
Machine learning of Bayesian networks using
constraint programming

Peter van Beek and Hella-Franziska Hoffmann

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
vanbeek@cs.uwaterloo.ca

Abstract. Bayesian networks are a widely used graphical model with diverse ap-
plications in knowledge discovery, classification, prediction, and control. Learn-
ing a Bayesian network from discrete data can be cast as a combinatorial opti-
mization problem and there has been much previous work on applying optimiza-
tion techniques including proposals based on ILP, A* search, depth-first branch-
and-bound (BnB) search, and breadth-first BnB search. In this paper, we present
a constraint-based depth-first BnB approach for solving the Bayesian network
learning problem. We propose an improved constraint model that includes pow-
erful dominance constraints, symmetry-breaking constraints, cost-based pruning
rules, and an acyclicity constraint for effectively pruning the search for a mini-
mum cost solution to the model. We experimentally evaluated our approach on
a representative suite of benchmark data. Our empirical results compare favor-
ably to the best previous approaches, both in terms of number of instances solved
within specified resource bounds and in terms of solution time.

1 Introduction

Bayesian networks are a popular probabilistic graphical model with diverse applications
including knowledge discovery, classification, prediction, and control (see, e.g., [1]).
A Bayesian network (BN) can either be constructed by a domain expert or learned
automatically from data. Our interest here is in the learning of a BN from discrete
data, a major challenge in machine learning. Learning a BN from discrete data can
be cast as a combinatorial optimization problem—the well-known score-and-search
approach—where a scoring function is used to evaluate the quality of a proposed BN
and the space of feasible solutions is systematically searched for a best-scoring BN.
Unfortunately, learning a BN from data is NP-hard, even if the number of parents per
vertex in the DAG is limited to two [2]. As well, the problem is unlikely to be efficiently
approximatable with a good quality guarantee, thus motivating the use of global (exact)
search algorithms over local (heuristic) search algorithms [3].

Global search algorithms for learning a BN from data have been studied extensively
over the past several decades and there have been proposals based on dynamic pro-
gramming [4–6], integer linear programming (ILP) [7, 8], A* search [9–11], depth-first
branch-and-bound (BnB) search [12, 13], and breadth-first BnB search [14, 10, 15, 11].
In this paper, we present a constraint-based depth-first BnB approach for solving the

Bayesian network learning problem. We propose an improved constraint model that
includes powerful dominance constraints, symmetry-breaking constraints, cost-based
pruning rules, and an acyclicity constraint for effectively pruning the search for a min-
imum cost solution to the model. We experimentally evaluated our approach on a rep-
resentative suite of benchmark data. Our empirical results compare favorably to the
best previous approaches, both in terms of number of instances solved within specified
resource bounds and in terms of solution time.

2 Background

In this section, we briefly review the necessary background in Bayesian networks before
defining the Bayesian network structure learning problem (for more background on
these topics see, for example, [16, 17]).

A Bayesian network (BN) is a probabilistic graphical model that consists of a la-
beled directed acyclic graph (DAG) in which the vertices V = {v1, . . . , vn} corre-
spond to random variables, the edges represent direct influence of one random variable
on another, and each vertex vi is labeled with a conditional probability distribution
P (vi | parents(vi)) that specifies the dependence of the variable vi on its set of parents
parents(vi) in the DAG. A BN can alternatively be viewed as a factorized representa-
tion of the joint probability distribution over the random variables and as an encoding
of conditional independence assumptions.

The predominant method for BN structure learning from data is the score-and-
search method1. Let G be a DAG over random variables V , and let I = {I1, . . . , IN}
be a set of multivariate discrete data, where each instance Ii is an n-tuple that is a
complete instantiation of the variables in V . A scoring function σ(G | I) assigns a
real value measuring the quality of G given the data I . Without loss of generality, we
assume that a lower score represents a better quality network structure.

Definition 1. Given a discrete data set I = {I1, . . . , IN} over random variables V
and a scoring function σ, the Bayesian network structure learning problem is to find a
directed acyclic graph G over V that minimizes the score σ(G | I).

Scoring functions commonly balance goodness of fit to the data with a penalty
term for model complexity to avoid overfitting. Common scoring functions include
BIC/MDL [18, 19] and BDeu [20, 21]. An important property of these (and all com-
monly used) scoring functions is decomposability, where the score of the entire network
σ(G | I) can be rewritten as the sum of local scores

∑n
i=1 σ(vi, parents(vi) | I) that

only depend on vi and the parent set of vi in G . Henceforth, we assume that the scoring
function is decomposable and that, following previous work, the local score σ(vi, p | I)
for each possible parent set p ⊆ 2V−{vi} and each random variable vi has been com-
puted in a preprocessing step prior to the search for the best network structure. Pruning

1 An alternative method, called constraint-based structure learning in the literature, is based
on statistical hypothesis tests for conditional independence. We do not discuss it further here
except to note that the method is known to scale to large instances but to have the drawback
that it is sensitive to a single failure in a hypothesis test (see [17, p. 785]).

A : {D}, 9.6 {C}, 9.9 {E}, 10.0 {}, 15.4
B : {C,D}, 12.1 {C}, 12.2 {E}, 12.3 {}, 14.1
C : {E}, 3.6 {D}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0
D : {E}, 3.6 {C}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0
E : {D}, 3.7 {A}, 4.2 {A,B}, 11.2 {C}, 11.6 {}, 17.0

A

E

C D

B

(a) (b)

Fig. 1. (a) Random variables and possible parent sets for Example 1; (b) minimum cost DAG
structure with cost 38.9.

techniques can be used to reduce the number of possible parent sets that need to be
considered, but in the worst-case the number of possible parent sets for each variable vi
is 2n−1, where n is the number of vertices in the DAG.

