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Abstract

Time is an important aspect of information in medical domains. In
this paper, we adopt Allen’s influential interval algebra framework for
representing temporal information. The interval algebra allows the repre-
sentation of indefinite and incomplete information which is necessary in
many applications. However, answering interesting queries in this frame-
work has been shown to be almost assuredly intractable. We show that
when the representation language is sufficiently restricted we can develop
efficient algorithms for answering interesting classes of queries including:
(i) determining whether a formula involving temporal relations between
events is possibly true and necessarily true; and (ii) answering aggregation
questions where the set of all events that satisfy a formula are retrieved.
We also show, by examining applications of the interval algebra discussed
in the literature, that our restriction on the representation language often
is not overly restrictive in practice.

1 Introduction

Medical information and diagnostic systems must be able to represent and an-
swer queries about temporal information about events such as a patient’s med-
ical history or the course of a disease. In many such medical applications, the
ability to represent hierarchical, indefinite, and incomplete temporal informa-
tion is necessary. Kahn et al. [9] show this to be true in expert diagnostic
systems and in representing a patient’s medical history. Hamlet and Hunter [7]
also make this point using an account of a patient’s symptoms. Kahn et al.
[9] are led to develop an ad hoc approach to representing indefinite temporal



information and they describe how, given the representation, some interesting
classes of queries can be answered.

Another approach to representing temporal information is that used in tem-
poral databases where events are stamped with start and end times and the
granularity of the time stamp must be specified when the database is constructed
[17, 16]. Temporal databases are useful in many applications and allow a broad
range of query types. However, temporal databases lack the ability to represent
indefinite and incomplete temporal information. Further, difficulties can arise
if our temporal information is hierarchical or not all at the same level of detail,
regardless of the granularity of the time stamp chosen. If a smaller granularity
i1s chosen, we may have to represent more than we know about the times of
an event when the times of that event are not known to the required level of
precision. If a larger granularity is chosen, we may not be able to represent
all that we know about the temporal relations between events. For example, if
the granularity of the time stamp is the month an event occurred in, then we
cannot specify that, for two events that occurred in the same month, one event
preceded the other. The result is that we have lost information.

In this paper, we adopt Allen’s [2] interval algebra framework for representing
hierarchical and possibly indefinite and incomplete temporal information about
the relations between events or intervals of time. The framework is influential
and has been applied in such diverse areas as natural language processing [3],
diagnosis [15], and medical expert systems [7, 8]. However, it has been shown
that for Allen’s representation, answering many of the queries we would like to
be able to answer is NP-complete and thus almost assuredly intractable [25, 26].

We show that, if we sufficiently restrict the representation language, we can
develop efficient algorithms for answering interesting classes of queries. We
begin by reviewing previously known results for answering two fundamental
queries: (i) find the feasible relations between all pairs of events, and (ii) deter-
mine whether the temporal information is consistent. We show, in turn, how
these results can be used to develop new algorithms for (i) answering whether a
formula involving temporal relations between events is possibly true and neces-
sarily true; and (ii) answering aggregation questions where the set of all events
that satisfy a formula are retrieved.



We also show, by examining the natural language, diagnostic, and artificial
intelligence in medicine literature [18, 4, 15, 8, 7, 9], that our restriction on the
representation language often is not overly restrictive in practice.

2 Representing Temporal Information

In this section we review Allen’s framework for representing relations between
events or intervals of time (we use events and intervals interchangeably). We
then formalize the representation using networks of binary relations [14].

2.1 Allen’s framework

There are thirteen basic relations that can hold between two intervals (see
Fig. 1). In order to represent indefinite information, the relation between two
intervals 1s allowed to be a disjunction of the basic relations. Sets are used to
list the disjunctions. For example, the relation {m,o,s} between events A and
B represents the disjunction,

(A meets B) Vv (A overlaps B) V (A starts B).

Let I be the set of all basic relations, {b,bi,m,mi,o0,0i,ssi,d,diffieq}. Allen
allows the relation between two events to be any subset of I.

