Yp, and T, = Y.

Model s;. Model s; is the SAT encoding of model m; with the following im-
provements designed to reduce the amount of space required. In the generic
encoding, clauses are introduced to rule out the tuples that are not allowed by a
constraint. For the word constraints in m, the illegal tuples represent sequences
of letters that are not words in the dictionary. In s1, not all illegal words are
translated to clauses. Instead, we translate all invalid prefixes. For example, “aa”
is not a valid prefix for words of length 4. Instead of recording all of the illegal
tuples “aaaa” ... “aazz”, just “aa” is recorded. For not-equals constraints in my,
only the tuples that form a word are translated into clauses in s;. For example,
we do not say that “aaaa” # “aaaa” because “aaaa” is not a valid word.

Model s3. Model s; is the SAT encoding of model ms. In particular, for each
pair of propositions that represents intersecting words in the puzzle and words
from the dictionary that do not agree, we introduce a negative binary clause
ruling out the pair.

Model s3. Model s3 is the SAT encoding of model mg with the following im-
provements. The clauses for the domains of the hidden variables that ensure
that each word must get a unique value are dropped as they are redundant (the
clauses for the domains of the letter variables and the clauses for the intersection
constraints together entail that a hidden variable can take only one value).

3 Backtracking Algorithms

In this section, we present the eight different backtracking algorithms we used
in our experiments. At every stage of backtracking search, there is some current
partial solution which the algorithm attempts to extend to a full solution by
assigning a value to an uninstantiated variable. The idea behind some of the most
successful backtracking algorithms is to look forward to the variables that have
not yet been given values to determine whether a current partial solution can be
extended towards a full solution. In this forward looking phase, the domains of
the uninstantiated variables are filtered based on the values of the instantiated
variables. The filtering, often called constraint propagation, is usually based
on a consistency technique called arc consistency or on a truncated form of arc
consistency called forward checking (e.g., [7,10]). If the domain of some variable is
empty as a result of constraint propagation, the partial solution cannot be part of
a full solution, and backtracking is initiated. A further improvement can be made
to backtracking algorithms by improving the backward looking phase when the



algorithm reaches a dead-end and must backtrack or uninstantiate some of the
variables. The idea is to analyze the reasons for the dead-end and to backtrack
or backjump enough to prevent the conflict from reoccurring (e.g., [7,14]). All of
the algorithms we implemented used some form of constraint propagation and
all were augmented with conflict-directed backjumping [14].

Algorithm FC. Algorithm FC performs forward checking [10].

Algorithm GAC. Algorithm GAC performs generalized arc consistency prop-
agation in the manner described in [12].

Algorithm EAC. Algorithm EAC performs generalized arc consistency propa-
gation in the manner described in [3]. In the implementation of EAC used in the
experiments the constraints were stored extensionally and advantage was taken
of this fact to improve overall performance.

Algorithms PAC(m1), PAC(m2), and PAC(mg3). A technique for improv-
ing the efficiency of generic constraint propagation is to design special purpose
propagators where constraints have methods attached to them for propagating
the constraint if the domain of one of its variables changes (see, e.g., [1]). Prop-
agators provide a principled way to integrate a model and an algorithm [15]. We
designed and implemented propagators which enforce arc consistency for each
of the constraints in models m1, ms, and ms.

Algorithms ntab_back, ntab_back2. These algorithms are the implementa-
tions of the TABLEAU algorithm described in [5]. Algorithm ntab_back uses
backjumping and algorithm ntab_back2 uses relevance bounded learning'.

4 Experimental Results

We tested a total of 34 different combinations of seven models, eight backtracking
algorithms, and three variable ordering heuristics (not all algorithms can be
applied on all models; e.g., the algorithms based on TABLEAU are applicable
only to SAT problems and each propagator-based algorithm is designed for a
particular model). The three dynamic variable orderings heuristics used were
the popular dom+deg heuristic [10] which chooses the next variable with the
minimal domain size and breaks ties by choosing the variable with the maximum
degree (the number of the constraints that constrain that variable, excluding the
not-equals constraints), the dom/deg heuristic proposed by Bessieére and Régin
[2] which chooses the next variable with the minimal value of the domain size
divided by its degree, and a variant of the MOM heuristic [5] which is geared to
SAT problems and chooses the next variable with the Maximum Occurrences in
clauses of Minimum size.

In the experiments we used a test suite of 50 crossword puzzle grids and two
dictionaries for a total of 100 instances of the problem that ranged from easy
to hard. For the grids, we used 10 instances at each of the following sizes: 5x5,

! Available at: http://www.cirl.uoregon.edu/crawford



Table 1. Effect of model, algorithm, and heuristic on number of instances (out of a
total of 100) that could be solved given a limit of 228 Mb of memory and ten hours of
CPU time per instance; (a) dom+deg heuristic; (b) dom/deg heuristic; (c) variant of
the MOM heuristic. The absence of an entry means the combination was not tested.

model model model
algorithm m1|mi"|m2|m3 algorithm m1|mf'|m2|m3 algorithm 81|52|S3
FC 20| 59| 61| 48 FC 20| 50| 63| 55 ntab_back 10| 0(20
GAC 20| 10[ 50| 83 GAC 20| 10| 50| 81 ntab_back2‘11‘ 0‘20
EAC 89 0] 0 EAC 92 0] 0
PAC 88 80| 84 PAC 91 85| 84
(a) (b) (c)

15x15, 19x19, 21x21, and 23x232. For the dictionaries, we used Version 1.5 of
the UK cryptics dictionary®, which collects about 220,000 words and in which
the largest domain for a word variable contains about 30,000 values, and the
Linux /usr/dict/words dictionary, which collects 45,000 words and in which the
largest domain for a word variable has about 5,000 values. Although use of a
smaller dictionary decreases the size of search space, the number of solutions
also decreases and, in this case, made the problems harder to solve.