Example 1. Let A, B, C, D, and E be random variables with the possible parent sets
and associated scores shown in Figure 1(a). For example, if the parent set {C,D} for
random variableB is chosen there would be a directed edge from C toB and a directed
edge from D to B and those would be the only incoming edges to B. The local score
for this parent set is 12.1. If the parent set {} for random variable A is chosen, there
would be no incoming edges to A; i.e., A would be a source vertex. Figure 1(b) shows
the minimum cost DAG with cost 15.4 + 4.2 + 3.6 + 3.6 + 12.1 = 38.9.

3 Constraint Programming Approach

In this section, we present a constraint model and a depth-first branch-and-bound solver
for the Bayesian network structure learning problem. Table 1 summarizes the notation.

Our constraint model consists of vertex variables, ordering variables, depth vari-
ables, and constraints over those variables. The ordering and depth variables, although
redundant, improve the search for a solution.

Vertex (possible parent set) variables. There is a vertex variable vi, i ∈ V , for
each random variable in V and the domain of vi, dom(vi), consists of the possible
parent sets for vi. The assignment vi = p denotes that vertex vi has parents p in the
DAG; i.e., the vertex variables represent the DAG over the set of random variables V .
Associated with each domain value is a cost and the goal is to minimize the total cost,
cost(v1) + · · · + cost(vn), subject to the constraint that the graph is acyclic. A global
constraint is introduced to enforce that the vertex variables form a DAG,

acyclic(v1, . . . , vn), (1)

where the constraint is satisfied if and only if the graph designated by the parent sets is
acyclic. The DAG is not necessarily connected. A satisfiability checker for the acyclic
constraint is given in Section 3.7, which in turn can be used to propagate the constraint.

Table 1. Notation for specifying constraint model.

V set of random variables
n number of random variables in the data set
cost(v) cost (score) of variable v
dom(v) domain of v
parents(v) set of parents of v in the DAG
min(dom(v)) the minimum value in the domain of v
v1, . . . , vn vertex (possible parent set) variables
o1, . . . , on ordering (permutation) variables
d1, . . . , dn depth variables
depth(p | o1, . . . , oi−1) depth of p ∈ dom(vj), where vj occurs at position i in the ordering

Ordering (permutation) variables. There is an ordering variable oi for each random
variable and dom(oi) = V , the set of random variables. The assignment oi = j denotes
that vertex vj is in position i in the total ordering of the variables. The ordering variables
represent a permutation of the random variables. A global constraint is introduced to
enforce that the order variables form a permutation of the vertex variables,

alldifferent(o1, . . . , on). (2)

The alldifferent constraint is propagated by, whenever a variable becomes instantiated,
simply removing that value from the domains of the other variables.

Depth variables. There is a depth variable di for each random variable and dom(di)
= {0, ..., n − 1}. The depth variables and the ordering variables are in one-to-one cor-
respondence. The assignment di = k denotes that the depth of the vertex variable vj
that occurs at position i in the ordering is k, where the depth is the length of the longest
path from a source vertex to vertex vj in the DAG.

Example 2. A constraint model for Example 1 would have variables vA, . . ., vE , o1,
. . ., o5, and d1, . . ., d5, with domains dom(vA) = {{C}, {D}, {E}, {}}, . . ., dom(vE)
= {{D}, {A}, {A,B}, {C}, {}}, dom(oi) = {A, . . . , E}, and dom(di) = {0, . . . , 4}.

To more formally state additional constraints, we introduce the following notation
for the depth of a domain value p for a vertex variable vj .

Definition 2. The depth of a domain value p for a vertex variable vj that occurs at
position i in the ordering, denoted depth(p | o1, . . . , oi−1), is defined as: 0 if p = {};
one plus the maximum depth of the elements of p if each element of p occurs in a parent
set of a vertex variable earlier in the ordering; and∞ otherwise.

Example 3. In Example 2, suppose that o1 = A, vA = {}, d1 = 0, o2 = E, vE = {A},
and d2 = 1. The value of depth(p | o1, o2) for variable C is 0 if p = {}, 1 if p = {A},
2 if p = {E}, and∞ if p = {D} or p = {A,B}.

Constraints 3 & 4 establish the correspondence between the three types of variables,

∀j • ∀p • vj = p ⇐⇒ ∃!i • oi = j ∧ di = depth(p | o1, . . . , oi−1), (3)
∀i • ∀j • oi = j ⇐⇒ ∃!p • vj = p ∧ di = depth(p | o1, . . . , oi−1), (4)

where the indices i and j range over 1 ≤ i, j ≤ n and the value p ranges over dom(vj).
The constraints are propagated as follows. A value p ∈ dom(vj) can be pruned iff
∀i • j ∈ dom(oi) ⇒ depth(p | o1, . . . , oi−1) 6∈ dom(di). A value j ∈ dom(oi)
can be pruned iff ∀p ∈ dom(vj) • depth(p | o1, . . . , oi−1) 6∈ dom(di). Only bounds
are maintained on the depth variables. Hence, the notation depth(p | o1, . . . , oi−1) 6∈
dom(di) is to be interpreted as depth(p | o1, . . . , oi−1) < min(dom(di)) ∨ depth(p |
o1, . . . , oi−1) > max(dom(di)). When propagating Constraints 3 & 4, we must de-
termine depth(p | o1, . . . , oi−1). In general, this is a difficult problem. We restrict
ourselves to two easy special cases: (i) all of o1, . . . , oi−1 have been instantiated, or (ii)
some of o1, . . . , oi−1 have been instantiated and all of the p ∈ dom(vj) are subsets of
these ordering variables. We leave to future work further ways of safely approximating
the depth to allow further propagation.