We use a graphical notation where vertices represent events and directed
edges are labeled with sets of basic relations. As a graphical convention, we
never show the edges (¢,4), and if we show the edge (¢, j), we do not show the
edge (j,¢). Any edge for which we have no explicit knowledge of the relation is
labeled with 7; by convention such edges are also not shown. We call networks
with labels that are arbitrary subsets of I, interval algebra or IA networks.

As an example of representing temporal information using IA networks, con-
sider the description of events shown in Fig. 2a. Not all of the temporal relations
between events are explicitly or unambiguously given in the description. The
first sentence tells us only that the interval of time over which Fred read the
paper intersects with the interval of time over which Fred ate breakfast. We
represent this as “paper {o0,0i,8,si,d,di,f,fi,eq} breakfast.” The second sentence
fixes the relationship between some of the end points of the intervals over which
Fred read his paper and over which Fred drank his coffee but 1t remains indef-
inite about others. We represent this as “paper {o,s,d} coffee.”t But we also
know that drinking coffee 1s a part of breakfast and so occurs during breakfast.
We represent this as “coffee {d} breakfast.” Finally, the information in the
third sentence is represented as “walk {bi} breakfast.” The resulting network
is shown in Fig. 2a, where we have drawn a directed edge from “breakfast” to

! Another possibility is the relation {b,m,o,s,d}, since the scenario where reading the paper
occurred entirely before drinking the coffee is not explicitly ruled out by the sentence.
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Figure 1: Basic relations between intervals

“walk” and so have labeled the edge with the inverse of the “bi” (after) relation.
All edges not shown are labeled with 7.

Vilain and Kautz [25, 26] show that answering the most fundamental ques-
tions of IA networks is NP-Complete and thus it is unlikely that efficient algo-
rithms can be found for answering interesting queries. In this paper, we restrict
the representation language and we show that, as a result, efficient algorithms
can be devised. In particular, a restricted class of TA networks can be trans-
lated into conjunctions of inequalities, equalities, and disequalities between the
endpoints of the intervals [25, 13]. For example, the interval relation {m,o,s}
between events A and B can be represented as,

(AT <ATH)AB <BY)A(AT<BT)A(AT >B7)A (AT <BY),

where A~ and AT represent the start and end points of interval A, respectively.
Figure 3 shows a graphical representation of the translation.

In this paper, we further restrict ourselves to translations involving only
the point-based relations <, <, =, >, > and 7, where ? indicates we have no
information about the relation between the points. That is, we do not allow
the # relation. We denote this restricted class of IA networks as Simple IA
networks or STA networks. Appendix A enumerates the relations, the subsets
of I, that are allowed for SIA networks and also gives the translation into the
point-based representation.



(a) Example: Fred was reading the paper while eating his breakfast. He put
the paper down and drank the last of his coffee. After breakfast he went for a
walk.

breakfast

{o,01,s,s1,d,di,f,fi,eq}

(b) Feasible relations:

breakfast

{o,s,d}

(¢) Consistent scenario:

paper
coffee

P

breakfast

Figure 2: Representing qualitative relations between intervals



Figure 3: Example translation between interval- and point-based representation

The question arises as to whether the restricted representation language is
still useful. Fortunately, the answer is yes as in many applications it is only
this restricted language of relations that is ever used. For example, Almeida
[4] and Song [18], in independent work on computer understanding of English
narratives, both adopt Allen’s framework but choose to use only relations that
are in our restricted language SIA. Hamlet and Hunter ([7]; see also [8]) adopt
Allen’s framework for representing temporal information in medical expert sys-
tems but, with the exception of the disjointedness relation {b,bi,m,mi}, choose
to use only relations in SIA (in their example, later temporal information is
used to strengthen the disjointedness relation to {b,m} which is in SIA). Kahn
et al. [9] devise a representation for temporal information for a medical diag-
nostic system. In Section 4.2, we show how this can be interpreted as an STA
network. Nokel [15] uses SIA networks in a diagnostic setting. With the excep-
tion of Nokel [15], it does not appear that the authors intentionally restricted
their representation language or were aware of the computational advantages;
rather, the relations used were simply the right ones for the task at hand.