All the experiments except those for EAC were run on a 300 MHz Pentium
IT with 228 Megabytes of memory. The experiments on EAC were run on a
450 MHz Pentium II and the CPU times were converted to get approximately
equivalent timings. A combination of model, algorithm, and variable ordering
heuristic was applied to each of the 100 instances in the test suite. A limit of ten
hours of CPU time and 228 Megabytes of memory was given in which to solve
an instance. If a solution was not found within the resource limits, the execution
of the backtracking algorithm was terminated.

Table 1 summarizes the number of instances solved by each combination.
The low numbers of instances solved by the SAT-based models are due to both
the time and the space resource limits being exceeded (as can be seen in Table 2,
the SAT models are large even for small instances and storing them requires a
lot of memory). The EAC algorithm also consumes large amounts of memory
for its data structures and ran out of this resource before solving any instances
from models ms and mg. In all other cases, if an instance was not solved it was
because the CPU time limit was exceeded.

Because the number of instances solved is a coarse measure, Figure 2 shows
approximate cumulative frequency curves for some of the timing results. We can
read from the curves the 0, ..., 100 percentiles of the data sets (where the value
of the median is the 50th percentile or the value of the 50th test). The curves

2 The ten 5 x 5 puzzles are all of the legal puzzles of that size; the other puzzles were
taken from the Herald Tribune Crosswords, Spring and Summer editions, 1999.
% Available at: http://www.bryson.demon.co.uk/wordlist.html



Table 2. Size of an instance of a model given a dictionary and the grid shown in
Figure 1, where n is the number of variables, d is the maximum domain size, r is the
maximum constraint arity, and m is the number of constraints.

model dictionary n d r m
m1 UK 21 26 10 23
mf UK 21 26 10 83
ma UK 10 10,935 2 34
ms3 UK 31 10,935 2 55
51 UK 546 2 26 1,336,044
82 UK 65,901 2 10,935 ~8x108
S3 UK 66,447 2 10,935 408,302
mi words 21 26 10 23
my words 21 26 10 83
mo words 10 4,174 2 34
ms words 31 4,174 2 55
51 words 546 2 26 684,464
59 words 26,715 2 4,174 =~2x108
83 words 27,261 2 4,174 168,339

are truncated at time = 36000 seconds (ten hours), as a backtracking search was
aborted when this time limit was exceeded.

5 Analysis

In this section, we use the experimental results to show that the design deci-
sions are not completely independent, one-factor independent, nor conditionally
independent. Hence, the design decisions are mutually dependent.

Complete independence. For the choice of the best model, algorithm, and
heuristic to be completely independent decisions all of the following must hold:
(i) the ordering of the models, such as by number of problems solved, must be
roughly invariant for all algorithms and heuristics, (ii) the ordering of the al-
gorithms must be roughly invariant for all models and heuristics, and (iii) the
ordering of the heuristics must be roughly invariant for all models and algo-
rithms. However, none of these conditions hold. For (i), consider the different
orderings of the models given by FC and GAC using the dom+deg heuristic in
Table 1; for (ii), consider the relative orderings of the FC and GAC algorithms
given by the different models; and for (iii), consider the reversed orderings of the
heuristics given by FC on m]™ and ms.

One-factor independence. One-factor independence can occur in three ways,
corresponding to the three conditions given under complete independence. As
shown there, none of these conditions hold.

Conditional independence. Conditional independence of the decisions can
occur in three ways: (i) the choice of the best algorithm and heuristic can be
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Figure 2. Effect of model on time (sec.) of backtracking algorithms, given the dom/deg
dynamic variable ordering heuristic. Each curve represents the result of applying the
given backtracking algorithm to the 100 instances in the test suite, where the instances
are ordered by time taken to solve it (or to timeout at 36,000 seconds).

independent decisions, given a choice of model (i.e., given a model, the ordering
of the algorithms is roughly invariant for all heuristics, and, by symmetry, the
ordering of the heuristics is roughly invariant for all algorithms); (ii) the choice
of the best model and heuristic can be independent decisions, given a choice of
algorithm (i.e., given an algorithm, the ordering of the models is roughly invari-
ant for all heuristics, and the ordering of the heuristics is roughly invariant for
all models); and (iii) the choice of the best model and algorithm can be indepen-
dent decisions, given a choice of heuristic (i.e., given a heuristic, the ordering of
the models is roughly invariant for all algorithms, and the ordering of the algo-
rithms is roughly invariant for all models). For (i), suppose the model given is
mg and consider the reversed orderings of the heuristics given by FC and GAC;
for (ii), suppose the algorithm given is FC and consider the reversed orderings
of the heuristics given by mf and mg; and for (iii), suppose the heuristic given
is dom+deg and consider the different orderings of the models given by FC and
GAC.

We can also see from the data the importance of choosing or formulating a
good model of a problem. In Table 1 we see that the best algorithm or set of
algorithms cannot overcome a poor model and compiling a CSP to an instance
of SAT in order to take advantage of progress in algorithm design (cf. [11]) can
be a disastrous approach. In Figure 2 we see that even when our models are
all relatively good models (such as mj, mo, and ms), and much effort is put
into correspondingly good algorithms, the form of the model can have a large
effect—ranging from one order of magnitude on the instances of intermediate
difficulty to two and three orders of magnitude on harder instances.
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Conclusions

We draw the following three general lessons from our study: (i) the form of
the CSP model is important; (ii) the choices of model, algorithm, and heuristic
are interdependent and making these choices sequentially or assuming a level of
independence can lead to non-optimal choices; and (iii) to solve a problem using
constraint programming most efficiently, one must simultaneously explore the
space of models, algorithms, and heuristics.
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