Example 4. In Example 2, suppose that o1 = A, vA = {}, d1 = 0, o2 = E, vE = {A},
d2 = 1, and that, as a result of some propagation, min(di) = 1, i = 3, 4, 5. The value
{} can be pruned from each of the domains of vB , vC , and vD.

One can see that the vertex variables together with the acyclic constraint are suffi-
cient alone to model the Bayesian network structure learning problem. Such a search
space over DAGs forms the basis of Barlett and Cussens’ integer programming ap-
proach [8]. One can also see that the ordering (permutation) variables together with the
alldifferent constraint are sufficient alone, as the minimum cost DAG for a given order-
ing is easily determinable. Larranaga et al. [22] were the first to propose the search space
of all permutations and Teyssier and Koller [23] successfully applied it within a local
search algorithm. The permutation search space also forms the basis of the approaches
based on dynamic programming [4–6] and on the approaches based on searching for the
shortest path in an ordering graph using A* search [9–11], depth-first branch-and-bound
DFBnB search [13], and BFBnB search [10, 15, 11].

The unique aspects of our model lie in combining the DAG and permutation search
spaces and introducing the depth variables. As is shown in the next sections, the combi-
nation of variables allows us to identify and post many additional constraints that lead
to a considerable reduction in the search space.

3.1 Symmetry-breaking constraints (I)

Many permutations and prefixes of permutations, as represented by the ordering vari-
ables, are symmetric in that they lead to the same minimum cost DAG, or are dominated
in that they lead to a DAG of equal or higher cost. The intent behind introducing the
auxiliary depth variables is to rule out all but the lexicographically least of these per-
mutations. A lexicographic ordering is defined over the depth variables—and over the
ordering variables, in the case of a tie on the values of the depth variables. The following
constraints are introduced to enforce the lexicographic order.

d1 = 0 (5)
di = k ⇐⇒ (di+1 = k ∨ di+1 = k + 1), i = 1, . . . , n− 1 (6)
di = di+1 =⇒ oi < oi+1, i = 1, . . . , n− 1 (7)

The constraints are readily propagated. Constraint 6 is a dominance constraint.

Example 5. In Example 2, consider the ordering prefix (o1, . . . , o4) = (E,C,A,D)
with associated vertex variables (vE , vC , vA, vD) = ({}, {E}, {C}, {E}) and depths
(d1, . . . , d4) = (0, 1, 2, 1). The cost of this ordering prefix is 33.8. The ordering prefix
violates Constraint 6. However, the ordering prefix (o1, . . . , o4) = (E,C,D,A) with
depths (d1, . . . , d4) = (0, 1, 1, 2) and vertex variables (vE , . . . , vD) = ({}, {E}, {E},
{D}) satisfies the constraint and has a lower cost of 33.5.

Constraint 7 is a symmetry-breaking constraint.

Example 6. In Example 2, consider the ordering (o1, . . . , o5) = (A,E,D,C,B) with
(d1, . . . , d5) = (0, 1, 2, 2, 3) and (vA, . . . , vB) = ({}, . . . , {C,D}). The ordering vio-
lates Constraint 7. However, the symmetric ordering (o1, . . . , o5) = (A,E,C,D,B),
which represents the same DAG, satisfies the constraint and has equal cost.

Theorem 1. Any ordering prefix o1, . . . , oi can be safely pruned if the associated depth
variables d1, . . . , di do not satisfy Constraints 5–7.

3.2 Symmetry-breaking constraints (II)

In the previous section, we identified symmetries and dominance among the order-
ing variables. In this section, we identify symmetries among the vertex variables. Let
[x/y]dom(v) be the domain that results from replacing all occurrences of y in the parent
sets by x. Two vertex variables v1 and v2 are symmetric if [v1/v2]dom(v1) = dom(v2);
i.e., the domains are equal once the given substitution is applied. The symmetry is bro-
ken by enforcing that v1 must precede v2 in the ordering,

∀i • ∀j • oi = 1 ∧ oj = 2 =⇒ i < j. (8)

Example 7. In Example 2, consider vertex variables vC and vD. The variables are sym-
metric as, [vC/vD]dom(vC) = {{E}, {C}, {A,B}, {A}, {}} = dom(vD).

3.3 Symmetry-breaking constraints (III)

A BN can be viewed as an encoding of conditional independence assumptions. Two
BN structures (DAGS) are said to be I-equivalent if they encode the same set of con-
ditional independence assumptions (see, e.g., [16, 17]). The efficiency of the search
for a minimal cost BN can be greatly improved by recognizing I-equivalent partial
(non-)solutions. Chickering [24, 25] provides a local transformational characterization
of equivalent BN structures based on covered edges that forms the theoretical basis of
these symmetry-breaking constraints.

Definition 3 (Chickering [24]). An edge x → y in a Bayesian network is a covered
edge if parents(y) = parents(x) ∪ {x}.