2.2 Formalization of the representation

We formalize TA networks using networks of binary relations [14]. The advan-
tage of this approach is that it allows us to use previously known algorithms
and 1t allows us to say precisely what a query means and what constitutes a
correct answer to a query.

A network of binary relations [14] is defined as a set X of n variables
{X4,Xs,..., X}, a domain D; of possible values for each variable, and binary
relations between variables. A binary relation, C;;, between variables X; and
Xj, is a subset of the Cartesian product of their domains that specifies the
allowed pairs of values for X; and X; (i.e., C;; C D; x D;). For the networks of
interest here, we require that (xz;, #;) € Cj; < (2;,2;) € Cy;. An instantiation
of the variables in X is an n-tuple (z1, %2, ..., z,), representing an assignment of
z; € D; to X;. A consistent instantiation of a network is an instantiation of
the variables such that the relations between variables are satisfied. A network
is inconsistent if no consistent instantiation exists.



An TA network is a network of binary relations where the variables repre-
sent time intervals, the domains of the variables are the set of ordered pairs of
rational numbers {(s,e) | s < e}, with s and e representing the start and end
points of the interval, respectively, and the binary relations between variables
are represented implicitly by sets of the basic interval relations. For example, let
Ci; = {m,o} be the relation between variables X; and X; in some IA network.
The set of allowed pairs of values for variables X; and X; is given by,

{((si,€:), (s5,€5)) | (si,e;) meets (s;,e;) V (si,€;) overlaps (s;,¢€;)}.
The basic relations are disjoint. Hence, if an instantiation of variables X; and
X; satisfies Cj;, then one and only one of the basic relations in Cj; is satisfied.
A basic relation B € (5 is feasible with respect to a network if and only if

there exists a consistent instantiation of the network where B 1s satisfied. A
network is minimal if every B € Cj;,4,7 = 1,..., n is feasible.

3 Fundamental Queries

In this section, we review results for two fundamental reasoning tasks: Given
an STA network, (i) find the feasible relations between all pairs of intervals, and
(ii) determine whether the temporal information is consistent.

3.1 TFeasible relations

Consider again the description of events shown in Fig. 2a. From the given
temporal information we can make the simple inference that the “read paper”
event must have occurred before the “go for walk” event. That is, the only
feasible relation between those two events is that “read paper” occurred before
“go for walk”. All other temporal relations, such as the two events occurring
simultaneously, are infeasible. Fig. 2b shows the feasible relations between all
pairs of events. Many of the relations between events have been strengthened.

Kautz [25, 26] shows that finding the feasible relations of an TIA network is
NP-Complete. Allen [2] gives an O(n?®) algorithm for finding an approximation
to the feasible relations of an IA network. Van Beek and Cohen [20, 23] show
that Allen’s algorithm is exact for SIA networks. Van Beek and Cohen also show
that a simpler and well-known generalization of the Floyd-Warshall algorithm
[1] can be used to find the minimal network of an SIA network. (To use the
Floyd-Warshall algorithm or Allen’s algorithm, we need to specify the operations
of intersection (N) and composition (-); see [2, 12].)

FLOYD-WARSHALL(C)

1. for k< 1ton

2 do for i< 1ton

3. do for j«— 1lton

4 do Cij — Cij n (Czk . ij)



3.2 Consistent instantiation

Consider again the description of events shown in Fig. 2a. There are several
possible scenarios that are consistent with the description of events. Fig. 2c
shows one such scenario. Another possible consistent scenario is one where Fred
starts to read his paper before he starts his breakfast. A consistent instantiation
that would give the arrangement shown in Fig. 2c is, paper + (1,3), breakfast
+ (0,5), walk « (6,7), and coffee « (2,4), where we are equating the names
of the vertices with the variables they represent.

