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Abstract

A wide variety of combinatorial optimization problems have been studied in recent

years� Of particular interest are a class of optimization problems arising from the

manufacturing of vehicles on assembly lines� These problems consist of sequencing

the vehicles that are going to be produced such that their production is done in

an e�cient cost e
ective manner� In this thesis we introduce a real�world vehicle

sequencing problem that was provided by TigrSoft� who solved the problem for one

of their clients using a greedy search approach� We began by modeling this prob�

lem as a constraint satisfaction problem and from there we devised three di
erent

solution techniques for solving it� These solution techniques include a simple hill�

climbing algorithm� a backtracking algorithm with parameterized soft constraints�

and a branch and bound algorithm that is capable of �nding optimal solutions�

We were able to improve results� compared to TigrSoft�s algorithm� using any of

these three solution techniques� For our best method� a branch and bound tech�

nique with a decomposition into smaller sub�problems� we obtained improvements

ranging between 	� and �	� for six real�world problem instances�
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Chapter �

Introduction

A wide variety of combinatorial optimization problems have been studied in recent
years� These problems consist of searching for the best solution from many possible
choices� For small sized problems there are often techniques that are guaranteed to
�nd an optimal solution within a reasonable amount of time� However� for problems
that come from real�world situations� the size of the problems often make �nding
an optimal solution far too complex� Instead� approximate 
sub�optimal� solutions
that are computed relatively quickly are considered acceptable�

For a particular problem� �nding any sub�optimal solution may be quite easy�
The challenge is to devise an algorithm that can produce solutions that are as close
as possible to an optimal solution and can be found quickly� Given two algorithms
that solve the same problem� they can be compared based on the quality of the
solution and the complexity of the algorithms� If both algorithms �nd solutions
within a reasonable amount of time 
and space�� then the algorithm that �nds the
best solution can be considered better�

A particular class of optimization problems arises in the domain of scheduling

see ��	� for an overview of constraint�based scheduling�� Within the domain of
scheduling problems are problems that arise from the manufacturing of vehicles on
assembly lines� These problems consist of sequencing the vehicles that are going to
be produced such that their production is done in an e�cient cost e
ective manner�
Each of these problems has unique features depending on the manufacturing com�
pany that they come from� Some of these unique features include the technology
used in the manufacturing process� the types of vehicles that are manufactured� and
the goals of the company�

Of these problems� only a few have been examined by the research community�
One vehicle sequencing problem that has been studied comes from Chrysler Cor�
poration� The problem was solved using algorithms produced by ILOG� However�
there is little information about this research besides a press release ���� and a set of
presentation slides ���� The information presented in the slides indicates a problem
with a variety of constraints� and their press release indicates that Chrysler was able
to save �������� at a typical assembly plant by just reducing the number of times
paint colours are changed during the assembly process�

Peugeot�Citroen� Europe�s second largest vehicle manufacturer� also has plans
to use ILOG�s software to enhance the sequencing of vehicles on its assembly lines
����� Once again there is no detailed information about this research� and there is

�



unlikely to be any more in the future�
The majority of research has focused on a particular problem referred to as the

Car Sequencing problem� introduced by Parrello and Kabat in ����� It is unclear if
this is a real world problem since Parrello and Kabat give no mention of its origin�
The problem consists of sequencing di
erent types of vehicles that are to be produced
on an assembly line� Each vehicle that is produced requires that certain options be
installed 
e�g� air conditioning� sun�roof� and radio�� The vehicles are classi�ed by
the options that they require� Each class of vehicles has a production requirement
that indicates how many vehicles that belong to the particular class need to be
produced� For each of the options there is an associated capacity constraint� A
capacity constraint is de�ned by a ratio 
r � s� which indicates that at most r
vehicles with a particular option can be placed in any subsequence of s vehicles� For
example� the sun�roof option might have a capacity constraint ratio of ���� This
means that for any subsequence of �ve vehicles� only two of them can be vehicles
that require a sun�roof�

For problem instances containing up to ��� vehicles� it is often the case that
solutions do not exist� To deal with this� the problem can be de�ned as an op�
timization problem� In ����� Parrello and Kabat rede�ne the capacity constraints
to incur a penalty value whenever a constraint is not satis�ed� The weight of this
penalty value depends on the option that the constraint is de�ned for 
violating a
constraint for some options is more expensive than others�� how many vehicles ex�
ceed the capacity constraint� and how close these vehicles are sequenced together 
see
���� for a detailed description of how these penalty values are calculated�� For this
representation� the optimization problem is de�ned as the minimization of penalty
values�

The Car Sequencing problem has been solved using a variety of techniques� Van
Hentenryck et al� ���� used a constraint logic programming 
CLP� approach on
solvable problem instances 
i�e� no optimization was required�� The Car Sequenc�
ing problem was modeled with �nite domains and in an arithmetic manner� The
CLP language used takes advantage of this model by applying specialized �nite do�
main� arithmetic� arc consistency propagators to the problem� Furthermore they
introduced specialized combinators 
constraints� that increase the e�ciency of the
search�

R�egin et al� ���� solved the problem using backtracking with a specialized arc�
consistency propagator� The constraints in the problem are all converted to global
cardinality constraints and the propagator described in ���� is applied to these con�
straints�

Several local search techniques have been applied to the Car Sequencing problem�
Davenport and Tsang ��� de�ned a new class of problems called the Constraint
Satisfaction Sequencing Problem� which is essentially a CSP where the variables
all have the same domain values and an all�di
erent constraint is de�ned over the
variables� They solved the problem using hill�climbing with a variation of the min�
con�icts heuristic and a value swap neighborhood function 
i�e� values are swapped
between variables��

Smith et al� ���� modeled the optimization version of the problem as a non�linear
integer program� The model was solved using a general non�linear program solver�
a hill�climbing approach� and a simulated annealing approach� Overall they found
that the simulated annealing approach consistently found better solutions than the

�



other two approaches�
The problem presented in this thesis is a vehicle assembly line sequencing prob�

lem� It is a real�world optimization problem that was provided by TigrSoft� an Ed�
monton company that specializes in planning and scheduling software� The company
has already solved the problem using a greedy search technique and is interested
in improving the quality of the solutions� The problem originates from a client of
TigrSoft�s that manufactures vehicles� The instances of the problem that we study
come from a manufacturing plant that produces approximately 	����� vehicles in
a month� on two assembly lines� This manufacturing plant is currently using the
solution technique provided by TigrSoft�

The vehicle assembly line sequencing problem consists of choosing the sequence
that the vehicles should be produced on an assembly line� This problem is important
because the sequencing of the vehicles a
ects the cost of production� the quality
of the vehicles produced� and even employee satisfaction� Choosing an appropriate
sequence can improve on all of these criteria� For example� the cost of production can
increase by painting red vehicles immediately before white ones because it requires
that the paint machine be cleaned thoroughly 
otherwise the white vehicle will
turn out pink�� Also� producing too many of the same vehicles in a row can cause
employees to become bored and thus the quality of production may decrease�

This thesis describes how we modeled a real�world optimization problem as a
CSP and solved this model using constraint�based algorithms� The problem in�
stances that were solved consist of one month�s worth of vehicles for two assembly
lines� The modeling of the problem began with an analysis of TigrSoft�s problem
speci�cation� This analysis included converting procedurally de�ned constraints
into a declarative form and determining the scope of the problem that we would
model and solve� The result of this analysis is a declarative speci�cation of the
problem consisting of a description of the problem structure along with the con�
straints that make up the problem� The constraints de�ned are either hard 
must
be satis�ed� or soft 
can be violated at a cost�� Each soft constraint is associated
with a penalty value that is incurred every time it is violated� Thus the problem is
one of optimization on these penalty values�

We then examined di
erent possible ways to model this speci�cation as a CSP�
Of these possible models we selected one to be solved� Three solution techniques
were devised to solve this model� two backtracking techniques and a local search
technique� The �rst backtracking technique utilizes a parameterization of the soft
constraints� where the parameter value indicates the tightness of the constraint�
These parameter values are then adjusted with a restart and relaxation scheme�
The second backtracking technique employs a branch and bound approach� which is
guaranteed to �nd optimal solutions� Finally� the local search technique is a simple
hill�climbing algorithm� All of these approaches were able to improve on the results
of TigrSoft�s greedy search algorithm�

The contributions of this thesis can be summarized as follows�

� We model a real�world optimization problem as a CSP�

� We demonstrate the ability to solve these problems using three di
erent constraint�
based algorithms� Each of these techniques improves on the results of Tigr�
Soft�s greedy search algorithm�

	



� We demonstrate the importance of decomposing the problem into one�day
sub�problems� This decomposition is possible� without signi�cant loss of so�
lution quality� due to an overly tight constraint that makes the sub�problems
relatively disjoint from one another�

� For most of these one day sub�problems� we prove optimal solutions using our
branch and bound technique�

We begin in Chapter � by describing the problem�s structure and constraints�
Following that� in Chapter 	 we look at possible ways to model the problem as a CSP�
After presenting di
erent ways to model the problem� the three solution techniques
that were applied to one of the models of the problem are presented in Chapter ��
In Chapter �� we present the results of applying the three solution techniques to
real�world problem instances and compare these results with the solutions of the
original greedy search algorithm� Finally� conclusions and future work are presented
in Chapter ��
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Chapter �

Problem Background

The problem addressed in this thesis is the sequencing of vehicles on assembly lines�
A typical problem involves sequencing a month�s worth of orders� consisting of ap�
proximately 	����� vehicles� on two assembly lines� At �rst glance� the number of
vehicles that need to be sequenced makes the problem seem huge� However� the
problem contains structure that signi�cantly reduces its complexity�

In Section ���� the structure of the problem is presented� Following that� in
Section ���� the constraints of the problem are described� Section ��	 presents the
original solution technique� provided by TigrSoft� that was applied to this problem�
Throughout the chapter� an example problem is also de�ned to assist in describing
the problem� Section ��� provides a solution to this example problem�

��� Problem Structure

In this section� we describe the main input of the problem� This can be summarized
as a set of vehicles that need to produced� the grouping of these vehicles into lots
and batches� and a set of capacity values that restricts how many vehicles can
be produced on each day� In section ��� the remaining input of the problem� the
constraints� are de�ned�

We begin now by describing how vehicles are grouped together into equal sized
units called batches� From there� the problem is rede�ned as the sequencing of
batches� by assigning batches to slots�

����� Batching

Probably the most important structure of the problem is that individual vehicles are
grouped together into equal sized units called batches� All the problem instances
examined in this thesis have a batch size of sixty 
i�e�� sixty vehicles are assigned
to each batch�� Hence� a typical problem with 	����� vehicles is reduced to ���
batches�

Although the batching process is not part of the problem addressed in this thesis�
it de�nes the main input of the problem� Since the process is somewhat complex�
we will give a brief overview here and will explain important details of the process
throughout the remainder of this chapter�

The batching process converts a set of vehicle orders into a set of batches� Each
order represents a quantity of identical vehicles that needs to be produced� These
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quantities vary and can be smaller or larger than the batch size� Before batches are
created� the orders are split into several smaller quantities of vehicles called lots�
There are two important rules that determine the number of vehicles in a lot 
lot
size�� it must be less than or equal to the batch size and the lot sizes must be chosen
such that all the batches will have sixty vehicles� It is also preferable that the lots
be as large as possible� Since many of the orders in a typical problem are larger than
the batch size� many of the lot sizes are equal to the batch size� Lots with fewer
vehicles than the batch size are grouped together into batches by putting together
similar lots with quantities that add up to the batch size� Each batch is assumed to
take one hour of time to produce on an assembly line� A typical problem instance
has lots with between one and sixty vehicles� and batches with between one and ten
lots� with the majority of batches having only one lot�

It is important to note that after batching� the lots are not sequenced in a batch
and thus sequencing actually occurs at the lot level� However� the batch structure
imposes a great constraint over how the lots can be sequenced 
i�e� lots that belong
to a particular batch must be sequenced together�� Because of this structure� we can
de�ne two di
erent problem representations� the lot representation and the batch
representation� We de�ne the lot representation as the sequencing of lots and the
batch representation as the sequencing of batches and the sequencing of lots within
each batch� Since each lot is assigned to a batch� the lot representation requires that
the lots within a batch be sequenced consecutively� On the other hand� the batch
representation splits the problem into two separate sub�problems which we refer to
as the batch sequencing problem and the internal lot sequencing problem� For the
remainder of this chapter we focus only on the batch representation� In Chapter 	�
we present both representations� and how they can be modeled as a CSP�

Table ��� represents an example set of lots and the batches they are assigned
to� This example problem contains both batches with only one lot 
Batch B���
and batches with several lots 
Batch B���� Compared to the real�world problem
instances examined in this thesis� the example problem is signi�cantly simpler� A
typical real�world problem instance contains approximately ��� batches� more than
twenty attributes� and each batch contains up to ten lots�

Although the number of lots and batches in this example is relatively small� it
is su�cient to describe the structure and constraints that are de�ned for real�world
problem instances� Throughout the remainder of this chapter� we use these lots to
describe the di
erent components of the problem�

����� Internal Lot Sequencing

Within each batch is a set of unordered lots that need to be sequenced� There is
only one preferential constraint that always a
ects the sequencing of lots within a
batch� the lot containing the most vehicles is sequenced last� As we will see later�
the order of the lots within a batch is also in�uenced by a few problem instance
speci�c constraints� Satisfying these constraints takes precedence over placing the
largest lot last� Since the majority of constraints are not in�uenced by the order
of lots in a batch� the remainder of this chapter will focus on the batch sequencing
problem and the internal lot sequencing problem will be referred to when needed�
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Lot Line Line Exterior Sun
Lot Batch Size On O
 Model Colour Roof

L�� B�� �� � � M� B Y

L�� B�� �� � � M� R Y

L�	 B�� �� � � M� R N

L�� B�	 �� � � M� G Y

L�� B�	 �� � � M� R N

L�� B�	 	� � � M� B Y

L�� B�� �� � � M	 R N

L�� B�� �� � � M	 G Y

L�� B�� �� � � M	 R Y

L�� B�� 	� � � M	 G N

L�� B�� �� � � M� G N

L�� B�� �� � � M� B Y

L�	 B�� �� � � M� B Y

L�� B�� �� � � M� B N

L�� B�� �� � � M� G N

L�� B�� �� � � M� R Y

L�� B�� �� � � M� R Y

L�� B�� �� � � M� G N

L�� B�	 �� � � M	 R N

L�� B�� �� � � M	 G Y

Table ���� Example lots and their batch assignments
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����� Batch Sequencing