Theorem 2 (Chickering [24]). Let G be any DAG containing the edge x→ y, and let
G ′ be the directed graph identical to G except that the edge between x and y in G ′ is
oriented as y → x. Then G ′ is a DAG that is equivalent to G if and only if x → y is a
covered edge in G .

Example 8. In Figure 1(b) the edgeA→ E is a covered edge and the Bayesian network
with the edge reversed to be E → A is an I-equivalent Bayesian network.

In what follows, we identify three cases that consist of sequences of one or more
covered edge reversals and break symmetries by identifying a lexicographic ordering.
Experimental evidence suggests that these three cases capture much of the symmetry
due to I-equivalence. Symmetries are only broken if the costs of the two I-equivalent
DAGs would be equal; otherwise there is a negative interaction with pruning based on
the cost function (discussed in Section 3.8).

Case 1. Consider vertex variables vi and vj . If there exists domain values p ∈
dom(vi) and p ∪ {vi} ∈ dom(vj), this pair of assignments includes a covered edge
vi → vj ; i.e., vi and vj would have identical parents except that vi would also be a
parent of vj . Thus, there exists an I-equivalent DAG with the edge reversed. We keep
only the lexicographically least: the pair of assignments would be permitted iff i < j.

Case 2. Consider vertex variables vi, vj , and vk. If there exists domain values p ∈
dom(vi), p ∪ {vi} ∈ dom(vj), p ∪ {vj} ∈ dom(vk), where i < j and k < j,
there is a covered edge vi → vj and, if this covered edge is reversed, the covered
edge vj → vk is introduced, which in turn can be reversed. Thus, there exists an I-
equivalent DAG with the edges {vi → vj , vj → vk} and an I-equivalent DAG with
the edges {vk → vj , vj → vi}. We keep only the lexicographically least: the triple of
assignments would be permitted iff i < k.

Case 3. Consider vertex variables vi, vj , vk, and vl. If there exists domain values
p ∈ dom(vi), p ∪{vi} ∈ dom(vj), p ∪{vi, vj} ∈ dom(vk), p ∪{vj , vk} ∈ dom(vl),
where i < j, l < j, j < k, there exists an I-equivalent DAG with the edges {vi →
vj , vi → vk, vj → vk, vj → vl, vk → vl} and an I-equivalent DAG with the edges
{vl → vj , vl → vk, vj → vk, vj → vi, vk → vi}. We keep only the lexicographically
least: the triple of assignments would be permitted iff i < l.

In our empirical evaluation, these symmetry-breaking rules were used only as a
satisfiability check at each node in the search tree, as we found that propagating the
I-equivalence symmetry-breaking rules did not further improve the runtime.

3.4 Dominance constraints (I)

Given an ordering prefix o1, . . . , oi−1, a domain value p for a vertex variable vj is
consistent with the ordering if each element of p occurs in a parent set of a vertex
variable in the ordering. The domain value p assigned to vertex variable vj that occurs
at position i in an ordering should be the lowest cost p consistent with the ordering;
assigning a domain value with a higher cost can be seen to be dominated as the values
can be substituted with no effect on the other variables.

Theorem 3. Given an ordering prefix o1, . . . , oi−1, a vertex variable vj , and domain
elements p, p′ ∈ dom(vj), p 6= p′, if p is consistent with the ordering and cost(p) ≤
cost(p′), p′ can be safely pruned from the domain of vj .

Example 9. In Example 2, consider the prefix ordering (o1, o2) = (C,D). The values
{C}, {E}, and {} can be pruned from each of the domains of vA and vB , and the values
{A}, {A,B}, {C}, and {} can be pruned from the domain of vE .

3.5 Dominance constraints (II)

Teyssier and Koller [23] present a pruning rule that is now routinely used in score-and-
search approaches as a preprocessing step before search begins.

Theorem 4 (Teyssier and Koller [23]). Given a vertex variable vj , and domain ele-
ments p, p′ ∈ dom(vj), if p ⊂ p′ and cost(p) ≤ cost(p′), p′ can be safely pruned from
the domain of vj .

Example 10. In Example 2, the value {A,B} can be pruned from the domain of vE .

We generalize the pruning rule so that it is now applicable during the search. Sup-
pose that some of the vertex variables have been assigned values. These assignments
induce ordering constraints on the variables.

Example 11. In Example 2, suppose vA = {D} and vC = {A,B}. These assignments
induce the ordering constraints D < A, A < C, and B < C.

Definition 4. Given a set of ordering constraints induced by assignments to the vertex
variables, let ip(p) denote the induced parent set where p has been augmented with any
and all variables that come before in the ordering; i.e., if y ∈ p and x < y then x is
added to p.

The generalized pruning rule is as follows.

Theorem 5. Given a vertex variable vj , and domain elements p, p′ ∈ dom(vj), p 6= p′,
if p ⊆ ip(p′) and cost(p) ≤ cost(p′), p′ can be safely pruned from the domain of vj .

Example 12. Continuing with Example 11, consider vE with p = {D} and p′ = {A}.
The induced parent set ip(p′) is given by {A,D} and cost(p) ≤ cost(p′). Thus, p′ can
be pruned. Similarly, p′ = {C} can be pruned.