As with finding the feasible relations, it is known that the task of finding a
consistent instantiation of an IA network is NP-Complete [25, 26]. However,
STA networks can be translated into a set of linear inequalities of the form X; —
X; <0, X;—X; <0, and X; —X; = 0 and thus finding a consistent instantiation
reduces to finding a solution to a set of linear inequalities. Because of the
special structure of the inequalities, a solution can be found using a shortest-
path algorithm, such as the Floyd-Warshall algorithm (see [21] for more details).
However, even more advantage can be taken of the special structure of the
inequalities and van Beek [22] gives an O(n?) time algorithm for SIA networks
(the algorithm also solves the more general problem of finding a consistent
instantiation of a point-based network where the # relation is allowed between
points). Consistent-Instantiation is a version of that algorithm which decides
whether a consistent instantiation exists.

CONSISTENT-INSTANTIATION(C')

1. Translate SIA network C' into a point-based network P.
2. TIdentify the strongly connected components (SCCs) of P using only edges
labeled with {<}, {<,=}, and {=}. Let S1,..., Sy be the SCCs found.
fori,j «m

do label + {<,=,>}

for v € S;,w e S;
do label «— label N\ P,y
if label = (f

then return(false)

WO 00 =1 O O = W

return(true)

The intuition behind the algorithm and a detailed explanation and proof of
correctness can be found elsewhere [22, 21]. Here we only briefly clarify Step 2.
In Step 2, we partition the vertices into equivalence classes S;, 1 < ¢ < m, such
that vertices v and w are in the same equivalence class if and only if there 1s
a path from v to w and a path from w to v using only edges labeled with <,
<, or = (in the algorithm the relations are represented using set notation, so,
for example, < is represented as {<,=}). Determining the equivalence classes
is the same as identifying the strongly connected components of the graph and
efficient algorithms are known (Tarjan [19]).



4 Complex Queries

In this section, we develop efficient query processing algorithms for (i) determin-
ing whether a formula involving temporal relations between events is possibly
true and necessarily true; and (ii) answering aggregation questions where the
set of all events that satisfy a formula are retrieved.

4.1 True-or-false questions

Possibly true. Let E = {e1,...,e,} be the set of all events and let ¢ be a
variable-free formula involving relations between events built up from the logical
connectives implication, equivalence, conjunction, disjunction, and negation.
For example, let ¢ = (ex{d}es = e1{o,s}es). We want to be able to answer
true-or-false questions of the form,

Is it possibly true that ¢7

We write this as O(¢). The query is asked with respect to an SIA network C'
that represents the temporal information. Informally, we are asking whether
there 1s some way of arranging the events that is consistent with our temporal
information and also makes ¢ true. More formally, (@) is true if and only if
there exists a consistent instantiation of C' such that ¢ 1s also satisfied.

Procedure Possible gives an algorithm for answering &(¢) queries. The al-
gorithm makes use of the procedure Consistent-Instantiation for determining
whether an STA network is consistent or inconsistent. The input to the algo-
rithm is a variable-free formula, ¢, and an STA network represented as an n x n
matrix C', where element Cj; is the label on edge (3, j).

To understand the algorithm, it is important to note that an SIA network,
in logical notation, 1s the conjunction,

(61R1161 FANERRIAN 61R1n6n) FANEERWAN (6an161 FANERRIAN eannen), (1)

where R;; is the relation between event e; and e;. The basic idea of the algorithm
is now as follows. The query is first converted to an equivalent form called
disjunctive normal form,

(6Z'Rij6j FANERRIAN 6kRk161) VeV (elleem FANERRIAN emRmnen). (2)

Of course, for the query to be true, one of the disjuncts must be true. For each
disjunct, d;, of Eqn. 2 in turn, we form the conjunction of d; and Eqn. 1 and test
whether a consistent instantiation exists. If a consistent instantiation exists, the
query is possibly true. If, for every disjunct, a consistent instantiation does not
exist, the query is false.

We now describe the algorithm in somewhat more detail. In Step 1 of the
algorithm, we eliminate all occurrences of the operators =, <=, and < by rewrit-
ing ¢ as an equivalent formula using only the =, A, and V operators.



In Step 2, we distribute negations through until each negation applies to a
single literal which will be of the form, e; R;;e;. Because the basic relations are
mutually exclusive and exhaustive, we can eliminate all negations by using the
equivalence,

(e Rijes) & ei(l — Rij)ej,

where (I — R;;) is the set difference between the set of all basic relations, I, and
the set of basic relations between event e; and event e;.