As mentioned earlier� batches all have the same production time of one hour� Thus
batch sequencing can be rede�ned using slots� where a slot is de�ned to be an interval
of time over a day with a �xed duration� In other words� a slot has a date� a start
time and an end time� where the di
erence between the start and end times is equal
to the duration� If we de�ne a set of disjoint slots each with a duration of one hour�
where the number of slots equals the number of batches� then a sequence of batches
can be described as an assignment of batches to slots�

The bene�t of having batches with a homogeneous production time is that
batches can be assigned to slots that are �xed in time� If the production time
di
ered between batches� a slot would not have an interval of time associated with
it and its position in time would vary for di
erent sequences of batches�

����� Capacity

As stated earlier� the problem consists of sequencing vehicles on two assembly lines
over a month� As part of the input� a capacity value is assigned to each combination
of day and assembly line� Each capacity value represents the number of batches that
can be produced for a particular day and assembly line� In other words� the capacity
for a day represents the number of slots assigned to that day� If no vehicle production
is desired on a particular day� then the capacity for that day is zero� The capacities
are assigned such that the sum of all the capacities for each day and assembly line
equals the total number of batches that need to be produced for the month� Hence�
there is no excess capacity�

A typical problem instance consists of two assembly lines each with �� days of
non�zero capacities� Each of these capacities is approximately �fteen batches� which
gives a total capacity of ��� batches�

The example problem presented in Table ��� has fourteen batches� These batches
will be sequenced on one assembly line over two days� where each day is assigned a
capacity of seven batches�

����� Slot Structure

Using the de�nition of slots� we can de�ne the problem structure for the batch
sequencing problem as follows� A solution to the batch sequencing problem consists
of a mapping from batches to slots� where the following is true�

� slots are disjoint from one another and hence are totally ordered�

� each slot belongs to a day and assembly line�

� the number of slots belonging to a particular day and assembly line is equal
to the capacity for that day and assembly line� and

� every slot must be assigned one and only one unique batch�

By assigning batches to slots� which are already ordered� we get an ordering of
the batches� In essence� the problem consists of �nding a bijection from batches to
slots and hence a sequence�
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��� Constraints

Clearly� �nding a solution to the problem we have de�ned so far is trivial� However�
each problem contains a set of constraints that restricts which sequences are accept�
able� Before describing these constraints� we introduce the concept of an attribute
followed by a description of di
erent ways to classify constraints�

����� Attributes

Constraints rely on information about the problem in order to evaluate a solution�
They need to know� for example� what is similar about two batches and what is
di
erent� how two slots are oriented to one another in the sequence� and whether
they are on the same day and assembly line�

We can represent this information by de�ning attributes for the three compo�
nents of the problem structure� lots� batches� and slots� An attribute consists of
a �nite set of values� where each of a component�s elements 
a lot� batch or slot
respectively� is assigned one of the values� For example� engine type is an attribute
of the lots� four cylinder is an attribute value� and every lot is assigned an engine
type attribute value� It is also assumed that for each of the components� elements
can only be assigned one value from each attribute� For example� the engine type
of a lot cannot be both four cylinder and six cylinder� We now describe typical
attributes for the three components of the problem structure�

Slot attributes remain the same for all problems� These attributes are� start
time 
hour�� day� and assembly line�

Lots and batches have attributes that remain the same for all problem instances�
as well as attributes that are user de�nable and thus speci�c to each problem in�
stance� Attributes that are common to all problems are� assembly lines that a
lot�batch can be produced on� the date a lot�batch must be produced after 
line�on
date�� the date a lot�batch must be produced by 
line�o
 date�� the number of vehi�
cles a lot�batch contains 
size�� and in the case of batches the set of lots it contains�
All other attributes are speci�c to each problem and are either selected from a set
of basic attributes such as vehicle model� exterior colour� type of engine� and type
of transmission� or are constructed from these basic attributes using set operations
such as union� intersection� and Cartesian�product� For example� two attributes can
be combined by taking the Cartesian�product of their attribute values to form a new
attribute�

Table ��� lists six lot attributes� three unique to this problem� Model� Exterior
Colour� and Sun�roof� The Model attribute has three values� M�� M�� and M	�
The Exterior Colour attribute has three values� 
B�lue� 
R�ed� and 
G�reen� The
Sun�roof attribute has two values that represent if a lot has vehicles that require a
sun�roof� 
Y�es and 
N�o� These attributes are all considered basic attributes�

Since a batch can only be assigned one attribute value for each attribute� and a
batch can contain several lots each with di
erent attribute values� batch attribute
values are derived from the attribute values of its lots� Each attribute has a di
erent
method for deriving batch attribute values�

Table ��� shows the �ve batch attributes of the example problem� The batch
attributes Model� Exterior Colour� and Sun�roof are all derived by selecting the
attribute value that occurs for the most vehicles in the batch� For instance� in Table
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Line Line Exterior Sun
Batch On O
 Model Colour Roof

B�� � � M� B Y

B�� � � M� R N

B�	 � � M� B Y

B�� � � M	 G N

B�� � � M� G N

B�� � � M� B Y

B�� � � M� B Y

B�� � � M� B N

B�� � � M� G N

B�� � � M� R Y

B�� � � M� R Y

B�� � � M� G Y

B�	 � � M	 R N

B�� � � M	 G Y

Table ���� Example batches

��� batch B�	 has �� Green vehicles� �� Red vehicles� and 	� Blue vehicles� Thus�
batch B�	 has the batch attribute value Blue�

����� Constraint Classi�cation

Constraints can be classi�ed as either a batch constraint� or a lot constraint� Lot
constraints rely on lot attributes� and in�uence the sequencing of lots and hence
the sequencing of batches� Similarly� batch constraints rely on batch attributes and
in�uence the sequencing of batches with no concern for the sequencing of lots within
a batch� Furthermore� each batch constraint has a method for deriving the batch
attribute values from lot attribute values�

Constraints can also be classi�ed as either soft or hard� A hard constraint can�
not be violated in a solution� while a soft constraint can be violated but imposes
a penalty value for each violation� As part of the input to the problem� each soft
constraint is assigned a penalty value� the higher the penalty value� the more un�
desirable the violation� A problem is evaluated by adding up the penalty values
incurred by soft constraint violations� The lower the total value� the better the
solution�

The constraints� along with their classi�cations are listed in Table ��	� As the
table shows� all batch constraints are hard constraints and all lot constraints are
soft constraints� We now describe these constraints in detail�

����� Assembly Line

The problem instances that are examined in this thesis contain two assembly lines�
Each assembly line has unique equipment needed to build certain vehicles� Thus�
some vehicles can only be assembled on one of the lines� while others can be as�
sembled on either line� If a batch contains a lot that can only be assembled on
one of the assembly lines� then the batch must be assembled on that assembly line�
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Lot�Batch Hard�Soft
Constraint Constraint Constraint

Assembly Line constraint Batch Hard

Line�on and Line�o
 constraint Batch Hard

Even Distribution constraint Batch Hard

Distribution Exception constraint Batch Hard

Batting Order constraint Batch Hard

Change�over constraint Lot Soft

Run�length constraint Lot Soft

Table ��	� Problem constraints and their classi�cation

The batching process rules out any possibility of a batch containing lots that have
con�icting line assignments�

����� Line�On and Line�O�

Each vehicle that is ordered must be produced sometime during the month� Some
orders have more stringent scheduling requirements and must be produced during a
speci�c range of days� For example� a particular vehicle�s parts may only be available
after a certain day of the month or an order might need to be shipped before the
end of the month� For this reason� each lot is assigned a line�on and line�o
 day� A
lot can only be produced on or after its line�on day� and on or before its line�o
 day�
A batch�s line�on day is selected by picking the maximum line�on day of its lots� For
example� in Table ���� batch B�	 has three lots 
L��� L��� and L��� and lot L��
has a line�on day of two� Thus� in Table ���� batch B�	 has a line�on day of two�
Similarly� the line�o
 attribute value is selected by picking the minimum line�o
 day
of its lots 
see batch B���� The batching process rules out any possibility of a batch
containing lots with con�icting line�on and line�o
 days�

����� Even Distribution

It is considered a desirable trait of a sequence that on each day� an assembly line
produces many di
erent types of vehicles� Reasons for this include maintaining
workers skills for making all types of vehicles� reducing boredom of workers� and
producing certain amounts of each type of vehicle prior to any unexpected assembly
line shutdown� To achieve this goal� an even distribution constraint is de�ned to
spread similar batches evenly over a month�

The even distribution constraint relies on a batch attribute 
usually constructed
from the Cartesian�product of several basic attributes such as model� and exterior
colour � to determine if batches are similar or not� Two batches are considered
similar� if they are assigned the same batch attribute value� The even distribution
constraint spreads the batches by restricting the number of batches� with a particular
attribute value� that can be produced on each day� Speci�cally� for each attribute
value a numerical distribution value is designated for each day of the month� These
values represent the number of batches with a particular attribute value that must
be produced on each day and are provided as part of the input of the problem��

�The even distribution constraint is actually de�ned in the TigrSoft algorithm as a process of
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Attribute Distribution
Day Value Value

� M��Y �

� M��N �

� M��Y �

� M��N �

� M	�Y �

� M	�N �

� M��Y �

� M��N �

� M��Y �

� M��N �

� M	�Y �

� M	�N �

Table ���� Example even�distribution values

In our example problem� the even distribution attribute is the Cartesian�product
of the model and the sun�roof batch attributes� The distribution values are listed in
Table ���� In Table ���� there are three batches with attribute values Model �M��
and Sun�roof �Y� attribute values� The distribution values de�ned in Table ��� say
that two of these batches must be sequenced on the �rst day and one batch must
be sequenced on the second day�

����	 Distribution Exception

In some cases� an even distribution is inappropriate� For instance� when a new
model year is introduced� production teams need time to learn new procedures� In
this case� the distribution of new models needs to be restricted so fewer new models
are produced early in the month� To do this� distribution exception constraints are
de�ned to restrict the production of certain vehicles during the month�

Essentially a distribution exception constraint is a more general version of the
even distribution constraint� The distribution exception constraint allows con�
straints to be speci�ed that restrict the production of certain batches during a
particular period in the month� Speci�cally� a distribution exception constraint
speci�es a minimum and maximum number of batches with a particular attribute
value that must be produced on each day during a speci�ed period of days in the
month� Provided the even distribution values are known� it is possible to emulate
the even distribution constraint by using several distribution exception constraints�

For the example problem� we de�ne a distribution exception constraint on the
Exterior Colour attribute value �G� for the �rst of the two days with a minimum
value of one batch and a maximum value of two batches� Thus� batches B��� B���
and B�� cannot all be sequenced on the �rst day since they all have the attribute
value �G��

assigning batches to days� To describe this constraint declaratively we determine these distribu�
tion values based on how TigrSoft�s algorithm assigns batches to days� For a brief description of
TigrSoft�s algorithm� see Section ����
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����
 Batting Order

Each day� it is desirable that a similar sequencing pattern be followed� One reason
for this is to sequence simple vehicles at the beginning of the day and gradually
progress to more di�cult vehicles� This allows the production teams to warm up
before building more complicated vehicles�

The batting order constraint ensures a similar sequencing pattern is followed each
day by de�ning a total ordering of an attribute�s values and applying this ordering
when sequencing the vehicles on each day� Speci�cally� on each day a batch must be
produced before another batch if its attribute value is ordered before the attribute
value of the other batch� For batches with more than one lot� the attribute value
assigned to the most number of vehicles is chosen to represent the batch�

For the example problem� we de�ne the batting order constraint using the at�
tribute Model� where the attribute values are ordered as follows� M� � M� � M	�
This ordering implies that for each day� M� batches should be produced �rst� fol�
lowed by M� batches� and then M	 batches�

It is also important to note that since the even distribution constraint for the
example problem is partially de�ned on the Model attribute� the batting order
constraint can be simpli�ed further� From Table ��� we know that four M� batches
must be sequenced on the �rst day� Since the batting order constraint states that all
M� batches must be sequenced �rst in a day� the �rst four slots on the �rst day must
be assigned an M� batch� This is true for all days and all batting order attribute
values� All the real�world problem instances examined in this thesis also have this
characteristic� Later we see how this in�uences the modeling of this constraint
within a CSP�

����� Change�Over

The de�nition of the change�over constraint is complicated� We will �rst present an
intuitive� simpli�ed version and in the next section discuss the complicating issues�

In a sequence� transitions from one lot attribute value to another lot attribute
value may be undesirable� For instance� painting a white vehicle immediately after a
red one is undesirable because the paint machine must be thoroughly cleaned before
the white vehicle is painted 
otherwise the white vehicle will turn out pink�� To
avoid such transitions� the change�over constraints are de�ned to incur a penalty
value every time an undesirable transition occurs�

A change�over constraint is a soft constraint and thus is assigned a penalty
value� It relies on two attributes to evaluate a transition between two sequenced
lots� one attribute for the former lot 
former attribute� and another attribute for
the latter lot 
latter attribute�� Each change�over constraint has an attribute value
assigned for each of the two attributes� former attribute value and latter attribute
value� Using two attributes� instead of just one� allows change�over constraints to
be de�ned between di
erent attributes� For instance� a constraint can be de�ned
that says do not sequence red vehicles immediately after two�door vehicles�

For the example problem� we de�ne a change�over constraint using the Exterior
Colour attribute with a penalty value of ���� The former attribute value will be
�R� and the latter attribute value will be �NOT R�� where �NOT R� means all
Exterior Colour attribute values except �R�� Thus� sequencing lot L�� followed by
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L�� would incur a penalty value of ���� since L�� has value �R� and L�� has value
�NOT R� 
�G���

����� Change�Over Special Case

We have just de�ned the change�over constraint as a constraint between two con�
secutive lots in a sequence� However� the constraint also includes the following
additional rule� if a lot belongs to two violated instances of the same constraint
then only one constraint violation is counted� For example� de�ne a change�over
constraint with penalty value ��� and with former attribute value �M�� from the
Model attribute and latter attribute value �R� from the Exterior Colour attribute�
If we sequence L��� L��� and L�	 in this order� we would expect a total penalty
value of ��� since L�� has value �M��� L�� has values �R� and �M�� and L�	 has
value �R�� However� L�� belongs to both constraint instances� so only one violation
is counted� Thus the total penalty value for this sequence is only ����

What if three or more lots are sequenced together that all contain the values
�M�� and �R�� In general� if a change�over constraint with penalty value p fails
n consecutive times then the total penalty value is dn��e � p� For example� ��
or �� consecutive violations of a constraint with penalty value ��� would have a
total penalty value of ���� while �� consecutive violations would only have ����
Fortunately� this situation does not occur if both the former and latter attribute
values come from the same attribute�

For the problem instances examined in this thesis� there are typically around
forty di
erent change�over constraints de�ned and the penalty values for these con�
straints range between one and a hundred� Most of these have former and latter
attribute values that come from the same attribute� Typically a few change�over
constraints 
usually three� are de�ned using two di
erent attributes� However vi�
olations of these constraints normally are either very rare or only occur within a
few slots for each day 
due to similarity with the batting order attribute�� Because
of this� it is highly unlikely that a change�over constraint is violated consecutively
more than three or four times�

�����
 Run�Length

It is also desirable that certain attribute values are not repeated too much� For
example� it may be undesirable to consecutively paint too many vehicles the colour
red� Avoiding monotony of an attribute value can improve the e
ectiveness of pro�
duction and quality inspection teams� and avoid part supply problems� A run�length
constraint is a soft constraint that incurs a penalty value whenever the number of
consecutive vehicles with a particular attribute value exceeds a speci�ed limit 
run�
length value�� One penalty value is counted for each lot that exceeds the run�length
value��

For the example problem� we de�ne a run�length constraint on the Exterior
Colour attribute value �R� with a run�length value of ��� vehicles and a penalty
value of ���� Thus sequencing lots L��� L��� and L�� consecutively would incur a

�For a sequence of lots that violates a run�length constraint� the lots at the end of the sequence
that exceed the run�length value are used to calculate the penalty values�
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penalty value of ��� since they all have the attribute value �R� and in total they
contain ��� vehicles�

For the problem instances examined in this thesis� there are usually around �ve
di
erent run�length constraints de�ned and the penalty values for these constraints
range between ten and three hundred� Typically� a run�length constraint is de�ned
on the same or similar attribute value as one of the change�over constraints� When
a run�length constraint and a change�over constraint are de�ned on similar attribute
values� the constraints are in con�ict with each other and the constraint with the
smaller penalty value is usually violated� In general� when similar attribute values
are used� the run�length constraint is usually de�ned with a higher penalty value
than its related change�over constraint� and hence is less likely to be violated�

��� Original Solution Technique

The original solution technique used on this problem is a greedy search algorithm
that was created by TigrSoft� The actual process is complex and can be summarized
by three stages� assign batches to an assembly line� assign batches in each assembly
line to a day� sequence batches and their lots for each day�

����� Assembly Line Assignment

The �rst stage is to assign the batches to one of the two assembly lines� To begin
with� many batches can only be produced on one assembly line as de�ned by the
assembly line constraint� These batches are thus assigned to their appropriate as�
sembly line� The remaining batches that can be produced on either assembly line
are each assigned to the assembly line with batches that have attributes similar to
their own� Thus an assembly line will tend to have similar batches�

����� Day Assignment

After the batches have been assigned to an assembly line� the batches within each
assembly line are assigned to a day� This process of assigning batches to days� is
essentially what de�nes the even distribution constraint� We refer to this process in
the remainder of this section as the even distribution process�

As described in Section ����� the purpose of the even distribution constraint is
to spread similar batches among the days� where two batches are similar if they have
the same even distribution attribute value� In this section we describe the process
of distributing batches to days� From this distribution of batches� the distribution
values for the even distribution constraint� referred to in Section ������ are calculated�

The even distribution process begins by determining an ideal distribution of the
batches that could be satis�ed if no other constraints are de�ned on the problem�
The ideal distribution speci�es for each day and even distribution attribute value�
the number of batches with the attribute value that can be assigned to the day�
These values are calculated based on the number of batches with each distribution
attribute value and the capacity of the days�

The even distribution process then attempts to assign each batch to a day based
on the ideal distribution� Because of the line�on and line�o
 constraint and the
distribution exception constraints� the ideal distribution is unlikely to be satis�able�
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If a batch cannot be assigned to one of the days speci�ed by the ideal distribution�
then it is placed on a di
erent day�

In order to increase the chance of assigning all the batches successfully and
achieving a distribution as close to the ideal distribution as possible� several heuris�
tics are used� Although these heuristics are complicated by a signi�cant amount of
detail� they can be summarized as an attempt to place priority on the assignment
of highly constrained batches to days with the most available capacity and the least
contention between unassigned batches�

����� Batch and Lot Sequencing

Once the batches are assigned to a day� the batches within each day and the lots
within these batches are sequenced� This sequencing is in�uenced by the batting
order constraint� the change�over constraints� and the run�length constraints� The
sequencing is accomplished in a greedy search manner by sequencing the batch
that satis�es the batting order constraint and incurs the least amount of penalty
violations�

����� Performance

The original solution technique produces acceptable schedules� and is fast� taking
only a few seconds to solve a problem instance� However� since a non�optimal greedy
search algorithm is employed� there is likely room to improve the results using other
search techniques such as backtracking or local search�

��� Example Problem Solution

A solution to the problem consists of an assignment of batches to slots such that all
the hard constraints are satis�ed� The quality of a solution is measured by the total
penalty values that are incurred by violations of the soft constraints� The lower the
total penalty values� the higher the quality of the solution�

In this section we present a solution to the example problem� Looking at just
the line�on and line�o
 constraint� the even distribution constraint� and the batting
order constraint� Table ��� gives possible batch assignments that can be made� Table
��� gives an assignment of batches to slots that satis�es all the hard constraints� and
hence it is a solution� This solution satis�es the distribution exception constraint
since two batches with the attribute value �G� are assigned to the �rst day 
B���
B���� The change�over constraint is violated three times 
L�� � L��� L�� � L���
and L�� � L���� while the run�length constraint is not violated at all� Since the
penalty value for each change�over constraint is ���� the total penalty value for
this problem is 	��� Furthermore� this solution is optimal for the given internal lot
sequences�
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Possible
Day Slots Batches

� ��� B��� B��� B��� B��

� ��� B��� B��� B��

� � B��� B�	

� ��	 B��� B��� B��

� ��� B�	� B��� B��

� ��� B��� B�	� B��

Table ���� Possible batch assignments for example problem

Lot Exterior
Day Slot Batch Lot Size Colour

� � B�� L�� �� B

� � B�� L�� �� B

� 	 B�� L�� �� B

� � B�� L�� �� R

� � B�� L�	 �� R

� � B�� L�� �� R

� � B�� L�� �� G

� � B�� L�� �� G

� � B�� L�� �� R

� � B�� L�� �� R

� � B�� L�� 	� G

� � B�� L�� �� G

� � B�� L�� �� G

� 	 B�� L�	 �� B

� � B�� L�� �� R

� � B�	 L�� �� R

� � B�	 L�� �� G

� � B�	 L�� 	� B

� � B�� L�� �� G

� � B�	 L�� �� R

Table ���� Possible solution to example problem
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Chapter �

CSP Models

In this chapter we present some possible ways to model the problem as a constraint
satisfaction problem 
CSP� as well as a constraint satisfaction optimization problem

CSOP�� We begin in Section 	�� by de�ning the concepts of a CSP and a CSOP�
We then present how the vehicle sequencing problem� presented in Chapter �� can
be modeled as a CSP and a CSOP� In Section ������ we de�ned two possible repre�
sentations of the problem� the batch representation and the lot representation� In
this chapter� we model the batch representation as the sequencing of batches and
require that the sequencing of lots within each batch be dealt with as part of the
modeling of the problem 
for example �xing the lot sequence for each batch�� In
Section 	��� we present two possible CSP models for the batch representation� the
slot model and the batch model� In Section 	�	� we present why modeling the lot
representation as a CSP seems unsuitable� In Section 	��� we describe how the CSP
can be converted into a CSOP�

��� CSP De�nition

A CSP is composed of a set of variables� a set of possible values for each variable�
and a set of constraints that restrict the possible instantiations of the variables�
Many problems can be modeled as a CSP� for example vision� temporal reasoning�
and scheduling ����� CSPs provide a framework for separating the modeling and
solving of a problem� Since many techniques have been devised for solving CSPs in
general� once a problem has been modeled as a CSP a variety of general solution
techniques can be applied to it� Later in this thesis� we examine some of the general
solution techniques that can be applied to CSPs� In this section we give a formal
de�nition of a CSP and a few related concepts� For a thorough description of CSPs�
see �����

The CSP can be de�ned formally as follows�

De
nition � An instance of the constraint satisfaction problem consists of a set of
n variables� fx�� � � � � xng� their respective domains� fD�� � � � � Dng� and a collection of
m constraints� fC�� � � � � Cmg� A domain Di consists of a set of values� fa�� � � � � ahg�
A variable x is instantiated if it is assigned a value a from its domain �x � a��
A constraint Ci is de�ned over a set of variables xi� � � � � � xik by a set R where
R � Di� � � � � � Dik � The constraint Ci is consistent if given an instantiation
xi� � a�� � � � � xik � ak� the tuple 
a�� � � � � ak� � R�
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A partial solution consists of an instantiation of some of the variables such that
any constraint that is de�ned over a subset of the instantiated variables is consistent�
A solution is a partial solution where all the variables are instantiated�

The scheme of a constraint is the set of variables that the constraint is de�ned
over� The arity of a constraint is the number of variables in its scheme� Constraints
can be classi�ed by their arity� Three di
erent classi�cations are unary� binary�
and n�ary� Unary constraints are constraints with an arity of one� Since a unary
constraint contains only one variable� all domain values that are not consistent with
the constraint can be removed before the search begins� Binary constraints are
constraints with an arity of two� N�ary constraint are constraints with arity n�
where n is assumed to be greater than two�

Since the problem studied in this thesis is an optimization problem 
since it
contains soft constraints�� a way of modeling optimization problems in terms of
constraints is needed� The partial constraint satisfaction problem 
PCSP� is a gen�
eral framework for representing an optimization problem with constraints ���� A
PCSP can be de�ned as a CSP problem P � a problem space PS where PS con�
tains the problem P along with �relaxations� of P � and a metric function on PS
where the metric function de�nes the quality of each problem in PS relative to P �
A solution to a PCSP represents a problem P � � PS along with a solution to P ��
An optimal solution to a PCSP is a solution where P � has the minimum�maximum
metric function value for all the problems in PS that are solvable�

The PCSP o
ers a very general framework for modeling optimization problems�
since the set PS can de�ned in many di
erent ways 
e�g� a �relaxation� can include
variables being removed from the problem�� A more speci�c form of a PCSP is the
constraint satisfaction optimization problem 
CSOP�� In terms of the de�nition for
PCSPs� a CSOP has a problem space where the variables are not removed from
the problem� A CSOP is de�ned in ���� as a CSP along with a function that maps
every solution of a CSP to a numerical value� The function is problem�speci�c and
represents the quality of the solution� The optimal solution of a CSOP is the solution
with the minimal 
maximal� function value� Essentially within a CSOP the CSP
contains only hard constraint while the evaluation function represents all the soft
constraints�

For the next two sections� we model the vehicle sequencing problem as a CSP by
presenting the soft constraints as though they are hard� In Section 	�� we describe
how the soft constraints can be modeled within a CSOP�

��� Batch Representation

It is well known that if a problem can be modeled as a CSP� then there are several
possible models 
see� for example� �	��� For the batch representation we model the
problem as the sequencing of batches� which we call the batch sequencing problem�
Since the batch sequencing problem consists of de�ning a bijection from batches to
slots� there are two obvious CSP models of this problem� We either model each slot
as a variable and each domain as a set of batches 
called the slot model� or model
each batch as a variable and each domain as a set of slots 
called the batch model��
Before we examine these models we �rst describe how the internal lot sequencing
problem is dealt with and then de�ne attribute functions to simplify our discussion�
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Function Function Value

Line
s� the assembly line that slot s belongs to

Day
s� the day that slot s belongs to

Position
s� the position value of slot s in a sequence

Table 	��� Slot attribute functions

����� Internal Lot Sequencing

Since the focus of the batch representation is the sequencing of batches� the sequenc�
ing of lots within each batch needs to be dealt with in some way� There are several
ways to do this�

One way is to pre�order the internal lots before solving the batch sequencing
problem� Selecting a sequence to the lots could be done by using the solution pro�
vided by the original greedy search algorithm� or solving each internal lot sequencing
problem using the lot constraints� Having a �xed ordering of the lots is simple but
potentially reduces the quality of a �nal solution� What may seem like a good or�
dering of the lots within a batch may turn out to cause unnecessary con�icts when
the batches are sequenced�

Another idea is to make explicit all the possible internal lot sequences for each
batch containing more than one lot� For batches with only two lots this seems
reasonable since there can be at most two sequences� However the problem instances
examined have batches with up to ten lots� A batch with ten lots has potentially
more than three million di
erent sequences� signi�cantly increasing the complexity
of the problem�

A hybrid of the last two ideas would be to select a limited number of possible
internal lot sequences� Each possible sequence could be evaluated and the best
sequences selected�

In Sections 	���	 and 	���� we brie�y discuss how two di
erent models of the
problem are a
ected by these di
erent methods of dealing with the lot sequencing
problem� Besides this though� we strictly focus in this thesis on a �xed ordering of
lots in each batch�

����� Attribute Functions

To assist in describing each model� we de�ne attribute functions on the lots� batches
and slots� These attribute functions represent the attributes that were described
in Section ����� as well as additional functions to assist in our description of the
di
erent CSP models�

Table 	�� presents the attribute functions for the slots� The value returned by
the Position function 
position value� represents an integer� where two slots cannot
have the same position value if they are assigned to the same assembly line� A slot
is sequenced after another slot if it has a larger position value� and two slots occur
consecutively in a sequence� if their position values di
er by one�

Table 	�� presents the attribute functions for the batches� Besides these batch
attribute functions� there are lot attribute functions that are de�ned for each run�
length constraint and change�over constraint� These attribute functions are pre�
sented in Table 	�	�
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Function Function Value

LineOn
b� line�on day of batch b

LineO�
b� line�o
 day of batch b

Lines
b� a set of assembly lines that batch b can be assigned to

EvenDistAttrib
b� the even distribution attribute value of batch b

DistExceptAttrib
b� the distribution exception attribute value of batch b

BatOrdAttrib
b� the batting order attribute value of batch b

FirstLot
b� the �rst lot sequenced in batch b

LastLot
b� the last lot sequenced in batch b

Lots
b� the ordered set of lots in batch b

Table 	��� Batch attribute functions

Function Function Value

RunLenAttrib
l� the run�length attribute value of lot l

ChgOverFormer
l� the change�over attribute value of the former lot l

ChgOverLatter
l� the change�over attribute value of the latter lot l

LotSize
l� the number of vehicles in the lot l

Table 	�	� Lot attribute functions

����� Slot Model

In this section we describe the slot model where the variables represent slots and the
domain values represent batches� We begin by de�ning the variables and domain
values� followed by the constraints� To simplify things� we assume that there is
only one assembly line when de�ning all the constraints� except of course for the
description of the assembly line constraint�

Variables

For the slot model� the slots are represented by variables and hence the slot attribute
functions are applied to the variables� For this model� we represent an arbitrary but
�xed variable with the letter s�

Domain Values

The domain values for the slot model are the batches and thus the batch attribute
functions are applied to the domain values� We represent an arbitrary but �xed
domain value with the letter b�

In Section 	����� we presented di
erent ways of dealing with the internal lot
sequencing problem� Since the batches are represented by the domain values� the
way we deal with this problem a
ects the size and structure of the domains� If
the sequence of lots within each batch is �xed� then each batch is represented in a
domain with a single value� If several internal lot sequences are included for each
batch� then each batch is represented in a domain with a value for each lot sequence
included� If all possible internal lot sequences are included� then a batch with ten
lots would be represented with approximately three million domain values� Clearly�
limiting the number of di
erent lot sequences for each batch seems necessary�
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Assembly Line

The assembly line constraint is a unary hard constraint� There is an assembly line
constraint for each variable that represents a slot� Since each slot belongs to an
assembly line� only batches that can be made on that assembly line can be assigned
to the slot� An assignment s � b is consistent with an assembly line constraint if
Line
s� � Lines
b��

Line�On and Line�O�

The line�on and line�o
 constraint is a unary hard constraint� where one instance of
the constraint is de�ned for each variable 
slot�� Since a batch must be produced
between its line�on and line�o
 days� batches can only be assigned to slots that are
located between these days� An assignment s � b is consistent with a line�on and
line�o
 constraint if Day
s� � LineOn
b� and Day
s� � LineO�
b��

Even Distribution

One instance of the even distribution constraint is assigned to each day that vehicles
are produced on� In other words� the scheme for each constraint instance consists
of those variables 
slots� that belong to that instance�s day and hence its arity is
equal to the capacity of that day�

Let d be the constraint�s day� Let A be the set of all even distribution at�
tribute values� Let EvenDist
a� d� equal the number of batches with attribute value
a � A that must be produced on day d� Let k be the arity of a constraint� Let
s�� � � � � sk represent the variables 
slots� on day d� An assignment s� � b�� � � � �
sk � bk is consistent with an even distribution constraint for day d if for each
a � A� jfbijEvenDistAttrib
bi� � agj � EvenDist
a� d��

Distribution Exception

Similar to the even distribution constraint� each instance of a distribution exception
constraint is assigned to a production day� In other words� its scheme is the variables

slots� that belong to that day and its arity is equal to the capacity of that day�

Let a be the batch attribute value for the distribution exception constraint�
Let d represent a day that the constraint is de�ned for� Let DistExceptMax
d�

DistExceptMin
d�� equal the maximum 
minimum� number of batches with at�
tribute value a that can be produced on day d� Let k be the arity of a constraint�
Let s�� � � � � sk represent the variables 
slots� on day d� An assignment s� � b��
� � � � sk � bk is consistent with the distribution exception constraint for day d if
DistExceptMin
d� � jfbij DistExceptAttrib
bi� � agj � DistExceptMax
d��

Batting Order

The batting order constraint is a hard constraint and can be represented as a binary
constraint between all consecutive pairs of variables 
slots� that are on the same
day�

Let A be the ordered set of all batting order attribute values� such that for any
ai� aj � A� ai � aj means that ai comes before aj in the batting order� Let s� and
s� represent the variables in a batting order constraint� where s� precedes s� in the
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ordering of the variables� An assignment s� � b� and s� � b� is consistent with a
batting order constraint if BatOrdAttrib
b�� � BatOrdAttrib
b�� in A�

As described earlier� the batting order constraint can be simpli�ed if its attribute
is similar to the even distribution constraint�s attribute� We rede�ne the batting
order constraint as a unary constraint as follows� Using the even distribution con�
straint we de�ne the function BatOrdDist
a� d�� which represents the number of
batches with attribute a � A that can be assigned to day d� Let s�� � � � � sk rep�
resent the variables on a day d� where Position
si� � Position
sj� if i � j� Let b
be an arbitrary batch and let ab � BatOrdAttrib
b�� Then an assignment si � b


� � i � k� is consistent if
P

a�ab
BatOrdDist
a� d� � Position
si� � Position
s��

 � �
P

a�ab
BatOrdDist
a� d�

Since all the problem instances studied in this thesis have similar attributes
for the even distribution constraint and batting order constraint� we use the unary
de�nition of the constraint for the remaining chapters�

Run�Length

The run�length constraint is a soft constraint that is applied to consecutive variables

slots� and its arity depends on the constraints de�nition�� Let batchsize represent
the number of vehicles assigned to a batch� Let r be the run�length value�� The arity
of a run�length constraint equals 
r�batchsize�  �� For example� if a run�length
constraint has a limit of ��� vehicles and the batch size is sixty� then the arity of the
constraint is three and an instance of the constraint is de�ned for every consecutive
set of three variables�

Let k be the arity of a constraint� Let a represent the attribute value of the run�
length constraint� Let s�� � � � � sk represent the variables in a run�length constraint�
where si precedes si�� for � � i � k � �� For some arbitrary assignment s� � b��
� � � � sk � bk� let L equal

S
��i�k Lots
bi�� where the order of the lots within each

batch is maintained and the lots between batches are ordered with respect to the
order of the variables that the batches are assigned to� Let L� be a partition of L�
where each element of L� is a maximal set of consecutive lots that are all assigned
the same attribute value from the run�length attribute� An assignment s� � b��
� � � � sk � bk is consistent with the run�length constraint if for any Lp � L�� if for
any l � Lp RunLenAttrib
l� � a then

P
l�Lp

LotSize
l� � r�

Change�Over

As described earlier� the change�over constraint is complicated by the way its penalty
values are counted� We ignore this complication here and deal with it when describ�
ing our solution techniques� Thus we can assume that the change�over violation
between lots have no in�uence on the violation of lots around them� Furthermore�
we assume that only one domain value represents each batch� In other words� the
internal lot sequences are �xed as part of the modeling of the problem� Because
of these assumptions� we can ignore the violations between lots within a batch and

�In this de�nition we ignore how many lots within a batch violate a constraint and only check
if the constraint fails over a set of batches� We take into account this issue when describing our
solution techniques�

�To simplify our de�nition� we assume that r is divisible by batchsize�
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represent the change�over constraint as binary constraints between all consecutive
pairs of variables 
slots��

Let s� and s� represent the variables in a change�over constraint� where s� pre�
cedes s� in the ordering of the variables� Let af 
al� represent the former 
latter� lot
attribute value of the change�over constraint� An assignment s� � b� and s� � b�
is consistent with a change�over constraint if
ChgOverFormer
LastLot
b��� 	� af or ChgOverLatter
FirstLot
b��� 	� al�

All�Di�erent Constraint

Since the problem involves de�ning a bijection between slots and batches� a con�
straint is needed to insure that the same domain value is not assigned to two di
erent
variables� To do this� an all�di
erent constraint is de�ned over all the variables�

Let s�� � � � � sk represent all the variables� An assignment s� � b�� � � � � sk � bk
is consistent with the all�di
erent constraint if for all si� sj � bi 	� bj �

����� Batch Model

In this section we describe the batch model where the variables represent batches
and the domain values represent slots� We begin by de�ning the variables and
domain values� followed by the constraints� Like the slot model� we assume that
there is only one assembly line when de�ning all the constraints� except of course
for the description of the assembly line constraint�

Variables

For the batch model the batches are represented by variables� Hence the batch
attribute functions are applied to the variables� For this model� we represent an
arbitrary but �xed variable with the letter b�

As with the domain values of the slot model� the variables of the batch model
are in�uenced by the way the internal lot sequencing problem is dealt with� If the
sequence of lots within each batch is �xed� then each batch is represented with a
single variable� If several internal lot sequences are included for each batch� then
each batch can be represented with several variables� one for each lot sequence�
Similar to the slot model� including all possible internal lot sequences for each batch
makes the problem signi�cantly larger� Thus� limiting the number of di
erent lot
sequences for each batch seems necessary�

Domain Values

The domain values for the batch model are the slots and thus the slot attribute
functions are applied to the domain values� We represent an arbitrary but �xed
domain value with the letter s�

Assembly Line

The assembly line constraint is a unary hard constraint� There is an assembly line
constraint for each variable that represents a batch� Since each batch is assigned
a set of assembly lines that it can be produced on� only slots belonging to this set
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of assembly lines can be assigned to the batch� An assignment b � s is consistent
with an assembly line constraint if Line
s� � Lines
b��

Line�On and Line�O�

The line�on and line�o
 constraint is a unary hard constraint� where an instance of
the constraint is de�ned for each variable 
batch�� Since a batch must be produced
between its line�on and line�o
 days� it can only be assigned slots that are located
between these days� An assignment b � s is consistent with a line�on and line�o

constraint if Day
s� � LineOn
b� and Day
s� � LineO�
b��

Even Distribution

For each even distribution attribute value� we de�ne a constraint� The scheme of
a constraint is the variables 
batches� assigned the constraint�s attribute value and
its arity is equal to the number of batches with that particular attribute value�

Let a be the attribute value of the constraint� Let D represent the set of produc�
tion days� Let EvenDist
a� d� equal the maximum number of batches with attribute
value a that can be produced on day d� Let k be the arity of a constraint� Let
b�� � � � � bk represent the constraint�s variables 
i�e� all batches with attribute value
a�� An assignment b� � s�� � � � � bk � sk is consistent with an even distribution con�
straint for attribute value a if for each d � D� jfsijDay
si� � dgj �EvenDist
a� d��

Distribution Exception

A distribution exception constraint is assigned an attribute value and its scheme
consists of the variables 
batches� assigned the attribute value� Hence the arity
for a distribution exception constraint is equal to the number of batches with the
distribution exception attribute value�

Let a be the batch attribute value for the distribution exception constraint� Let
D represent the set of production days� Let DistExceptMax
d� 
DistExceptMin
d��
equal the maximum 
minimum� number of batches with attribute value a that can
be produced on day d� Let k be the arity of a constraint� Let b�� � � � � bk represent the
constraint�s variables 
batches�� An assignment b� � s�� � � � � bk � sk is consistent
with the distribution exception constraint for attribute value a if for each d � D�
DistExceptMin
d� � jfsijDay
si� � dgj � DistExceptMax
d��

Batting Order

The batting order constraint is a hard constraint and can be represented as a binary
constraints between every pair of variables 
batches� with di
erent batting order
attribute values�

Let A be the ordered set of all batting order attribute values� such that for any
ai� aj � A� ai � aj means that ai comes before aj in the batting order� Let b� and
b� represent the variables in a batting order constraint� where BatOrdAttrib
b�� �
BatOrdAttrib
b�� in A� An assignment b� � s� and b� � s� is consistent with a
batting order constraint if Day
s�� � Day
s�� � Position
s�� � Position
s���

As with the slot model� when the batting order attribute is similar to the even
distribution attribute� the batting order constraint can be simpli�ed as a unary

��



constraint� Let BatOrdDist
a� d� represent the number of batches with attribute
value a � A that can be assigned to day d� Let b be an arbitrary batch and let ab
� BatOrdAttrib
b�� Let s�� � � � � sk represent the slots on a day d� where Position
si�
� Position
sj� if i � j� Then an assignment b � si 
� � i � k� is consistent if
P

a�ab
BatOrdDist
a� d�� Position
si� � Position
s��  � �

P
a�ab

BatOrdDist
a� d��

Run�Length

Similar to the slot model�s run�length constraint de�nition� we ignore how many
lots within a batch violate a constraint and only check if the constraint fails over
a set of batches� For the batch model� a run�length constraint is a soft constraint
that is applied to every possible minimal sequenced set of variables 
batches� where
the number of consecutive vehicles with the run�length�s attribute value exceeds
the run�length value of the constraint�� Let r represent the run�length value of
a constraint and let batchsize represent the number of vehicles in a batch� If we
assume that r is divisible by batchsize then the arity of an instance of a constraint
is 
r�batchsize�  ��

Let k be the arity of a constraint� Let b�� � � � � bk represent the order variables in a
run�length constraint� where bi precedes bi��� � � i � k��� An assignment b� � s��
� � � � bk � sk is consistent with the run�length constraint if for some i� � � i � k���
Position
si� 	� Position
si��� � ��

Change�Over

Similar to the slot model change�over constraint de�nition� we ignore how the
penalty values of the constraint are counted and assume that the sequence of lots
within a batch is �xed� Hence� a change�over constraint can be represented as a
binary soft constraint�

Let af and al represent the change�over constraint�s former and latter lot at�
tribute values� respectively� Let b� and b� represent any two variables in the prob�
lem� We de�ne a binary constraint on these variables if
ChgOverFormer
LastLot
b��� � af and ChgOverLatter
FirstLot
b��� � al� An as�
signment b� � s� and b� � s� is consistent with a change�over constraint if Position
s��
	� Position
s�� � ��

All�Di�erent Constraint

Since the problem involves de�ning a bijection between slots and batches� a con�
straint is needed to insure that the same domain value is not assigned to the two
di
erent variables� To do this� an all�di
erent constraint is de�ned over all the
variables�

�The method for deciding if a sequence of variables �batches� should have a constraint de�ned
over them is essentially the method described for checking if the run�length constraint is consistent
in the slot model� Furthermore� since the constraint is de�ned for all possible minimal sequences
of variables that would violate the run�length constraint if sequenced consecutively� there may be
quite a few instances of a constraint that are de�ned� In practice� many of these constraints can
be combined together� However� we do not describe this simpli�cation here because it is relatively
complex and the main purpose of this section is to give a declarative statement of the constraint
without any serious consideration of how e	ciently it could be implemented�
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Let b�� � � � � bk represent all the variables� An assignment b� � s�� � � � � bk � sk
is consistent with the all�di
erent constraint if for all bi� bj � si 	� sj �

��� Lot Representation

In the formulation of a problem as a CSP it is crucial to de�ne what the variables
and values represent� The problem with formulating the lot representation as a CSP
is that within a problem instance� the size of lots can vary from one to sixty vehicles�
Because of this� it is not clear if sequencing of lots should be modeled with �xed
intervals of time or with slots that have no �xed interval or time reference�

For example� let the variables represent �xed intervals of time and the domains
values represent the lots� In this case� the size of the interval would have to be a
common divisor of all the lot sizes of the problem� Otherwise� more than one lot
could be assigned to an interval and thus using lots for domain values would be
inadequate� Hence� the best interval size would be the greatest common divisor of
all the lot sizes� Sequencing a lot of size l where the interval size is i would imply
that the lot value would be assigned to l�i consecutive variables� To ensure this
would require a constraint of arity equal to L�i 
where L is the size of the largest
lot� to be assigned to all consecutive set of variables that can contain a lot� Now�
a typical problem usually contains at least one lot of size one and so the number of
variables compared to the batch representation would be �� times greater�

In contrast� let the variables represent slots with no �xed interval or time refer�
ence and the domain value represent the lots� For this model� lots can be assigned
to slots in a similar way as the batch representation� However� these slots have no
attribute that say what day the slot belongs to� The day that a slot belongs to
potentially has to be calculated for every possible sequence of lots� Since many of
the constraints rely on information about a slot�s position within the month� having
to always calculate a slot�s position makes it di�cult to de�ne these constraints�
For example� the line�on and line�o
 constraint could not be represented as a unary
constraint since the day that a slot belongs to is only determined once the preceding

or succeeding� slots are assigned lots�

Both of the above models contain positive and negative aspects� What makes the
batch representation attractive is that it takes the positive aspects of both models
and leaves behind most of the negative ones� Furthermore� since the majority of the
constraints are at the batch level� the constraint de�nitions are simpler in the batch
representation� The only cost of this is the loss of generality of the problem�

��� CSOP Model

In the previous sections� we modeled the soft constraints as hard� In this section we
rede�ne these constraints within a CSOP model�

As mentioned earlier� a CSOP model is a CSP along with an evaluation func�
tion� where the evaluation function represents the soft constraints� The evaluation
function for the vehicle sequencing problem is a function that evaluates a solution
to the hard constraints and returns the total penalty value that was incurred by
the soft constraints� This total penalty value is calculated by adding up the penalty
values incurred by each constraint in the problem� For a change�over constraint the
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penalty values are added up as described in Section ������ Similarly the penalty
values for a run�length constraint are added up as described in Section �������

In the next chapter we describe three solution techniques� Two of these tech�
niques used the CSOP model of the problem� The other technique used a CSP model
where the soft constraints are grouped together into parameterized hard constraints�
We describe this CSP model as part of our description of the solution technique�
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Chapter �

Solution Techniques

This chapter describes the three solution techniques we devised to solve the vehicle
sequencing problem� two backtracking techniques� and a local search technique�
Although two models 
the slot and batch models� were described in the previous
chapter� the solution techniques that were devised for this thesis are speci�cally
for the slot model described in Section 	���	� The slot model was selected because
it seemed more intuitive 
at least from the perspective of a human solving the
problem�� However� an open question is whether the batch model could outperform
the slot model using similar algorithms� It seems reasonable that this question relies
signi�cantly on the structure of the particular problem instances that are solved�

We �rst describe the local search technique in Section ���� In Section ��� we
present the �rst backtracking technique that uses a restart and relaxation approach
and in Section ��	 we present the other backtracking technique that uses a branch
and bound approach� A description of how the problem instances were decomposed
into smaller sub�problems is given in Section ����

��� Local Search

The �rst search technique we look at is local search� We begin by giving an overview
of local search followed by a description of the algorithm we used�

����� Background

Local search is a general approach to solving combinatorial optimization problems

see ��� for an overview�� An instance of a combinatorial optimization problems is
de�ned by a set of possible solutions L for the problem 
referred to as the solution
space� and an evaluation function f � L � 
� If we assume that the problem is a
minimization problem� then an optimal solution to the problem is a solution l� � L

where f
l�� � f
l� for all l � L� For a CSOP� the solution space is all possible
instantiations that satisfy all the hard constraints and f is the evaluation function
of the CSOP�

Before describing how local search is applied to optimization problems� we �rst
de�ne the concept of a neighborhood function� A neighborhood function N is of
the form N � L� P
L�� where P
L� is the power set of the solution space� For any
l � L� N 
l� is a set of other solutions in L that are in some way near l� We refer to
N 
l� as the neighborhood of l�
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There are many possible ways to de�ne a neighborhood function� For instance�
for a CSOP the neighborhood of a solution l might be the set of solutions where one
variable of l has been instantiated with a di
erent value� In general� the way that
the neighborhood function is de�ned in�uences the quality of the solutions that a
local search algorithm �nds and the cost of searching the solution space�

To describe local search� we will now present a simple local search algorithm
known as hill�climbing or iterative improvement� Hill climbing begins with an initial
solution l and searches the neighborhood N 
l� for a better solution� where li � N 
l�
is better if f
li� � f
l�� If better solutions exist then the algorithm selects one of
these solutions 
usually either the best one found or the �rst one found� and searches
the selected solution�s neighborhood for a better solution� This process continues
until no better solution exists for the current neighborhood that is being examined�
The last solution found is considered a local minimum for the given problem and
neighborhood function�

The local minimum that is found by the hill�climbing algorithm is by no means
guaranteed to be a global minimum for the problem� Guaranteeing a global mini�
mum for any problem could be achieved by de�ning a neighborhood function where
N 
l� � L for any l � L� However� this is equivalent to generating and testing every
possible solution� Thus a good neighborhood function is one that creates reasonable
sized neighborhoods but also allows the local search to �nd reasonably good local
minimum solutions�

Even with selecting a reasonable sized neighborhood� there is still room for
improving the hill�climbing approach� Several improvements to hill�climbing have
been suggested� Two of these are simulated annealing and tabu search�

Simulated annealing improves on hill�climbing by randomizing the selection of a
solution from a neighborhood� Instead of always picking a better solution� simulated
annealing allows a worse solution to be selected with some small probability� The
probability of a worse solution being selected is decreased during the algorithm�s
execution� How these probabilities are reduced is de�ned by a cooling scheduling�
Given an appropriate cooling schedule� it is possible to �nd an optimal solution�
However� such cooling schedules usually take exponential time to �nd an optimal
solution� Thus faster cooling schedules that �nd sub�optimal solutions are usually
adopted� For a more thorough explanation of simulated annealing� see ����

Similar to simulated annealing� tabu search improves on hill�climbing by allow�
ing worsening solutions to be selected from a neighborhood� At each point in the
search� the best solution in the neighborhood is selected even if it is worse than the
current solution� This means that when tabu search reaches a local minimum� it
will move from the local minimum to a worse solution in its neighborhood� To avoid
the likely possibility of moving back to the local minimum in the next iteration 
and
several iterations after that�� tabu search selectively removes certain solutions from
a neighborhood� To determine which solutions should be removed from a neigh�
borhood� a list 
known as a tabu list� is maintained of solutions that have recently
been visited in the search� If a solution in the current neighborhood is found in the
tabu list then it is removed from the neighborhood� By removing recently visited
solutions� the tabu search can escape local minima and potentially �nd a new local
minimum that is better and possibly optimal� Since the process of maintaining tabu
lists and updating neighborhoods can be impractical� a more advanced version of
tabu search involves maintaining a list of recent moves instead of solutions� A move
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is de�ned as an operation on a solution to obtain a new solution and a set of possible
moves is de�ned for the problem such that the neighborhood can be de�ned as all
solutions that can be obtained by apply one of the moves to the current solution�
For a more thorough explanation of move lists and other tabu search enhancements�
see �����

����� Hill Climbing Approach

The local search algorithm devised for this thesis is a simple hill�climbing algorithm
that is applied to a CSOP model of the problem 
described in Section 	���� Algo�
rithm � presents an outline of the hill�climbing algorithm that we used� where N is
the neighborhood function and f is the evaluation function� The algorithm begins
with an instantiation that satis�es all hard constraints� The default initial solution
is the original solution provided by the greedy search algorithm� The neighborhood
of a solution consists of any solution where two variables� values have been swapped
and no hard constraint is violated� Of the solutions in the neighborhood� the so�
lution that reduces the total penalty value the most is selected� This process is
repeated until no solution can be found in the current neighborhood that improves
on the quality of the current solution�

Algorithm � Hill climbing algorithm

input� initial�solution
output� improved�solution

S � initial�solution
improvement � TRUE
while improvement do

improvement � FALSE
N � N 
S�
for all S� � N do

if f
S �� � f
S� then

S � S�

improvement � TRUE
end if

end for

end while

return S

��� Loosening Approach

In this section we describe backtracking on a CSP model with a loosening approach�
The algorithm begins with several tight parameterized constraints and loosens them
until a solution is found�

In a problem that contains soft constraints� it is common that some soft con�
straints are not satis�ed� Since standard backtracking requires the satisfaction of
all constraints� it is possible to treat the soft constraints as hard and remove some
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of them from the problem� However� the selection of the best constraints to remove
is di�cult�

To help deal with this� several soft constraint instances can be combined into a
single parameterized hard constraint� where the parameter indicates the tightness
of the constraint� The tightness of the soft constraints can then be adjusted by
changing the constraints parameter value� A problem where the parameterized
constraints are very loose will be relatively easy for backtracking to �nd a solution�
However� the quality of this solution relates to the tightness of each parameterized
constraint� Thus �nding a quality solution requires that the appropriate parameter
values are selected such that the problem is solvable and the quality of the solution
is reasonable�

Within backtracking� it is possible to do this in many ways� Two possible direc�
tions are to start with loose parameter values and tighten until the problem is not
solvable 
tightening approach� or start with tight parameter values and loosen the
problem until it is solvable 
loosening approach�� In both approaches� the key issue
is the selection of which constraints to adjust� Clearly the constraints with high
penalty values should be tightened as much as possible or loosened as little as possi�
ble� Besides this though� more information is needed on how adjusting a constraint
a
ects the problem� In the case of the tightening approach it is preferable to tighten
a constraint that leaves the problem solvable� However� it is unclear how to evaluate
a constraint�s a
ect on the problem 
besides actually solving the problem�� For the
loosening approach it is preferable to loosen a constraint that makes the problem
solvable� In this case it seems reasonable to select constraints that fail frequently as
candidates to loosen� Because of this we chose to implement a loosening approach�

����� Backtracking Background

Before describing the loosening approach and how we parameterized the soft con�
straints� we give a brief overview of backtracking� Backtracking search is a technique
that extends partial solutions by instantiating variables one at a time� The search
only instantiates a variable with one of its domain values if it generates a new partial
solution� If at some point in the search instantiating a variable with any of its val�
ues does not lead to a new partial solution� the search backtracks to the previously
instantiated variable� When the search backtracks to a variable� the algorithm in�
stantiates the variable with a di
erent value and attempts to extend the new partial
solution to a complete solution� If none of the variable�s domain values successfully
extends the partial solution then the search backtracks to the variable that was in�
stantiated before the current variable� This process continues until either a solution
is found or instantiating all the domain values of the �rst instantiated variable does
not extend to a complete solution�

We will now describe propagation techniques that can be used to enhance the
e�ciency of backtracking� Following that we look at possible ways of dealing with
soft constraints when backtracking�

����� Soft Constraints

For the loosening approach� each soft constraint�s instances that belong to the same
day and assembly line are grouped together into a parameterized hard constraint�
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Since soft constraint violations can occur between lots that are sequenced on di
erent
days� the last slot of the previous day is included in each of these parameterized
constraints� Although this does not perfectly model the constraints between days�
it is su�cient to recognize most constraint violations that can occur between days�

Let p represent the parameter for an instance of a parameterized constraint�
For a change�over constraint the parameter p represents the maximum number of
change�over violations that can occur� If more than p violations occur� then the pa�
rameterized change�over constraint is not satis�ed� Clearly this method has advan�
tages over simply removing selected soft constraints from the problem� It decreases
the number of possible selections that need to be made and leaves more decision
power to the search algorithm 
only the number of constraint failures is chosen� not
the removal of speci�c constraints��

For a run�length constraint the parameter p represents the maximum run�length
that can occur on the day� For example� if a constraint is de�ned on the colour
�Red� and its parameter value is ���� then at most ��� vehicles with the colour
�Red� can be sequenced consecutively�

����� Restart Scheme

For the loosening approach� the selection of which constraint to loosen is important�
This section describes the circumstances when backtracking restarts and how the
parameterized constraints are loosened when a restart occurs�

The backtracking algorithm begins with a problem that is initialized with tight
parameter values� For the problem instances in this thesis� each parameterized
change�over constraint is initialized with a value of zero and each parameterized
run�length constraint� is initialized with the run�length value of the constraint�

The backtracking algorithm attempts to solve a tight problem and counts how
many times the parameterized constraint fails� A constraint failure limit is set for
each parameterized constraint� The failure limit for a constraint is set relative to
its penalty value� Speci�cally� the constraint�s penalty value is multiplied by a
�xed constant to calculate its failure limit� Thus� the higher the penalty value of a
constraint� the higher its constraint failure limit will be�

The failure limits are used to limit the e
ort backtracking spends trying to
�nd a solution� Speci�cally� the backtracking algorithm stops searching if any of
the parameterized constraints fail more than their failure limit� otherwise it either
searches until it �nds a solution or does an exhaustive search and �nds no solution�

In the case that a failure limit is exceeded or no solution is found� a parameterized
constraint is loosened and the backtracking algorithm is restarted� Which parame�
terized constraint to loosen is chosen by �rst selecting the parameterized constraints
with the smallest penalty value that failed at least once� and of these constraints�
the constraint that failed the most is selected� This method of selecting a constraint
to loosen is based on the theory of constraint hierarchies ��� since constraints with
the smallest penalty value are always selected� Once a parameterized constraint
is selected� it is loosened by adding a value to the parameter� For a change�over
constraint� the parameter is incremented by one� allowing one additional violation
within the constraint� For a run�length constraint� the parameter is incremented
by the batch size� increasing the run�length by sixty vehicles� Once a constraint
has been loosened� the backtracking algorithm is restarted� and the relaxation and

		



restart processes is continued until a solution is found� For the remainder of this
thesis� we refer to this process of choosing a constraint to loosen as the relaxation
schedule�

����� Variable and Value Ordering

The variable ordering is based on two factors� the day the variable belongs to� and
the domain size of the variable� The variables are ordered by the day they belong
to and the variables with the lowest day are selected� Amongst these variables� a
variable with the smallest current domain size is selected�

The value ordering is based on the original greedy search solution� For each
variable� the value assigned in the original solution is placed �rst in the variable�s
domain� Placing the original solution�s batch �rst provides a reasonable solution for
the backtracking algorithm to improve upon�

����� Consistency Propagators

In this section we begin by describing general propagation techniques that are used
in backtracking� Following that we describe the specialized propagators that were
devised for each di
erent n�ary constraint�

Background

Propagation is the process of removing domain values from the uninstantiated vari�
ables during backtracking search� At any point in the backtracking search� a value
can be removed from an uninstantiated variable�s domain if� given the current in�
stantiation of variables� no solution exists if the value were instantiated� Given that
the removal of the domain value is dependant on the instantiation of some variables�
if the instantiation of any of these variables changes then the value is reinstated into
its variable�s domain� Propagation improves backtracking search by reducing the
domain size of uninstantiated variables and thus reducing the size of the search
space�

Since deciding if every variable�s domain value belongs to a solution can be com�
putationally expensive� di
erent types of propagation have been devised� Before
describing two di
erent general propagators� we brie�y describe the n�queens prob�
lem that we use to describe these propagators� The n�queens problem consists of
placing n queens on an n�n chess board such that no two queens attack each other�
For our purposes� we represent this problem as a CSP as n variables that represents
the columns of the chess board and n domain values for each variable where each
domain value represents where a queen can be placed in a particular column� Figure
��� presents a solution to the ��queens problem where variables � �� �� 	� �� �� � �
have been assigned the values � B�D� F� A� C�E �� respectively� A constraint is
de�ned for every pair of variables such that only values 
queen locations� that do
not attack each other are accepted� For instance� if variable � is assigned the value
B� then the constraint between variable � and � would allow only values D� E� and
F to be assigned to variable ��

One type of propagation is forward checking ����� At each point in the search the
forward checking propagator examines constraints in which only one variable in the
constraint�s scheme has not been instantiated� All of this variable�s domain values
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Figure ���� Propagators on ��queens problem

are checked if they are consistent with the constraint� If instantiating a value does
not make the constraint consistent then that value is removed from the domain of
the variable� In general� forward checking works well with constraints of small arity

binary for instance� since only a small number of variables need to be instantiated
before propagation can take place on a constraint�

Figure ��� presents an example of forward checking on the ��queens problem�
For this example� the �rst three variables were instantiated in the order of their
names 
�� �� and 	�� The values 
����	� on the chess board represent the level in the
search when the domain values were removed by the forward checking propagator
from the uninstantiated variables� As a result� variable � has two remaining domain
values 
A and F� and variable � and � only have one domain value remaining 
D��
Clearly no solution can be extended from this partial solution since variables � and
� only have the same value remaining in their domains� However� at this point in
the search forward checking does not recognize this situation since variables � and
� are both uninstantiated�

A more thorough method of propagation is an arc�consistency propagator� The
propagator described here 
known for binary constraints as AC�� in ����� is relatively

	�



simple and ine�cient compared to more recent arc�consistency algorithms found in
����

At each point in the search the arc�consistency propagator examines each con�
straint and examines the domain values of the uninstantiated variables in the con�
straint�s scheme� For each of these domain values� the arc�consistency propagator
exhaustively searches in the remaining uninstantiated variables in a constraint�s
scheme for domain values that if instantiated would make the constraint consistent�
If the propagator does not �nd such an instantiation� the domain value is removed
from the variable�s domain� This propagation of each constraint is iterated until no
domain values are reduced�

Figure ��� presents an example of an arc consistency propagator on the ��queens
problem� For this example� the �rst three variables were instantiated in the order of
their names 
�� �� and 	�� Like the forward checking example� the values 
����	� on
the chess board represent the level in the search when the domain values were re�
moved by the arc consistency propagator from the uninstantiated variables� Besides
the domain values removed by the forward checking propagator� the arc consistency
propagator also removes the remaining values from each of the remaining uninstan�
tiated variables� Thus the domains of all uninstantiated variables are empty and
the search can backtrack since a solution cannot be found if any variable�s domain
is empty�

Although an arc�consistency propagator can reduce the domains of uninstanti�
ated variables more than a forward checking propagator can� it is computationally
more expensive� For some problems� backtracking with a forward checking propaga�
tor outperforms backtracking with an arc consistency propagator in terms of CPU
time�

To achieve a high level of propagation with limited computation� specialized
propagators� which take advantage of the constraint�s structure� can be devised
for particular classes of constraints� Examples of constraints for which specialized
propagators have been devised are the all�di
erent constraint ���� and the cardinality
constraint �����

We now describe the specialized propagators that were devised for the loosening
approach�

Distribution Propagator

Since the distribution exception constraint is a generalization of the even distribution
constraint� the same propagator is used on both� The two distribution constraints
are essentially cardinality constraints for which a specialized arc consistency prop�
agator is described in ����� The propagator described here is simpler and does not
achieve arc consistency�

Each constraint is assigned a day� an attribute value� a minimum value and a
maximum value� We refer to the batches that are assigned the constraint�s attribute
value as attribute batches� For the even distribution constraints� the minimum value
is assigned the same value as the maximum value 
since the number of attribute
batches assigned to a day must equal the maximum value��

The scheme of the constraint consists of all variables that belong to the con�
straint�s day� The propagator �rst calculates the number of variables in the con�
straint�s scheme that are instantiated with an attribute batch� This value is referred
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to as the instantiated count and represents the number of attribute batches that have
already been assigned� The number of uninstantiated variables that have attribute
batches remaining in their domain is then added to the instantiated count to get
the available count� This value represents the possible number of attribute batches
that can be assigned to the variables�

The constraint fails if either the instantiated count is greater than the maximum
value or the available count is less than the minimum value�

If the instantiated count equals the maximum value� the propagator removes the
attribute batches from all uninstantiated variable domains� If the available count
equals the minimum value� the propagator removes all batches besides the attribute
batches from all uninstantiated variable domains that contain an attribute batch�

Change�over Propagator

The change�over constraint propagator is presented in Algorithm �� Attribute func�
tions 
Section 	����� are used in this algorithm� as well as two CSP speci�c functions�
Domain
s� and Assignment
s�� The Domain
s� function returns the current domain
values of the slot s� and the Assignment
s� function returns the batch that is in�
stantiated to slot s� The propagator has the following input�

� the maximum change�over value 
maxchgovr� is the constraint�s parameter
value and represents the number of soft constraint violations that can occur
in the parameterized constraint�

� the two constraint attribute values� chgformer and chglatter� and

� a set of variables s�� � � � � sk that represents the variables in a parameterized
change�over constraint� where Position
si� � Position
sj� if i � j�

The propagator removes values from the domains of variables and returns a boolean
value that indicates if the constraint has failed�

The propagator calls one function� IntChgOvr 
Algorithm 	�� This function has
the following input�

� the two constraint attribute values� chgformer and chglatter�

� the current batch that is being examined� b�

� the former attribute value 
formerattvalue� of the last lot from the previous
slot� and

� the recent failure value 
recentfail� that indicates if the constraint failed be�
tween the previous pair of lots�

The IntChgOvr function returns the number of violations found between the last
lot of the previous batch and all the lots within the current batch� Furthermore� the
formerattvalue and recentfail variables are passed by reference to the function� so
any changes made to those variables in the function are re�ected in the procedure
that called it�

The change�over constraint propagator presented is speci�cally for constraints
between speci�c attribute values� In practice� the constraint can also be de�ned for
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an entire attribute set� For instance� a constraint can be de�ned on the attribute
Exterior Colour� and a violation occurs if the colour changes between lots� This is
equivalent to de�ning a constraint for each colour where the former attribute value
is a speci�c colour 
�Red�� and the latter attribute is all colours besides the speci�ed
colour 
�NOT Red��� However� it is more e�cient to combine all the constraints into
one� Thus� the implemented propagator handles both constraints between speci�c
attribute values and constraints de�ned on all the attribute values of a set� It is
also important to note that the unusual penalty evaluation never occurs in the case
where a constraint is de�ned on a single attribute� For example� a constraint from
�Red� to �NOT Red� cannot occur twice in a row�

Algorithm � Change�over constraint propagator

input� maxchgovr� chgformer� chglatter� and s� to sk
output� updated variable domains

formerattvalue � NULL
recentfail � FALSE
chgovr � �
for i � � to k do
if si is instantiated then
b � Assignment
si�
chgovr � chgovr  IntChgOvr
chgformer� chglatter� b� formerattvalue� re�
centfail �
if chgovr � maxchgovr then
FAIL

end if

else

min�int�chgovr � LARGENUMBER
for all b � Domain
si� do
temp�formerattvalue � formerattvalue
temp�recentfail � recentfail
int�chgovr � IntChgOvr
chgformer� chglatter� b� temp�formerattvalue�
temp�recentfail �
if int�chgovr  chgovr � max�chgovr then
remove b from Domain
si�

end if

if int�chgovr � min�int�chgovr then
min�int�chgovr � int�chgovr

end if

end for

chgovr � chgovr  min�int�chgovr
formerattvalue � NULL
recentfail � FALSE

end if

end for

	�



Algorithm � Change�over internal batch violation counter

input� chgformer� chglatter� b� formerattvalue� and recentfail
output� formerattvalue� recentfail� and int�chgovr

int�chgovr � �
for all l � Lots
b� fLots are selected in the order sequencedg do
if formerattvalue 	� NULL then

if recentfail � FALSE AND formerattvalue � chgovrformer AND ChgOver�
Latter
l� � chgovrlatter then

int�chgovr � int�chgovr  �
recentfail � TRUE

else

recentfail � FALSE
end if

end if

formerattvalue � ChgOverFormer
l�
end for

RETURN int�chgovr

Run�length Propagator

The run�length constraint propagator is presented in Algorithm �� Like the change�
over constraint� attribute functions 
Section 	����� are used in this algorithm� as
well as two CSP speci�c functions� Domain
s� and Assignment
s�� These functions
are described in the previous section� The propagator has the following input�

� the maximum run�length value 
maxrunlength� is the constraint�s parameter
value and represents the maximum run�length value allowed�

� the run�length attribute value 
runlen�attvalue� represents the constraint�s
attribute value� and

� a set of variables s�� � � � � sk that represents the variables in a parameterized
run�length constraint� where Position
si� � Position
sj� if i � j�

The propagator removes values from the domains of variables and returns a boolean
value that indicates if the constraint has failed�

The run�length constraint propagator presented is speci�cally for constraints be�
tween speci�c attribute values� Similar to the change�over constraint� the constraint
can also be de�ned for an entire attribute set� For example� a constraint can be de�
�ned on the attribute exterior colour where the constraint is violated if any colour
is repeated too many times� To improve e�ciency� the implemented propagator
handles both constraints with a speci�c attribute value and constraints de�ned on
all the attribute values of a set�

All�Di�erent Propagator

Every time a batch is instantiated to a slot� the batch is removed from any domain
that contains it� This propagator could be improved using the all�di
erent constraint
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Algorithm � Run�length constraint propagator

input� maxrunlength� runlen�attvalue� and s� to sk
output� updated variable domains

runlength � �
for i � � to k do
if si is instantiated then
b � Assignment
si�
for all l � Lots
b� fLots are selected in the order sequencedg do
if runlen�attvalue � RunLenAttribute
l� then

runlength � runlength  LotSize
l�
else

runlength � �
end if

if runlength � maxrunlength then

FAIL
end if

end for

else

if runlength � 
maxrunlength � batchsize� then
for all b � Domain
si� do
intrunlength � �
for all l � Lots
b� fLots are selected in the order sequencedg do
if runlen�attvalue � RunLenAttribute
l� then

intrunlength � intrunlength  LotSize
l�
else

BREAK
end if

end for

if 
intrunlength  runlength� � maxrunlength then
remove b from Domain
si�

end if

end for

end if

runlength � �
end if

end for
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arc consistency propagator described in ����� Such a propagator would remove more
domain values but would also be more computationally expensive�

��� Branch and Bound Approach

In this section we describe backtracking on a CSOP model with a branch and bound
approach� For this approach� we begin with a loose bound on the evaluation function
and tighten the bound until no solution is found�

Applying backtracking to a CSOP model requires backtracking to be extended to
incorporate an evaluation function� Two possible approaches are to include either
iterative deepening 
ID� or branch and bound 
BB� as part of the backtracking
algorithm� Both of these approaches set a bound on the quality of the solution that
backtracking is allowed to �nd and require a heuristic for estimating the quality
of a partial solution to the problem� For both approaches� backtracking occurs if
the quality of a partial solution exceeds the bound on the solution� The di
erence
between the two approaches is that ID begins with a tight bound and increases it
until a solution can be found� while BB begins with a loose bound 
such that a
solution can be found� and tightens the bound until no solution can be found�

����� Evaluation and Heuristic Functions

For the branch and bound approach� all the soft constraints are represented by an
evaluation function� The evaluation function takes as its input a solution to the
hard constraints and returns the total number of penalty values incurred by the soft
constraints�

The heuristic function devised is essentially the evaluation function applied to
partial solutions� The heuristic function takes as its input a partial solution to the
hard constraints and returns the total number of penalty values incurred by the
batches that have been sequenced� It is possible that a heuristic function could be
devised that gives an even better estimate of the quality of the partial solution� for
instance counting the number of internal violations for the batches that have not
been sequenced yet� However� this was not done as part of this thesis�

����� Branch and Bound Scheme

The backtracking algorithm begins with a problem initialized with a loose bound
value� Speci�cally we set the bound value to the total penalty value incurred by
the greedy search solution� By using this value we begin with a problem that is
guaranteed to have a solution and is reasonably tight�

After backtracking �nds a solution� we take the total penalty value for the so�
lution� reduce it by the largest common divisor of the constraint penalty values in
the problem instance 
a value of one for the problem instances we examine�� and
set this as the new bound value� The branch and bound algorithm then continues�
and backtracks whenever the heuristic function value of a partial solution exceeds
the current bound� If it �nds a solution with the current bound value� we reduce
the bound value again� This process is continued until no solution can be found� In
this case� the last solution found is an optimal solution�
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����� Variable and Value Ordering

The variable ordering for the branch and bound approach is �xed to the ordering
of the slots in time� This �xed ordering is used to simplify the way the heuristic
function is implemented�

The value ordering is based on the original greedy search solution� For each
variable� the value assigned in the original solution is placed �rst in the variables
domain� This value ordering is the same as the one used by the loosening approach�

����� Consistency Propagators

The distribution propagator and the all�di
erent propagator are the same as the
ones described for the loosening approach� Since the change�over constraints and
run�length constraints are represented by an evaluation function� there are no prop�
agators for these constraints�

��� Problem Splitting

Since the problem is somewhat large� a method for splitting it into smaller sub�
problems is used� This process is done for all three of the solution techniques�

The problem is divided into relatively equal size sub�problems by placing� for a
particular assembly line� a speci�ed number of consecutive production days in each
sub�problem� The speci�ed number of days in a sub�problem is referred to as the
split size� If the split size does not divide the number of days on an assembly line�
a sub�problem is generated with the remaining days� The sub�problems contain
consecutive production days and are solved in order of the days they contain� where
the unsolved sub�problem with earliest days is solved next� The domain values
are selected for each sub�problem by using the original solution provided by the
greedy search algorithm� In other words� for a particular sub�problem we assign
batches that are sequenced by the greedy search algorithm to the same days as
the days within a sub�problem� Furthermore� since soft constraint violations can
occur between sub�problems� after a sub�problem is solved� the batch that was
sequenced last is added to the beginning of the next sub�problem� This method of
splitting does not completely model the problem� since run�length and change�over
constraints may be in�uenced by batches that are sequenced before the last batch
in the previous sub�problem� but it makes visible the majority of violations that
can occur between days� It is also important to note that if the split size is one

one day per sub�problem�� the soft constraints are the only n�ary constraints in the
sub�problems�
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Chapter �

Results

In this chapter we present the results of applying the three solution techniques
presented in Chapter � to the CSP models of six real�world problem instances� We
begin by presenting the six problem instances we used for our experiments in Section
���� In Section ���� we show the results for the original greedy search algorithm on
these problem instances� In Sections ��	� ��� and ��� we present the results for the
hill�climbing approach� the loosening approach� and the branch and bound approach�
respectively� We conclude the chapter with a discussion of the results in Section ����

��� Test Problems

There are six real�world problem instances examined in this thesis� Each problem
instance represents a month�s worth of orders for a manufacturing plant with two
assembly lines� Table ��� shows for each problem instance the number of lots and
batches� the maximum number of lots in a batch� the maximum number of slots
in a day� and the number of di
erent types of distribution exception� change�over�
and run�length constraints� For the change�over constraints and the run�length con�
straints� we also present the original number of constraints as de�ned in TigrSoft�s
problem speci�cations as well as the number of combined constraints de�ned in our
problem speci�cation� The constraints were combined by either representing iden�
tical constraints that were de�ned for both assembly lines as one constraint� or by
combining certain constraints that are de�ned on the same attribute� The majority
of change�over constraints that were combined were constraints between individ�
ual colours and all other colours� In other words� individual constraints restricting
change�overs from �X� to �NOT X�� where X can be any colour� were combined
into one change�over constraint��

�For all of the problem instances� two of these colour constraints appeared to be de�ned wrong
in the TigrSoft speci�cation� One was de�ned from 
Colour A� to 
ANY LOT� and the other
was de�ned from 
Colour B� to 
NOT Colour C�� These constraints appear to have resulted from
data entry errors by the users at the manufacturing company� We included these two constraints
separately as part of our speci�cation�
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Table ���� Greedy search

��� Greedy Search

The original solution technique used to solve the sequencing problem is a greedy
search algorithm� described in Section ��	� Table ��� presents the results of this
algorithm when applied to the test problem instances� The table shows the total
penalty values incurred by the soft constraints as well as the penalty values incurred
between the lots within each batch 
internal lot sequences�� Since the internal
sequence of lots within each batch is �xed� these internal violations can be seen
as lower bounds on solutions of the problem instances� On average� about ��� of
violations occur between batches and thus only ��� of the violations can potentially
be reduced if the internal lot sequences remain �xed�

��� Hill Climbing

The �rst solution technique we examined is a hill�climbing algorithm� described in
���� The default settings for this algorithm are as follows�

To begin with� the hill�climbing algorithm used an initial solution provided by
the greedy search algorithm� In Section ��	�� we examine the a
ect that a random
initial solution had on the hill�climbing algorithm�

The sequencing of lots within a batch was �xed based on the sequence of lots
within the original solution� In Section ��	�	 we look at how optimizing the internal
lot sequences a
ects the hill�climbing solutions�

The problem by default was divided into single day sub�problems� The a
ect
of increasing the sub�problem size to include multiple days is presented in Section
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Table ��	� Hill climbing results
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Table ���� Hill climbing with random initial solution

��	��� In Section ��	�� we look at how the removal of the even distribution constraint
from the problem a
ected the solutions of multi�day sub�problems�

����� Improvement Over Greedy Search

Before examining these di
erent modi�cations� let us �rst look at how hill�climbing
improved on the greedy search solutions� Table ��	 presents a comparison of the
hill�climbing solutions and the greedy search solutions� The table shows for the hill�
climbing algorithm the penalty values incurred by both parameterized constraints�
the CPU time 
in seconds� needed to solve the problem instances� the number of
days improved on� and the di
erence and percent decrease in penalty values with
respect to the greedy search technique� The percent reduction of penalty values for
the problem instances ranged between �� and ��� and approximately only half of
the sub�problems are improved on over the greedy search�

����� Random Initial Solution

The hill�climbing algorithm by default used the greedy search solution as its initial
solution� When the initial solution was replaced by a random one� the results
signi�cantly deteriorated� Table ��� compares the in�uence of a greedy search initial
solution 
HC� and a random initial solution
HC�RAND�� As the table shows� when
a random initial solution was used� the increase in penalty values ranged between
�� and ��� and the CPU time on average doubled� These results clearly indicate
the importance of a good initial solution when using a hill�climbing technique on
the problem�
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Table ���� Greedy search solution with optimized internal lot sequences

����� Optimized Internal Lot Sequences

In this section we present results where the penalty values were minimized by se�
quencing the lots within each batch� The optimized lot sequences were produced
by a simple generate and test procedure� For each batch� the lot sequences with
the smallest total penalty value were selected� In the case of a tie� the sequence
with the largest lot sequenced last was selected� Because of complexity issues we
only completely optimized batches with seven or fewer lots� For batches with more
than seven lots� we optimized the �rst seven lots in the batch and did not move the
remaining lots� The most lots found in a batch for all the problem instances was
ten�

Table ��� presents the internal and total penalties of the greedy search solutions
with their original internal lot sequences and with new optimized internal lot se�
quences� Although the internal penalties were reduced for all the problem instances
from �� to 	��� the total penalty values increased for all the problem instances
from �� to ���� This was expected though since reducing penalty values within
each batch by rearranging their lots will not necessarily make the penalties dis�
appear� Instead� the penalty values are incurred when the batches are sequenced�
Furthermore� the greedy search solution was selected based on the sequence of lots
within each batch� Thus it is not surprising that rearranging the lots reduced the
quality of the greedy search solution�

Table ��� presents hill�climbing on batches with the original internal lot se�
quences 
HC� and with the optimized lot sequences 
HC�OPT�� The results appear
mixed� with changes in penalty values ranging between ��� and ���� Two possible
reasons for these mixed results are as follows�

One possible reason is that hill�climbing with the original lot ordering relies on a
reasonable initial solution� As Table ��� indicates� when the lots are reordered� the
quality of the original greedy search solution was reduced� Since the hill�climbing
algorithm �nds its solution by improving on its initial solution� it is possible that
a worse initial solution will lead to a worse �nal solution� This is evident in the
fact that the problem instances 
problems �� �� �� that had only a small increase
in penalty values for their �optimized� greedy solutions 
Table ���� are the same
problem instances that improved the most when hill�climbing was applied 
Table
�����

Another possible reason for mixed results is that the lots within a batch were
rearranged such that the lots that are likely to cause a serious violation were moved
to the edge of the batch� From within a batch no serious violations appeared� but
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Table ���� Hill climbing with optimized internal lot sequences

when the batches were sequenced� these violations reappeared between the batches�
In fact� it may actually increase the number of violations� since optimizing within
each batch may have unforeseen consequences when the batches are sequenced�
However� although rearranging the lots may not have eliminated the violations 
and
possibly increased them�� it at least gave the search algorithm a chance to reduce
them�

Overall these results demonstrate the potential of reordering the lots within
the batches� However� it is not clear what a good internal lot sequence is without
consideration of the larger problem�

����� Multi�day Sub�problems

In this section we examine the a
ect of multi�day sub�problems on the hill�climbing
algorithm� Tables ��� and ��� present the change in penalty values� the CPU time�
and the number of value swaps that occurred between days for problems with two

HC��� and three 
HC�	� days in each sub�problem� respectively� For the most part�
the penalty values remained unchanged�

A likely reason for this is that� for the problem instances examined� the even
distribution constraint signi�cantly reduced the possibility of improving the solution
by solving multiple days at a time� There are two possible reasons for this� First
of all� the even distribution constraint for all the problem instances is de�ned on
an attribute that contains more than ��� attribute values� Since there are only
approximately ��� batches in each problem� many attribute values only have one or
two batches associated with them� Since the even distribution constraint de�nes for
each day and attribute value the number of batches with the attribute value that
can be assigned to the day� many days do not share batches� Thus when solving
small multi�day problems 
two or three days�� it is unlikely that the days within a
sub�problem will share batches�

Another reason improvements are not likely is that the even distribution con�
straint attribute is similar to many of the attributes used by the soft constraints� In
other words� if two batches are considered similar by the even distribution constraint
then it is likely that the two batches are consider similar by the soft constraints�
Thus even if two batches are shared by two days� swapping them may not have any
a
ect on the soft constraint violations�

Evidence for both of these arguments can be seen in the fact that for all six
problem instances� only once was a value swapped between days� Given the signi��
cant increase in CPU time when multi�day sub�problems were solved� solving single
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Table ���� Hill climbing with split size two
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Table ���� Hill climbing with split size three

day sub�problems makes sense�

����� Removing the Even Distribution Constraint

In the last section we showed results indicating that the even distribution constraint
prevents values from being shared between days� In this section we present results
for when the even distribution constraint was removed from the problem instances�
It is important to note that removing this constraint does not completely under�
mine the even distribution of batches� Since the problem instances are split into
smaller sub�problems� the even distribution constraint is implied by the assignment
of batches to each sub�problem� For example� when solving the problem with two
day sub�problems� a batch could move at most one day compared to the greedy
search solution of the problem� Thus in some sense the batches would remain dis�
tributed 
as long as the sub�problems are not too big�� However� since we have no
algorithmic method for determining if a distribution is acceptable 
except for the
solutions provided by the greedy search algorithm�� there is no way to determine
if solutions obtained by removing the even distribution constraint are acceptable

besides having each solution instance evaluated manually by an expert��

Tables ��� and ���� present the penalty values� CPU time� and the number of
value swaps that occurred between days for problem instances with no even distribu�
tion constraint and two 
HC�NE�� and three 
HC�NE	� days in each sub�problem�
respectively� Unlike the results presented in the previous section� signi�cant im�
provements were found for each problem instance� Furthermore� the table shows
that a signi�cant number of value swaps occurred between days� This is further
evidence of the even distribution constraint�s in�uence on the problem� The only
down side of removing the constraint is that the CPU time increased signi�cantly
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Table ���� Hill climbing with no even distribution and a split size two
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Table ����� Hill climbing with no even distribution and a split size three

for these experiments� This can be attributed to the increase in the neighborhood
size that occurred as a result of the even distribution constraint being removed�
Overall� these results indicate the potential reduction of penalty values that can be
obtained if the even distribution constraint is relaxed�

��� Backtracking with a Loosening Approach

The second solution technique that we examine is backtracking with a loosening
approach� described in Section ���� The default settings for this algorithm were as
follows�

First of all� no propagation occurred on the parameterized constraints� We show
how propagation on these constraints negatively a
ected the results in Section ������

Each slot�s domain values were ordered by placing the batch that was assigned
to the slot in the original solution �rst in the slot�s domain� In Section ����	 the
a
ect of removing this value ordering is examined�

After solving a sub�problem� the sub�problem solution was compared with the
greedy search solution and the sub�problem solution with lowest penalty value total
was selected� We show how not selecting the best solution to sub�problems reduced
the quality of the overall solution in Section ������

The sequencing of lots within a batch was �xed based on the sequence of lots
within the original solution� In Section ������ we look at how reducing the penalty
values that occur within each batch by reordering their lots in�uenced the solutions�

The failure limit for each parameterized constraint was assigned relative to the
penalty value of the constraint� This was done by multiplying the penalty value of
the constraint by a �xed value of ���� Thus a constraint with a penalty value of
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Table ����� Backtracking with loosening approach

�� would have a failure limit of ������ In Section ����� we examine the in�uence
of di
erent �xed values� and di
erent ways of counting parameterized constraint
failures�

Each problem was also divided into one day sub�problems� In Section ����� we
examine how increasing the number of days within a sub�problem in�uenced the
solutions that were found�

����� Improvement over Greedy Search

Before examining all of these di
erent modi�cations� we �rst look at how the loos�
ening approach� with its default settings� improved on results of the greedy solution
technique� Table ���� shows the penalty values of the loosening approach solutions
and their improvement over the penalty values of the greedy search solutions� The
table shows the penalty values for both parameterized constraints� the CPU time 
in
seconds� of the loosening approach� the number of days that the loosening approach
improved results on� the di
erence in penalty values between the greedy search and
the loosening approach� and the percent change in penalty values over the greedy
search technique� The percent reduction of penalty values for the problem instances
ranged between �� and ��� Although the majority of penalty values incurred were
from change�over constraints� the loosening approach signi�cantly reduced the run�
length penalty values for two of the six problem instances� The algorithm also took
between six and �fteen minutes to �nd a solution�

����� Soft Constraint Propagation

Although specialized propagators were devised for both the change�over constraints
and run�length constraints� for the most part� they proved to be detrimental� Table
���� compares the loosening approach with 
LN�PROP� and without 
LN� the prop�
agation of parameterized constraints� The increase of total penalty values for the
problem instances ranged between �� and ��� The CPU time 
in seconds� used to
�nd a solution decreased signi�cantly when propagation was used 
up to eight times
faster�� This decrease was expected� since propagation reduces the search space�
However� the increase in penalty values was not expected� The reason why propa�
gation was detrimental to �nding a good solution seems to relate to the in�uence of
propagation on constraint failures� Since propagation reduces the domains of vari�
ables that have not been instantiated yet� it reduces the relationship between which
constraints �caused� the problem to be unsolvable and which constraints actually
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Table ����� Loosening approach with soft propagation
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Table ���	� Loosening approach with no value ordering

failed the most� For example� assume we have two arbitrary parameterized con�
straints A and B� where constraint A must be loosened in order for a problem to be
solved and constraint B does not� Then it is possible that constraint A�s propagator
reduces the domains of the uninstantiated variables� but does not fail� and later in
the search constraint B fails because of the domain values that were removed by A�
Hence it is possible that constraint B fails more frequently than constraint A and
thus B is selected over A to be loosened�

Although it is possible that even without propagation constraint B may be se�
lected over A to be loosened� it seems reasonable that propagation decreases the
relationship between which constraints must be loosened to �nd a solution and how
often these constraints fail�

����� Value Ordering

The loosening approach by default used a value ordering that was based on the
greedy search solution� Table ���	 compares the loosening approach with the value
ordering 
LN� and without 
LN�NVAL�� Overall the removal of the value ordering
decreased the quality of the solutions� Including the value ordering appears to give
the loosening approach a good solution to build on�

����� Best Solution Selection

When the value ordering was employed� one might expect that the backtracking
algorithm would be guaranteed to do the same or better than the greedy search
algorithm� since the loosening approach 
with the appropriate parameter settings�
can �nd the greedy search solution backtrack free� However� this is not the case
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Table ����� Loosening approach with no best solution selection
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Table ����� Loosening approach with no value ordering and no best solution selection

since the loosening approach�s relaxation schedule is not perfect� Speci�cally� the
relaxation schedule may loosen the constraints such that the original solution does
not satisfy the constraints but a worse solution does�

For this reason� after a sub�problem was solved it was compared with the original
solution and the best solution to the sub�problem was selected� Table ���� compares
the loosening approach with 
LN� and without 
LN�NOBS� a best solution selection
process� The decrease in solution quality can be attributed to sub�problem solutions
where the imperfect relaxation schedule missed the original solution and found a
worse one�

However� even when the best solution selection process is removed it is pos�
sible that the value ordering may provide a backtrack free solution� Thus when
both the value ordering and the best solution selection process were removed� the
backtracking algorithm had no original solution to fall back on� This situation 
LN�
NVAL�NOBS� is presented in Table ����� As the results clearly show� the relaxation
schedule was indeed not perfect�

����� Optimized Internal Lot Sequences

In Section ��	�	 we examined the a
ect of optimizing internal lot sequences on
the hill�climbing technique� In this section we present its a
ect on the loosening
approach� Table ���� compares the loosening approach with the original internal
lot ordering 
LN� and with the optimized ordering 
LN�OPT�� Similar to the hill�
climbing technique the results were mixed� with changes in penalty values ranging
from ��� and ��� Reasons for this are similar to those described in Section ��	�	�
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Table ����� Loosening approach with optimized internal lot sequences

����	 Failure Limits

The failure limits for each soft constraint were set by multiplying each constraint�s
penalty value by a constant value� The results presented so far �xed this value to be
���� In this section we examine the a
ect modifying this value has on the quality
of the solutions� Figure ��� presents the in�uence of di
erent failure limit constants
on the total penalty values for each problem instances� The x�axis represents the
di
erent failure limit constants that were tried and the y�axis represents the percent
improvement over the greedy search results� Each line in the graph� represents either
a problem instance or the average of the problem instances�

As the failure limit constants increased� the CPU time required to solve a prob�
lem increased as well� For some of the problems 
problems �� �� 	� and �� the
percent improvement remained relatively the same when the failure limit constant
was increased� However� for two problem instances 
problems � and �� the percent
improvement decreased signi�cantly when the failure limit constant was increased�
This shows that a high constraint failure limit does not necessarily imply an increase
in the quality of a solution and in fact decreased the quality of the solutions�

We also tried a di
erent method of counting constraint failures� Instead of
counting all constraint failures that occurred in the search� we tried only counting
the constraint failures that occurred at the deepest level of the search tree� In other
words� when the backtrack algorithm was able to reach a new level in the search
tree� it only counted constraint failures that occurred at that level of the tree� The
intuition behind this idea is that the constraints that fail at the deepest part of
the search tree are the constraints that should be loosened� since doing so would
allow the search to go deeper� Unfortunately� results showed that this idea does not
improve over the original counting technique�

����
 Multi�day Sub�problems

By default� the problem was split into one day sub�problems� When more than
one day was included in each sub�problem� the results for the most part decreased
slightly in quality� Table ���� presents the change in penalty values and CPU time�
compared to the loosening approach on one day sub�problems� for problems with
two 
LN��� and three 
LN�	� days in each sub�problem� Overall the penalty values
did not change signi�cantly when the size of each sub�problem was increased�

The reasons for this are explained in Section ��	��� However� unlike the hill�
climbing technique� backtracking did worse on multi�day sub�problems� This prob�
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Table ����� Loosening approach split size two and three results

ably can be attributed to the relaxation schedule� Increasing the size of the sub�
problems increases the number of constraints in a problem� This in turn increases
the number of constraints that the relaxation schedule must select from� Thus it
is more likely that the relaxation schedule will pick an inappropriate constraint to
loosen�

��� Backtracking with a Branch and Bound Approach

We now present results for backtracking with a branch and bound approach� de�
scribed in Section ��	� The default settings for this algorithm were as follows�

Since initial tests of the algorithm proved to be intractable� with one problem
instance taking more than �ve days without returning a solution� a time limit of
two hours was set for each sub�problem� In Section ����� we show results for when
the time limit was reduced to one minute�

The sequencing of lots within a batch was �xed based on the sequence of lots
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Table ����� Backtracking with branch and bound approach

within the original solution� In Section ����	� we look at how reducing the penalty
values that occur within each batch by reordering their lots in�uenced the solutions�

Each problem instance was also divided into one day sub�problems� In Section
����� we also examine how increasing the number of days within a sub�problem
in�uenced the solutions that were found�

����� Improvement over Greedy Search

In this section we compare the branch and bound approach results� with its default
settings� to the greedy search results� Table ���� shows the penalty values of the
branch and bound solutions and their improvement over the penalty values of the
greedy search solutions� Speci�cally� the table shows the penalty values for both
soft constraints� the CPU time 
in seconds�� the number of days that the branch
and bound approach improved results on� the percent change in penalty values over
the greedy search technique� and the number of sub�problem solutions that were
proved to be optimal solutions�

The percent reduction of penalty values for the problem instances ranged be�
tween 	� and �	�� Of the six problem instances� four of them had all of their
sub�problem solutions proven optimal within the two hour per sub�problem time
limit� The other two problem instances had in total only �ve sub�problems with
sub�optimal solutions� These �ve sub�problem solutions may in fact be optimal� but
they were not proven so within the time limit�

The CPU time required to solve these problem instances varied signi�cantly�
The four problem instances that have optimal sub�problem solutions� took between
�ve and forty��ve minutes� The other two problem instances took between four and
fourteen hours to solve�

����� Reduced Time Limit

Since four of the problem instances were proved optimal in a relatively short time�
we decided to signi�cantly reduce the sub�problem time limit to one minute� Table
���� compares the branch and bound approach with a two hour 
BB� and a one
minute 
BB�FAST� sub�problem time limit� As the table shows� only one problem
instance�s total penalty values slightly increased when the one minute time limit
was imposed� Of the four problem instance solutions that were proven optimal with
a two hour time�limit� only one of them was proven optimal with only a one minute
time limit� However� the other three solutions all remained optimal but were not
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Table ����� Branch and bound approach with reduced time limit

Prb Total Penalties CPU Time Days
! BB BB�OPT Percent BB�OPT Optimized

� ���� ���� �� ���� �����
� ���� ���	 	� ����� 		�	�
	 		�� 		�� ��� ��� �����
� ���� ��	� 	� ����� �	���
� ���� ���� ��� ���� �����
� ���� ���� �� �	�� �����

Table ����� Branch and bound approach with optimized internal lot sequences

proven so� For the two problem instances that were not proven optimal with a
two hour time limit� similar solutions were found with a one minute time limit�
However� almost half of the sub�problem solutions were not proven to be optimal�
Overall these results seem to indicate that� for this problem� �nding a solution to a
sub�problem is relatively easy� but proving a solution does not exist is potentially
hard�

����� Optimized Internal Lot Sequences

In Sections ��	�	 and ����� we examined the a
ect of optimizing internal lot se�
quences on the other two solution techniques� Table ���� compares the branch and
bound approach with the original internal lot ordering 
BB� and with the optimized
ordering 
BB�OPT�� Similar to the other two solution techniques the results were
mixed� with changes in penalty values ranging from ��� and ���� In Section ��	�	�
two possible reasons were given for why these results were mixed� One of the possible
reasons was that optimizing the internal lot sequences can have a detrimental a
ect
on the overall quality of possible solutions� The branch and bound approach proves
this since two of the problem instances 
Problems 	 and �� have optimal sub�problem
solutions that were worse when the internal lot sequences were optimized�

����� Multi�day Sub�problems

Like the other two solution techniques� the tightening approach was applied to
problem instances with multi�day sub�problems� In general the branch and bound
approach did signi�cantly worse when applied to multi�day sub�problems� The rea�
son for this is that the complexity of the problem increased signi�cantly� Because
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Table ����� Summary of results

of this� the two hour time limit was reached for most sub�problems without �nding
an optimal solution and hence the results were not near optimal� The time required
to obtain these solutions took at least one day for every problem instance�

��� Discussion

In this chapter we have presented the results of three solution techniques� In this
section we review and compare some of the results�

Table ���� presents the results of the three solution techniques with their default
settings� As the table shows� the branch and bound algorithm 
BB� found the best
results for all problem instances� This was expected since most of the sub�problem
solutions were found to be optimal� The next best algorithm� in terms of penalty
value reduction� was the hill�climbing algorithm 
HC� which found better 
or the
same� solutions compared to the loosening approach 
LN� for all problem instance�

In terms of CPU time� the hill�climbing algorithm was the best overall� followed
by the loosening approach� The branch and bound algorithm took signi�cantly more
time to �nd solutions than the other approaches� However the branch and bound
algorithm was also run with a sub�problem time limit of one minute� With this time
limit� the branch and bound algorithm found nearly identical results as it did with
its default time limit of two hours and only took between ��	 and ���� seconds to
obtain these results�

In our discussions with TigrSoft� they explained that solutions with a �� reduc�
tion in penalty values that could be found in less than 	� minutes 
���� seconds�
would be considered signi�cant� All three algorithms were capable of �nding so�
lutions to the six problem instances within 	� minutes� For four of the problem
instances 
problems �� �� �� and �� we were able to obtain more than a �� reduction
in penalty values with any of the three solution techniques� For the remaining two
problem instances we obtained at least a �� penalty value reduction with any of
the three solution techniques�
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Chapter �

Conclusions and Future Work

In this chapter we present possible ways to improve and extend the research pre�
sented in this thesis� Following that we conclude with a summary of our contribu�
tions�

The research we have presented in this thesis is a starting point for possible
future work� To begin with� di
erent models of the problem could be examined�
An obvious choice would be to apply our solution techniques to the batch model

where the variables are batches�� Given the structure and tightness of the con�
straints� it may be possible that this model will outperform the slot model that
we examined� Furthermore� di
erent ways of handling the internal lot sequences
could be examined� Instead of �xing the lot sequences within each batch� several
possible sequences could be included for each batch� Another way to improve the
model would be to rede�ne the even distribution constraint� This would require an
investigation of the manufacturing company�s procedures and goals� since there is
no clear declarative de�nition of what a good even distribution is�

There are also many improvements that could be made to the three solution
techniques that we devised� To begin with� the hill�climbing algorithm can be im�
proved by including random walking� random restart� and tabu search or simulated
annealing� Furthermore� di
erent neighborhood functions could be applied to this
problem� For example� instead of swapping values between pairs of variables� val�
ues may be rearranged within sets of three variables� However� implementing such
a neighborhood function for every possible combination of three variables would
increase the size of the neighborhoods�

The backtracking algorithms also have room for improvement� The propagation
techniques could be improved for both backtracking algorithms� This would include
implementing the all�di
erent and cardinality arc�consistency propagators described
in ���� and ����� respectively� Furthermore� the variable and value ordering could
possibly be improved� This would involve de�ning heuristics speci�c to the problem

see ��� for examples of scheduling heuristics�� The loosening approach can clearly
be improved by changing how constraints are selected to be loosened� Such a change
would require analyzing the search and deducing which constraint needs to be loos�
ened for a solution to be found� Such an improvement might also allow propagation
on soft constraints without in�uencing the constraint selection process� The branch
and bound approach can also be improved by introducing a better heuristic� An
obvious heuristic would be to count the internal penalty violations of the batches
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that have not been instantiated yet�
There are also several other solution techniques that can be potentially applied

to the vehicle sequencing problem� For instance� Zhao and Goebel ���� present a
depth��rst search and best��rst repair algorithm for solving a dispatcher scheduling
problem� Essentially this algorithm extends partial solutions as far as possible�
Instead of backtracking� it then applies a repair algorithm 
a form of local search� on
the partial solution until a new partial solution is found that can be extended� If no
extendable partial solution can be found with the repair algorithm� soft constraints
are temporarily removed from the problem until the partial solution can be extended�

Oddi and Smith ��	� present another possible approach� They proposed an iter�
ative sampling algorithm with stochastic variable and value ordering heuristics and
applied this algorithm to an extended version of the job�shop scheduling problem�
Iterative sampling alone involves randomly exploring di
erent paths in a search
tree� Including stochastic variable and value ordering heuristics implies that the
exploration of the search tree is guided by information provided by the heuristics�
For the algorithm described by Oddi and Smith� the amount of randomness at any
point in the search tree is dependant on the information provided by its heuristics�
If a heuristic evaluates a particular choices as being signi�cantly better than any
other� then the algorithm is likely to select that choice� However� if several choices
are evaluated as being almost as good 
or the same� as the best choice� then the
algorithm�s choice will be more random�

In this thesis� we have introduced a real�world optimization problem that we
modeled and solved using a constraint�based approach� We presented several pos�
sible ways to model the vehicle assembly line sequencing problem as a CSP� For
one of these models� we applied three di
erent techniques� All three of these tech�
niques improved results over TigrSoft�s greedy search algorithm for all six problem
instances� For four out of the six problem instances 
problems �� �� �� and �� we
were able to achieve� for all three solution techniques� improvements considered
signi�cant by TigrSoft� Furthermore� all three techniques were capable of �nding
solutions within TigrSoft�s thirty minute time requirement� We also demonstrated
the importance of decomposing the problem into one�day sub�problems� We con�
jectured that because of the tightness of the even distribution constraint and its
relationship with the other constraints� such a decomposition has little a
ect on the
potential quality of an overall solution� For nearly all of these one�day sub�problems�
we proved optimal solutions within a reasonable amount of time using the branch
and bound technique� In even less time� the branch and bound technique was able
to �nd nearly identical results without proving optimality for many sub�problems�
The local search technique was also able to �nd relatively good solutions� Given
the simplicity of this algorithm� it is likely that even better results could be found
with a local search approach� The loosening approach was the least successful of the
three algorithms 
most likely due to a poor selection of the constraints to loosen��
Improving this approach is likely possible� but the usefulness of such an improve�
ment is questionable due to the quality of the solutions obtained by the other two
simpler algorithms� Overall for our best method� the branch and bound technique�
we obtained improvements ranging between 	� and �	� for six real�world problem
instances�

Given these results� the most promising improvement appears to be in the prob�
lem speci�cation� Rede�ning the even distribution constraint in such a way that it
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does not tightly constrain batches from being shared between days would allow for
the solution quality to be improved even more� The problem with such a modi�ca�
tion is that it is not clear what de�nes a good distribution and rede�ning it would
involve an analysis at the business level� If such a modi�cation was done� it would
provide an even more challenging problem with the potential for improved results�
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