3.6 Dominance constraints (III)

Consider an ordering prefix o1, . . . , oi with associated vertex and depth variables and let
π be a permutation over {1, . . . , i}. The cost of completing the partial solutions repre-
sented by the prefix ordering o1, . . . , oi and the permuted prefix ordering oπ(1), . . . , oπ(i)
are identical. This insight is used by Silander and Myllymäki [5] in their dynamic pro-
gramming approach and by Fan et al. [9–11] in their best-first approaches based on
searching for the shortest path in the ordering graph. However, all of these approaches
are extremely memory intensive. Here, we use this insight to prune the search space.

Theorem 6. Let cost(o1, . . . , oi) be the cost of a partial solution represented by the
given ordering prefix. Any ordering prefix o1, . . . , oi can be safely pruned if there exists
a permutation π such that cost(oπ(1), . . . , oπ(i)) < cost(o1, . . . , oi).

Example 13. In Example 2, consider the ordering prefix O = (o1, o2) = (E,A) with
associated vertex variables (vE , vA) = ({}, {E}) and cost of 27.0. The ordering pre-
fix O can be safely pruned as there exists a permutation (oπ(1), oπ(2)) = (A,E) with
associated vertex variables (vA, vE) = ({}, {A}) that has a lower cost of 19.6.

Clearly, in its full generality, the condition of Theorem 6 is too expensive to deter-
mine exactly as it amounts to solving the original problem. However, we identify three
strategies that are easy to determine and collectively were found to be very effective at
pruning in our experiments while maintaining optimality.

Strategy 1. We consider permutations that differ from the original permutation only
in the last l or fewer places (l = 4 in our experiments).

Strategy 2. We consider permutations that differ from the original permutation only
in the swapping of the last variable oi with a variable earlier in the ordering.

Strategy 3. We consider whether a permutation oπ(1), . . . , oπ(i) of lower cost was
explored earlier in the search. To be able to efficiently determine this, we use memoiza-
tion for ordering prefixes and only continue with a prefix if it has a better cost than one
already explored (see, e.g., [26, 27]). Our implementation of memoization uses hashing
with quadratic probing and the replacement policy is to keep the most recent if the table
becomes too full. It is well known that there is a strong relationship between backtrack-
ing search with memoization/caching and dynamic programming using a bottom-up
approach, but memoization allows trading space for time and top-down backtracking
search allows pruning the search space.

3.7 Acyclic constraint

In this section we describe a propagator for the acyclicity constraint that achieves gen-
eralized arc consistency in polynomial time. We first present and analyze an algorithm
that checks satisfiability for given possible parent sets. We then explain how this algo-
rithm can be used to achieve generalized arc consistency.

Algorithm 1 can check whether a collection of possible parent sets allows a feasible
parent set assignment, i.e. an assignment that represents a DAG. Its correctness is based
on the following well-known property of directed acyclic graphs that is also used in the
ILP approaches [7, 8].

Theorem 7. Let G be a directed graph over vertices V and let parents(v) be the
parents of vertex v in the graph. G is acyclic if and only if for every non-empty subset
S ⊂ V there is at least one vertex v ∈ S with parents(v) ∩ S = {}.

The algorithm works as follows. First, it searches possible sources for the DAG, i.e.
vertices for which {} is a possible parent set. These vertices are stored inW 0. Note that
if a directed graph does not have a source, it must contain a cycle by Theorem 7. Thus, if
W 0 remains empty, there is no parent set assignment satisfying the acyclicity constraint.
In the next iteration, the algorithm searches for vertices that have a possible parent set
consisting of possible sources only. These vertices form set W 1. Again, if there are no
such vertices, then no vertex in V \W 0 has a possible parent set completely outside
V \W 0, which violates the acyclicity characterization of Theorem 7. Thus, there is no
consistent parent set assignment. We continue this process until all vertices are included
in one of the W k sets or until we find a contradicting set V \ (

⋃k
i=0W

i) for some k.

Theorem 8. We can test satisfiability of the acyclic constraint in time O(n2d), where
n is the number of vertices and d is an upper bound on the number of possible parent
sets per vertex.

Algorithm 1: Checking satisfiability of acyclic constraint
Input: V = {v1, . . . , vn}, set dom(vi) of possible parent sets for each vertex vi in V .
Output: True if there is a feasible parent set assignment and false otherwise. Additionally,

the variables Si represent a feasible assignment if one exists.
k ← 0;
Si ← nil for all vi ∈ V ;
while

⋃k−1
j=0 W j 6= V do

W k ← {};
for all vertices vi not in

⋃k−1
j=0 W j do

if vi has a possible parent set p ∈ dom(vi) with p ⊆
⋃k−1

j=0 W j then
Si ← p;
W k ←W k ∪ {vi};

end if
end
if W k = {} then return false;
k ← k + 1;

end while
return true;

Example 14. Let vA, vB , vC , and vD be vertex variables with the possible parent sets,

dom(vA) = {{B}, {D}}, dom(vC) = {{B}, {D}},
dom(vB) = {{A}, {C}}, dom(vD) = {{A}, {C}}.

Algorithm 1 returns false as W 0 is found to be empty.