In Step 3, we ensure that each relation is in SIA as procedure Consistent-
Instantiation is only correct for SIA networks. It 1s, of course, advantageous to
decompose any relation not in STA into as few relations as possible that are in
SIA. For example, suppose R;; = {b,bi,m,mi}, which is not in SIA. An equiva-
lent formulation is the disjunction, e;{b}e;Ve;{m}e;Ve;{mi}e; Ve;{bi}e;, where
all of the relations are now in SIA. However, a better decomposition would be
the equivalent disjunction, e;{b, m}e; V e;{bi, mi}e;. A good decomposition of
an R;; can be accomplished as follows. The elements of the language SIA are
ordered according to decreasing cardinality. A pass through the elements is then
made, checking whether each element of SIA is a subset of the R;; we wish to
decompose. If it is, we remove it from R;;.

After Step 3, the formula consists of disjunctions and conjunctions of literals.
In Step 4, the formula is put in disjunctive normal form. In Steps 5-11, for each
disjunct, d;, of the formula, we form the conjunction of d; and the STA network
and test whether a consistent instantiation exists.

PossiBLE(C, F)

Eliminate all implications and equivalences from F'.
Distribute negations in F.
Intersect each R;; with Cj; and decompose any R;; ¢ SIA.
Convert F' to disjunctive normal form.
for each digjunct d in F
do W« C
for each conjunct e; R;;e; in d
do VVZ']' — VVZ']' N Rij
if CONSISTENT-INSTANTIATION(W)
then return(true)
return(false)

— O O 00 =1 O O W=

—_ =

We assume for all the examples of this section, that the queries are asked
with respect to the temporal information given in Fig. 2. Further, we assume
that C' has been made minimal, say by applying the Floyd-Warshall algorithm;
that is, C' is the matrix representation of the minimal SIA network shown in

Fig. 2b.

10



Example 1. Let the query be, Is 1t possibly true that Fred started to read
his paper before he started his breakfast and before he started his coffee? That
is, we are asking whether it is possible that (p~ < b™) A (p~ < ¢7), where p~
is the start point of the interval of time over which Fred read his paper. In the
interval-based representation, we have

¢ = p{b,m,o,di fi}bA p{b,m,o,di,fi}c

The query is then &(¢). In procedure Possible, Steps 1 and 2 do not change the
formula. In Step 3, each ¢; R;;e; in the formula is intersected with Cj; to give,

p{o}b Ap{o}c,

and, in this example, all of the relations are in STA. The formula is already in
disjunctive normal form (Step 4). The SIA network that results form applying
Steps 510 i1s as shown in Fig. 2b except that the label on the edge from paper
to breakfast is {o} and the label on the edge from paper to coffee is {o}. The
resulting SIA network is consistent. Hence, O(¢) is true. For example, paper
+ (1,4), coffee « (3,5), breakfast + (2,6), and walk < (7,8) is one possible
consistent instantiation of the network which also satisfies ¢.

Theorem 1 Let ¢ be a variable-free formula involving only interval relations
between events. Procedure Possible correctly determines the truth value of O(¢).

It is important to note that, while the queries we can ask are restricted to
being variable-free, they are not restricted to only contain relations in SIA|
but can contain relations outside of SIA. For example, O(p{b, bitw) is a valid
query, where the relation {b,bi} is in IA but not in SIA.

In the rest of the paper, procedure Possible is used as the basis of other
algorithms for answering complex queries, so some discussion of its complexity
is in order. In Step 4, the conversion of a formula F' of size & into disjunctive
normal form can, in the worst case, result in a formula with O(2%) disjuncts
(for example, if F is in conjunctive normal form). Hence, in the worst case, the
number of calls to procedure Consistent-Instantiation can be exponential in the
length of F. Our claim then that algorithm is efficient rests on the assumption
that the length of an input formula F' is bounded and small. In related work,
Ladkin [11] gives an exponential time procedure for determining whether an
arbitrarily quantified formula is consistent.

Necessarily true. Again, let E = {e1,... e, } be the set of all events and let
¢ be a variable-free formula involving relations between events built up from the
logical connectives. We also want to be able to answer true-or-false questions
of the form,

Is it necessarily true that ¢7

11



We write this as O(¢). Informally, we are asking whether it must be the case that
@ is true; 1.e., that there is no way of arranging the events that is consistent with
our temporal information and also makes ¢ false. Again, the question 1s asked
with respect to some SIA network C' that represents the temporal information.
More formally, O(¢) is true if and only if, in every consistent instantiation of
C, ¢ 1s satisfied.

Procedure Necessary gives an algorithm for answering O(¢) queries. The
algorithm is extremely simple given that the following equivalence exists between
the two different classes of queries, O(¢) < —O(—¢). Again, the input to the
algorithm is a variable-free formula, ¢, and an SIA network represented as an
n x n matrix C.

NECESsARY(C, F)
1. return(—PossIBLE(C, —F))

Example 2. Let the query be, Is 1t necessarily true that either reading the
paper starts breakfast or reading the paper overlaps or starts drinking coffee?
More formally, let ¢ = (p{s}bVp{o,s}c). The query is O(¢), which is equivalent
to 7O(—¢). In procedure Possible, the negations are pushed through until all
negations apply only to literals (Step 2),

s —(p{s}bV p{o,s}c)

—(p{s}b) A =(p{o,s}c)

= p{b,bi,m,mi,o,oi,si,d,dif fieq}bA
p{b, bi, m, mi,oi,si,d,di,f fieq}c

Each e;R;;e; in the formula is intersected with Cj; (Step 3) to give,
pi{o,d}b A p{d}c.

The relation {o,d} is not in SIA and is represented as a disjunction of relations
that are in STA,

(p{o}b Vv p{d}b) Ap{d}ec.

The formula is converted to disjunctive normal form (Step 4),

(plotb Ap{d}ic) V (p{d}b A p{d}c).

The first disjunct is (p{o}b Ap{d}c) (Step 5) and no consistent instantiation is
found. The second disjunct is (p{d}b A p{d}c) and a consistent instantiation
is found. For example, paper < (3,4), coffee « (2,5), breakfast + (1,6), and
walk < (7, 8) is one possible consistent instantiation of the network which also
satisfies ~¢. Hence, O(—¢) is true. Hence, O(¢) is false as ¢ is not satisfied in
every consistent instantiation.

12



Example 3. Let the query be, Is it necessarily true that, if reading the
paper overlaps or starts breakfast, then reading the paper overlaps or starts
drinking coffee? More formally, let ¢ = (p{o,s}b = p{o,s}c). The query is
O(¢), which is equivalent to =<>(—¢). In procedure Possible, the implication
is eliminated by substituting an equivalent formula using only disjunction and
negation (Step 1) and the negations are pushed through until all negations apply
only to literals (Step 2),

-¢ = -=(p{o,s}b = p{o,s}c)

=(=(p{o,s}b) V p{o,s}c)

p{o,s}b A =(p{o,s}c)

= p{o,stb A p{b,bi,m, mi,oi,si,d,di,{ fieq}c

Each e;R;;e; in the formula is intersected with Cj; (Step 3) to give,

p{o,stb Ap{d}c.

In this example, all of the relations are in STA and the formula is already in
disjunctive normal form (Step 4). The SIA network that results from applying
Steps 510 i1s as shown in Fig. 2b except that the label on the edge from paper
to breakfast is {o,s} and the label on the edge from paper to coffee is {d}. The
resulting STA network is inconsistent. Hence, O(—¢) is false. Hence, O(¢) is
true as ¢ is satisfied in every consistent instantiation.