The algorithm for checking satisfiability can be used to achieve generalized arc
consistency by iteratively testing, for each vertex vi, whether each p ∈ dom(vi) has a
support. We simply substitute the set of possible parent sets dom(vi) for vi by the set
{p}. A satisfiability check on the resulting instance successfully tests whether there is a
consistent parent set assignment containing vi = p. If we find a parent set p that cannot
appear in any feasible solution, we remove p from the corresponding domain. Note that
we only prune a value p from a domain dom(vi) if vi = p cannot be part of any feasible
solution. This means that vi = p can also not be part of the support of any other variable
value q ∈ dom(vj). Therefore, the removal of p cannot cause another supported value
to become unsupported. Hence, we do not have to rerun any of the tests; we can simply
run the test once for every value in every domain. These considerations show that we
can enforce arc consistency for the acyclicity constraint in O(n3d2) steps.

In our empirical evaluation, we found that achieving generalized arc consistency
did not pay off in terms of reduced runtime. Hence, in the current set of experiments
Algorithm 1 was used only as a satisfiability check at each node in the search tree.
Instead, a limited form of constraint propagation was performed based on necessary
edges between vertex variables. An edge vi → vj is necessary if vi occurs in every
currently valid parent set for variable vj ; i.e., ∀p ∈ dom(vj) • vi ∈ p. If a directed
edge vi → vj is a necessary edge, the directed edge vj → vi cannot be an edge in a
valid DAG, as a cycle would be introduced. Thus, any parent set that contains vj can be

removed from the domain of vi. Removing domain elements may introduce additional
necessary edges and pruning can be based on chaining necessary edges.

Example 15. Let vA, vB , vC , and vD be vertex variables with the possible parent sets,

dom(vA) = {{}, {B}, {C}} dom(vC) = {{B}}
dom(vB) = {{A}, {A,C}} dom(vD) = {{A}, {A,C}}

Since the edge B → C is necessary, the value {A,C} can be pruned from the domain
of vB . This causes the edge A→ B to become necessary, and the values {B} and {C}
can be pruned from the domain of vA.

We conclude with the following observation. Let iv be the index of the set W i in
which we include vertex v in the satisfiability algorithm. Then, iv is a lower bound on
the number that vertex v can have in any topological numbering. This lower bound can
be used in propagating Constraint 4.

3.8 Solving the constraint model

A constraint-based depth-first branch-and-bound search is used to solve the constraint
model; i.e., the nodes in the search tree are expanded in a depth-first manner and a
node is expanded only if the propagation of the constraints succeeds and a lower bound
estimate on completing the partial solution does not exceed the current upper bound.

The branching is over the ordering (permutation) variables and uses the static order
o1, . . . , on. Once an ordering variable is instantiated as oi = j, the associated vertex
variable vj and depth variable di are also instantiated.

The lower bound is based on the lower bound proposed by Fan and Yuan [11]. In
brief, prior to search, the strongly connected components (SCCs) of the graph based on
the top few lowest cost elements in the domains of the vertex variables are found and
pattern databases are constructed based on the SCCs. The pattern databases allow a fast
and often accurate lower bound estimate during the search (see [11] for details).

The initial upper bound, found before search begins, is based on the local search
algorithm proposed by Teyssier and Koller [23]. The algorithm uses restarts and first-
improvement moves, the search space consists of all permutations, and the neighbor-
hood function consists of swapping the order of two variables. Of course, as better
solutions are found during the search the upper bound is updated.

As a final detail, additional pruning on the vertex variables can be performed based
on the (well-known) approximation of bounds consistency on a cost function that is
a knapsack constraint: z = cost(v1) + · · · + cost(vn). Let the bounds on cost(vi)
be [li, ui], and let lb and ub be the current lower bound and upper bound on the cost,
respectively. At any point in the search we have the constraint lb ≤ z < ub and a value
p ∈ dom(vi) can be pruned if cost(p) +

∑
j 6=i uj < lb or if cost(p) +

∑
j 6=i lj ≥ ub.

Note that the expression cost(p)+
∑
j 6=i lj can be replaced with any lower bound on the

cost of a solution that includes p and respects the current domains and instantiations, as
long as the lower bound never over estimates. Fortunately, we have a fast and effective
method of querying such lower bounds and we use it when performing this pruning.

4 Experimental Evaluation

In this section, we compare a bespoke C++ implementation of our constraint-based
approach, called CPBayes 2, to the current state-of-the-art on benchmark instances and
show that our approach compares favorably both in terms of number of instances solved
within specified resource bounds and in terms of solution time.

The set of benchmark instances are derived from data sets obtained from the UCI
Machine Learning Repository 3 and data generated from networks obtained from the
Bayesian Network Repository 4. Following previous work, the local score for each pos-
sible parent set and each random variable was computed in a preprocessing step (either
by us or by others) prior to the search for the best network structure and we do not
report the preprocessing time. Note that the computations of the possible parent sets for
each variable are independent and can be determined in parallel. The BIC/MDL [18,
19] and BDeu [20, 21] scoring methods were used.

Table 2 shows the results of comparing CPBayes (v1.0) against Barlett and Cussens’
[8] GOBNILP system (v1.4.1) based on integer linear programming, and Fan, Malone,
and Yuan’s [10, 15, 11] system (v2015) based on A* search. These two systems repre-
sent the current state-of-the-art for global (exact) approaches. Breadth-first BnB search
[10, 15, 11] is also competitive but its effectiveness is known to be very similar to that
of A*. Although for space reasons we do not report detailed results, we note that on
these benchmarks CPBayes far outpaces the previous best depth-first branch-and-bound
search approach [13]. GOBNILP (v1.4.1) 5 and A* (v2015) 6 are both primarily written
in C/C++. A* (v2015) is the code developed by Fan et al. [10, 15], but in the experi-
ments we included our implementation of the improved lower bounds recently proposed
by Fan and Yuan [11]. Thus, both CPBayes (v1.0) and A* (v2015) use exactly the same
lower bounding technique (see Section 3.8). The experiments were performed on a
cluster, where each node of the cluster is equipped with four AMD Opteron CPUs at
2.4 GHz and 32.0 GB memory. Resource limits of 24 hours of CPU time and 16 GB
of memory were imposed both for the preprocessing step common to all methods of
obtaining the local scores and again to determine the minimal cost BN using a method.
The systems were run with their default values.