Theorem 2 Let ¢ be a variable-free formula involving only interval relations
between events. Procedure Necessary correctly determines the truth value of

0(¢)-

4.2 Aggregation questions

Let E = {e1,...,en} be the set of all events and let ¢ be a quantifier-free
formula with one free (unquantified) variable involving relations between events
built up from the logical connectives. For example, let ¢ = (z{d}esVz{0,s}es).
An important class of queries we want to be able to answer are aggregation
queries of the form,

Retrieve the set of events for which ¢ is possibly (necessarily) true?
More formally, the answer to such a query is the set S such that,
S={e[(zeE)n0(¢)},

where O is one of the operators < or O.

Procedure Retrieve gives a straightforward algorithm for answering aggre-
gation queries. The input to the algorithm is an SIA network represented as a
matrix C', a set of events £, and a quantifier-free formula with one free variable.

13



The argument F to Retrieve does not have to be the set of all known events. It
could possibly be the set of events returned from a previous call to Retrieve. As
well, we assume that sets of events can be formed and named when we initially
represent our temporal information as an SIA network. For example, when
representing a patient’s medical history, a natural set of events to name is the
visits the patient has made to the hospital. The algorithm is easily generalized
to accept as arguments multiple sets of events and a formula with multiple free
variables and to return the set of all tuples of events that satisfy the formula
(an example is given below). Finally, we note that in an implementation of the
procedure, we would be careful to not redo Steps 1-4 of procedure Possible each
time through the for loop.

RETRIEVE(C, E, F')

1. S« 0

2. foreachec FE

3. do apply substitution to ¥

4 if (operator(F) = & A PossiBLE(C, F)) V

(operator(F) = O A NECESSARY(C, F'))
5. then S « SUe
6. return(S)

Examples of the algorithm are drawn from information about a patient’s
medical history. Kahn et al. [9] develop an ad hoc approach for representing
hierarchical and indefinite temporal information for a medical diagnostic system
(see Fig. 4). Two kinds of links are used in their temporal network. A difficulty
with their approach is that it is not clear exactly what a link means and what
the absence of a link means. The temporal information in the network of Fig.
4 can be represented as an SIA network with the advantages that we know
exactly what a link means and we have a richer representation language. In
the STA network, the absence of an arc means the relation between the two
events is labeled with 7, the set of all basic relations. The dashed arrows in
the original network are labeled with the before relation in the SIA network
and the solid arrows are labeled with the during relation with two exceptions.
The exceptions result from the fact that hierarchical information is being repre-
sented. The chemotherapy interval consists of three subintervals cyclel, cycle2,
and cycle3. The exceptions are (i) the relation between the interval cyclel and
the interval chemotherapy should be the starts relations; and (ii) if cycle3 is
the last chemotherapy treatment, the relation between cycle3 and chemother-
apy should be the finishes relation; otherwise the relation is the during relation.
Similar reasoning applies to the radiation therapy interval which consists of
three subintervals representing three separate radiation treatments. (See [2, 10]
for discussions about representing hierarchies of events in IA networks.)
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patient

T

chemotherapy radiation therapy
cyclel - - —+ cycle2 - - - cycle3 radl----rad2 --- - rad3

[N X

visit] - - > visit2 - - » visit3 - - » visit4 - - > visith - - » visit6 - - » visit7
Figure 4: A patient’s medical history (Kahn et al. [9])

To complete the temporal information used in our examples, we adopt a
suggestion by Vilain [24] and use dates as time interval constants (see Fig. 5).
This allows queries about the relationship between an event and a date as well
as the relationship between two events.

{m}

{d} ()

P} G P i - i)

Figure 5: Representing information about dates

Example 4. Let the query be, “Retrieve all visits that necessarily occurred
during 1991.” The answer to the query is the set S, such that,

S = {z] (= € visits) AO(x{d}1991)}
{visit6, visitT}.

Example 5. Let the query be, “Retrieve all pairs of chemotherapy cycles
and radiation treatments that necessarily intersect.” We assume in this example
that the algorithm has been generalized to accept multiple sets of events and a
formula with multiple free variables and to return the set of all tuples of events
that satisfy the formula. We also assume that cycles = {cyclel, cycle2, cycle3}

15



and that rads = {radl, rad2, rad3}. The answer to the query is the set S, such
that,

S = A{(=,y) | (x € cycles) A (y € rads) A
O(z{o,ol,s,si,d,di, f, fi,eq}y) }
= {(cycle2,radl), (cycle3, rad2)}.

In practice, each node in the STA network would contain additional informa-
tion about the associated event. For example, cyclel, a chemotherapy treatment
event, could contain, among other things, dosage information. Additional rou-
tines would then be defined to, for example, print parts of that information or
find the maximum of a numeric value, once the desired set of events had been
retrieved.

Theorem 3 Let a query be O(¢$) where O is one of the operators O or O, and ¢
15 a quantifier-free formula with one free variable involving only interval relations
between events. Procedure Retrieve correctly determines the set of events that

satisfy O(¢).
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5 Conclusions

Representing and reasoning about hierarchical, indefinite, and incomplete tem-
poral information is important in many medical information and diagnostic
systems. In this paper, we adopted a restricted version of Allen’s interval al-
gebra framework for representing such information. We showed how we could
answer two important classes of temporal queries: (i) true-or-false questions as
to whether a formula involving temporal relations between events is possibly
true and necessarily true; and (ii) aggregation questions where the answer to
the query 1s the set of all events that satisfy a formula.

In current work, we are looking at algorithms for two additional classes of
queries: (i) questions about whether a set of events can be linearly ordered
and, if so, return the first, last, or kth event; and (ii) hypothetical or “what
if” questions where, assuming that a formula involving temporal relations be-
tween events is true, the consequences of the formula are determined. Ordering
questions should prove useful in contexts such as the patient’s medical history
shown in Fig. 4 where we want to be able to ask questions such as “What was
the dosage given during the last visit” (see [9] for some related work on this
problem). Hypothetical questions should prove useful in diagnostic reasoning
(see [7] for some related work on this problem).

Allen’s framework allows the representation of qualitative relations between
events and between events and calendar dates, but does not allow the repre-
sentation of quantitative information about the duration of events. Dechter et
al. [6] and Dean [5] give frameworks for representing quantitative temporal in-
formation. For future work we intend to look at answering queries in these two
alternative frameworks.
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search Fund of the University of Alberta and the Natural Sciences and Engi-
neering Research Council of Canada.
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A Appendix

In this appendix, we enumerate SIA and the translation into the point-based
representation. A~ and AT represent the start and end points of interval A,
and A~ < AT and B~ < BT are true for every translation. Inverses are not
shown; for example, {bi} is also in SIA.

A™B~ A™Bt ATB~ AtB* A™B~ A™Bt ATB~ AtB*t
{b} ? ? < ? {b,m,o0,s} < ? ? <
{m} ? ? = ? {b,m,o,fi} < ? ? <
{o} < ? > < {m,o,s,d} ? ? > <
{s} = ? ? < {m,o,di,fi} < ? > ?
{d} > ? ? < {o,s,fi,eq} < ? > <
{f} > ? ? = {s,d,f,eq} > ? ? <
{eq} = ? ? = {b,m,o,s,d} ? ? ? <
{(bm} 7 ? < 2 {b,m,o,di,fi} < 2 ? ?
{m,o} < ? > < {m,o,s,fi,eq} < ? > <
{o,s} < ? > < {b,m,o,s,fi,eq} < ? ? <
{o,fi} < ? > < {o,s,d,f,fi,eq} ? ? > <
{s,d} > ? ? < {o,s,s1,di,fi,eq} < ? > ?
{s,eq} = ? ? < {m,o,s,d,f,fi,eq} ? ? > <
{d,f} > ? ? < {m,o,s,si,di,fieq} < ? > ?
{f,eq} > ? ? = I—{b,m,o,s,d} ? ? ? >
{(bmol < 2 ? < I-{bmodifi} > 2 ? ?
{m,0,s} < ? > < I—{b,bi,m,mi} ? < > ?
{mofil < 2 > < I—{bbim} ? < > 7
{os,d} 7 ? > < I—{b,m} ? ? > ?
fodifil < 72 > 2 [-{bbi} 7 < > 7
{s,si,eq} = ? ? ? I—{b} ? ? > ?
{fficqt ? ? ? = ? ? ? ?
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