5 Discussion and Future Work

The Bayesian Network Repository classifies networks as small (< 20 random vari-
ables), medium (20–60 random variables), large (60–100 random variables), very large
(100–1000 random variables), and massive (> 1000 random variables). The bench-
marks shown in Table 2 fall into the small and medium classes. We are not aware of any
reports of results for exact solvers for instances beyond the medium class (Barlett and

2 CPBayes code available at: cs.uwaterloo.ca/˜vanbeek/research
3 archive.ics.uci.edu/ml/
4 www.bnlearn.com/bnrepository/
5 www.cs.york.ac.uk/aig/sw/gobnilp/
6 bitbucket.org/bmmalone/

Table 2. For each benchmark, time (seconds) to determine minimal cost BN using various sys-
tems (see text), where n is the number of random variables in the data set, N is the number of
instances in the data set, and d is the total number of possible parents sets for the random vari-
ables. Resource limits of 24 hours of CPU time and 16 GB of memory were imposed: OM = out
of memory; OT = out of time. A blank entry indicates that the preprocessing step of obtaining the
local scores for each random variable could not be completed within the resource limits.

BDeu BIC
GOBN. A* CPBayes GOBN. A* CPBayes

Benchmark n N d v1.4.1 v2015 v1.0 d v1.4.1 v2015 v1.0
shuttle 10 58,000 812 58.5 0.0 0.0 264 2.8 0.1 0.0
adult 15 32,561 768 1.4 0.1 0.0 547 0.7 0.1 0.0
letter 17 20,000 18,841 5,060.8 1.3 1.4 4,443 72.5 0.6 0.2
voting 17 435 1,940 16.8 0.3 0.1 1,848 11.6 0.4 0.1
zoo 17 101 2,855 177.7 0.5 0.2 554 0.9 0.4 0.1
tumour 18 339 274 1.5 0.9 0.2 219 0.4 0.9 0.2
lympho 19 148 345 1.7 2.1 0.5 143 0.5 1.0 0.2
vehicle 19 846 3,121 90.4 2.4 0.7 763 4.4 2.1 0.5
hepatitis 20 155 501 2.1 4.9 1.1 266 1.7 4.8 1.0
segment 20 2,310 6,491 2,486.5 3.3 1.3 1,053 13.2 2.4 0.5
mushroom 23 8,124 438,185 OT 255.5 561.8 13,025 82,736.2 34.4 7.7
autos 26 159 25,238 OT 918.3 464.2 2,391 108.0 316.3 50.8
insurance 27 1,000 792 2.8 583.9 107.0 506 2.1 824.3 103.7
horse colic 28 300 490 2.7 15.0 3.4 490 3.2 6.8 1.2
steel 28 1,941 113,118 OT 902.9 21,547.0 93,026 OT 550.8 4,447.6
flag 29 194 1,324 28.0 49.4 39.9 741 7.7 12.1 2.6
wdbc 31 569 13,473 2,055.6 OM 11,031.6 14,613 1,773.7 1,330.8 1,460.5
water 32 1,000 159 0.3 1.6 0.6
mildew 35 1,000 166 0.3 7.6 1.5 126 0.2 3.6 0.6
soybean 36 266 5,926 789.5 1,114.1 147.8
alarm 37 1,000 672 1.8 43.2 8.4
bands 39 277 892 15.2 4.5 2.0
spectf 45 267 610 8.4 401.7 11.2
sponge 45 76 618 4.1 793.5 13.2
barley 48 1,000 244 0.4 1.5 3.4
hailfinder 56 100 167 0.1 9.9 1.5
hailfinder 56 500 418 0.5 OM 9.3
lung cancer 57 32 292 2.0 OM 10.5
carpo 60 100 423 1.6 OM 253.6
carpo 60 500 847 6.9 OM OT

Cussens [8] report results for GOBNILP for n > 60, but they are solving a different
problem, severely restricting the cardinality of the parent sets to ≤ 2).

Benchmarks from the small class are easy for the CPBayes and A* methods, but can
be somewhat challenging for GOBNILP depending on the value of the parameter d, the
total number of parent sets for the random variables. Along with the integer linear pro-
gramming (ILP) solver GOBNILP, CPBayes scales fairly robustly to medium instances
using a reasonable restriction on memory usage (both use only a few GB of memory,

far under the 16 GB limit used in the experiments; in fairness, the scalability of the
A* approach on a very large memory machine is still somewhat of an open question).
CPBayes also has several other advantages, which it shares with the ILP approach, over
A*, DP, and BFBnB approaches. Firstly, the constraint model is a purely declarative
representation and the same model can be given to an exact solver or a solver based on
local search, such as large neighborhood search. Secondly, the constraint model can be
augmented with side structural constraints that can be important in real-world model-
ing (see [28]). Finally, the solver is an anytime algorithm since, as time progresses, the
solver progressively finds better solutions.

Let us now turn to a comparison between GOBNILP and CPBayes. CPBayes scales
better than GOBNILP along the dimension d which measures the size of the possible
parent sets. A partial reason is that GOBNILP uses a constraint model that includes a
(0,1)-variable for each possible parent set. GOBNILP scales better than CPBayes along
the dimension n which measures the number of random variables. CPBayes has diffi-
culty at the topmost range of n proving optimality. There is some evidence that n = 60
is near the top of the range for GOBNILP as well. Results reported by Barlett and
Cussens [8] for the carpo benchmark using larger values of N and the BDeu scoring
method—the scoring method which usually leads to harder optimization instances than
BIC/MDL—showed that instances could only be solved by severely restricting the car-
dinality of the parent sets. A clear difficulty in scaling up all of these score-and-search
methods is in obtaining the local scores within reasonable resource limits.

In future work on Bayesian network structure learning, we intend to focus on im-
proving the robustness and scalability of our CPBayes approach. A direction that ap-
pears especially promising is to improve the branch-and-bound search by exploiting
decomposition and lower bound caching during the search [29, 30]. As well, our ap-
proach, as with all current exact approaches, assumes complete data. An important next
step is to extend our approach to handle missing values and latent variables (cf. [31]).

Acknowledgements

This research was partially funded through an NSERC Discovery Grant. We thank
Claude-Guy Quimper, Alejandro López-Ortiz, Mats Carlsson, and Christian Schulte
for helpful discussions, and Brandon Malone and James Cussens for providing test in-
stances and their code.

References

1. Witten, I.H., Frank, E., Hall, M.A.: Data Mining. 3rd edn. Morgan Kaufmann (2011)
2. Chickering, D., Meek, C., Heckerman, D.: Large-sample learning of Bayesian networks is

NP-hard. In: Proc. of UAI. (2003) 124–133
3. Koivisto, K.: Parent assignment is hard for the MDL, AIC, and NML costs. In: Proc. of

COLT. (2006) 289–303
4. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach.

Learn. Res. 5 (2004) 549–573
5. Silander, T., Myllymäki, P.: A simple approach for finding the globally optimal Bayesian

network structure. In: Proc. of UAI. (2006) 445–452

6. Malone, B., Yuan, C., Hansen, E.A.: Memory-efficient dynamic programming for learning
optimal Bayesian networks. In: Proc. of AAAI. (2011) 1057–1062

7. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure
using LP relaxations. In: Proc. of AISTATS. (2010) 358–365

8. Barlett, M., Cussens, J.: Advances in Bayesian network learning using integer programming.
In: Proc. of UAI. (2013) 182–191

9. Yuan, C., Malone, B.: Learning optimal Bayesian networks: A shortest path perspective.
J. of Artificial Intelligence Research 48 (2013) 23–65

10. Fan, X., Malone, B., Yuan, C.: Finding optimal Bayesian network structures with constraints
learned from data. In: Proc. of UAI. (2014) 200–209

11. Fan, X., Yuan, C.: An improved lower bound for Bayesian network structure learning. In:
Proc. of AAAI. (2015)

12. Tian, J.: A branch-and-bound algorithm for MDL learning Bayesian networks. In: Proc. of
UAI. (2000) 580–588

13. Malone, B., Yuan, C.: A depth-first branch and bound algorithm for learning optimal
Bayesian networks. In: Graph Structures for Knowledge Representation and Reasoning.
Volume 8323 of Lecture Notes in Computer Science. Springer (2014) 111–122

14. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using constraints.
Journal of Machine Learning Research 12 (2011) 663–689

15. Fan, X., Yuan, C., Malone, B.: Tightening bounds for Bayesian network structure learning.
In: Proc. of AAAI. (2014) 2439–2445

16. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University
Press (2009)

17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The
MIT Press (2009)

18. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464
19. Lam, W., Bacchus, F.: Using new data to refine a Bayesian network. In: Proc. of UAI. (1994)

383–390
20. Buntine, W.L.: Theory refinement of Bayesian networks. In: Proc. of UAI. (1991) 52–60
21. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combina-

tion of knowledge and statistical data. Machine Learning 20 (1995) 197–243
22. Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning Bayesian network struc-

tures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst., Man,
Cybern. 26 (1996) 487–493

23. Teyssier, M., Koller, D.: Ordering-based search: A simple and effective algorithm for learn-
ing Bayesian networks. In: Proc. of UAI. (2005) 548–549

24. Chickering, D.M.: A transformational characterization of equivalent Bayesian network struc-
tures. In: Proc. of UAI. (1995) 87–98

25. Chickering, D.M.: Learning equivalence classes of Bayesian network structures. Journal of
Machine Learning Research 2 (2002) 445–498

26. Michie, D.: “memo” functions and machine learning. Nature 218 (1968) 19–22
27. Smith, B.M.: Caching search states in permutation problems. In: Proc. of CP. (2005) 637–

651
28. Cussens, J.: Integer programming for Bayesian network structure learning. Quality Tech-

nology & Quantitative Management 1 (2014) 99–110
29. Kitching, M., Bacchus, F.: Symmetric component caching. In: Proc. of IJCAI. (2007) 118–

124
30. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization problems.

In: Proc. of CP. (2008) 478–492
31. Friedman, N.: Learning belief networks in the presence of missing values and hidden vari-

ables. In: Proc. of ICML. (1997) 125–133

