
A Theoretical Evaluation of Selected Backtracking

Algorithms�

Grzegorz Kondrak and Peter van Beek

Department of Computing Science

University of Alberta

Edmonton� Alberta� Canada T�G �H�

kondrak�cs�toronto�edu� vanbeek�cs�ualberta�ca

Appears in� Arti�cial Intelligence� ���	�
�	��� �����

Abstract

In recent years� many new backtracking algorithms for solving constraint satisfac�
tion problems have been proposed� The algorithms are usually evaluated by empirical
testing� This method� however� has its limitations� Our paper adopts a di�erent� purely
theoretical approach� which is based on characterizations of the sets of search tree nodes
visited by the backtracking algorithms� A notion of inconsistency between instantia�
tions and variables is introduced� and is shown to be a useful tool for characterizing
such well�known concepts as backtrack� backjump� and domain annihilation� The char�
acterizations enable us to� �a� prove the correctness of the algorithms� and �b� partially
order the algorithms according to two standard performance measures� the number of
nodes visited� and the number of consistency checks performed� Among other results�
we prove the correctness of Backjumping and Con�ict�Directed Backjumping� and show
that Forward Checking never visits more nodes than Backjumping� Our approach leads
us also to propose a modi�cation to two hybrid backtracking algorithms� Backmark�
ing with Backjumping �BMJ� and Backmarking with Con�ict�Directed Backjumping
�BM�CBJ�� so that they always perform fewer consistency checks than the original
algorithms�

� Introduction

Constraint�based reasoning is a simple� yet powerful paradigm in which many interesting
problems can be formulated� It has received much attention recently� and numerous methods
for dealing with constraint networks have been developed� The applications include graph
coloring� scene labelling� natural language parsing� and temporal reasoning�

The basic notion of constraint�based reasoning is a constraint network� which is de�ned
by a set of variables� a domain of values for each variable� and a set of constraints between
the variables� To solve a constraint network is to �nd an assignment of values to each
variable so that all constraints are satis�ed ���� ����

Backtracking search is one of the methods of solving constraint networks� The generic
backtracking algorithm was �rst described more than a century ago� and since then has been
rediscovered many times ���� In recent years� many new backtracking algorithms have been

�A preliminary version of this paper appeared in Proceedings of the Fourteenth International Joint Con�

ference on Arti�cial Intelligence� pages �������� Montreal� Quebec� ����� where it was selected for an
Outstanding Paper Award�

�



proposed� The basic ones include Backmarking �	�� Backjumping �
�� Forward Checking ���
���� and Con�ict�Directed Backjumping ��
�� Several hybrid algorithms� which combine two
or more basic algorithms� have also been developed ��
��

There is no simple answer to the question of which backtracking algorithm is the best
one� First� the performance of backtracking algorithms depends heavily on the problem
being solved� Often� it is possible to construct examples of constraint networks on which an
apparently very e
cient algorithm is outperformed by the most basic chronological back�
tracking� Second� it is not obvious what measure should be employed for comparison� Run
time is not a very reliable measure because it depends on hardware and implementation� and
so cannot be easily reproduced� Besides� the cost of performing consistency checks �checks
that verify that the current instantiations of two variables satisfy the constraints� cannot
be determined in abstraction from a concrete problem� A better measure of the e
ciency
of a backtracking algorithm seems to be the number of consistency checks performed by
the algorithm� although it does not account for the overhead costs of maintaining complex
data structures� Another standard measure is the number of nodes in the backtrack tree
generated by an algorithm�

The need for ordering algorithms according to their e
ciency has been recognized before�
Nudel ��	� ordered backtracking algorithms according to their average�case performance�
Prosser ��
� performed a series of experiments to evaluate nine backtracking algorithms
against each other� However� such an approach is open to the criticism that the test problems
are not representative of the problems that arise in practice� Even a theoretical average�
case analysis is possible only if one makes simplifying assumptions about the distribution of
problems� Prosser commented on his results�

It is naive to say that one of the algorithms is the �champion�� The algorithms
have been tested on one problem� the ZEBRA� It might be the case that the
relative performance of these algorithms will change when applied to a di�erent
problem�

When Prosser�s results are examined� it is easy to notice that in some cases one algorithm
performed better than another in all tested instances� Could this mean that one algorithm
is always better than another� Such a hypothesis can never be veri�ed solely by experimen�
tation� the relationship has to be proven theoretically� In this paper we show that some of
these cases indicate a general rule� whereas other do not� Moreover� we present a partial
ordering of several backtracking algorithms which is valid for all instances of all constraint
satisfaction problems�

Our approach is purely theoretical� We analyze several backtracking algorithms with the
purpose of discovering general rules that determine their behaviour� A notion of inconsis�
tency between instantiations and variables is introduced� and is shown to be a useful tool for
characterizing such well�known concepts as backtrack� backjump� and domain annihilation�
Using the new notion� we formulate the necessary and su
cient conditions for a search tree
node to be visited by each backtracking algorithm� These characterizations enable us to
construct partial orders �or hierarchies� of the algorithms according to two standard per�
formance measures� the number of visited nodes� and the number of performed consistency
checks�

The orderings are surprisingly regular and contain some non�intuitive results� For in�
stance� it turns out that the set of nodes visited by Forward Checking is always a subset of
the set of nodes visited by Backjumping� This fact has never been reported before although
the two algorithms have been often empirically compared� Also� the orderings con�rm and
clarify the experimental results published by other researchers� The characterizing condi�
tions imply simple and elegant correctness proofs of the characterized algorithms� Two of
these algorithms� Backjumping �BJ� and Con�ict�Directed Backjumping �CBJ� have not

�



been formally proven correct before��
The orderings proved also to be a stimulus for developing more e
cient backtracking

algorithms� The idea of combining Backjumping and Backmarking into a new hybrid algo�
rithm was �rst put forward by Nadel ����� Such an algorithm� called BMJ� was presented
by Prosser ��
�� BMJ� however� does not retain all the power of both base algorithms in
terms of consistency checks� Prosser observed that on some instances of the zebra problem
BMJ performs more consistency checks than BM� In the conclusion of his paper he posed
the following question�

It was predicted that the BM hybrids� BMJ and BM�CBJ� could perform
worse than BM because the advantages of backmarking may be lost when jump�
ing back� Experimental evidence supported this� Therefore� a challenge remains�
How can the backmarking behaviour be protected�

In this work we answer the question by modifying the two BM hybrids� Backmarking with
Backjumping �BMJ�� and Backmarking with Con�ict�Directed Backjumping �BM�CBJ�� so
that they always perform fewer consistency checks than both corresponding basic algorithms�

Apart from presenting speci�c results for particular backtracking algorithms� our goal
is also to propose a general methodology� techniques and de�nitions that can be used
for characterizing any backtracking algorithm� This kind of theoretical analysis may be
performed for any new backtracking algorithm in order to see if it belongs in the existing
hierarchy�

� Background

We begin with some concepts of the constraint satisfaction paradigm� then give a brief
description of four basic backtracking algorithms� and �nally present an example that shows
the algorithms at work�

De�nition � A binary constraint network ���� consists of a set of n variables fx�� � � � � xng�
their respective value domains� D�� � � � � Dn� and a set of binary constraints� A binary con�
straint or relation� Rij� between variables xi and xj� is any subset of the product of their
domains� �that is� Rij � Di �Dj�� We denote an assignment of values to a subset of vari�
ables by a tuple of ordered pairs� where each ordered pair �x� a� assigns the value a to the
variable x� A tuple is consistent if it satis�es all constraints on the variables contained in the
tuple� A �full� solution of the network is a consistent tuple containing all variables� A partial
solution of the network is a consistent tuple containing some variables� For simplicity� we
usually abbreviate ��x�� a��� � � � � �xi� ai�� to �a�� � � � � ai��

The next de�nition introduces a notion of consistency between a tuple of instantiations
and a set of variables� This notion is fundamental to all results presented in this work�

De�nition � A tuple ��xi� � ai��� � � � � �xiu� aiu�� is consistent with a set of variables fxj� � � � � � xjvg
if there exist instantiations aj� � � � � � ajv of the variables xj� � � � � � xjv respectively� such that the
tuple ��xi� � ai��� � � � � �xiu� aiu�� �xj�� aj��� � � � � �xjv � ajv�� is consistent

�� A tuple is consistent
with a variable if it is consistent with a one�element set containing this variable�

�Both BJ and CBJ were �rst presentedwithout correctnessproofs and no direct proofs of these algorithms
have appeared in the literature� However� proofs have been given for certain algorithms related to CBJ
	
� �� ����

�Throughout the paper we assume that all domain values satisfy the corresponding unary constraints�
�The variables in the tuple and in the set of variables need not be distinct� We assume� however� that a

variable is always assigned only a unique value�

�



Example �� The n�queens problem is how to place n queens on a n � n chess board
so that no two queens attack each other� There are several possible representations of this
problem as a constraint network �see ������ The one we use identi�es board columns with
variables� and rows with domain values� Thus� variable xi represents the i�th column� and its
domainDi contains n values representing each row� The constraint between variables xi and
xj can be expressed as Rij � f�ai� aj� � �ai �� aj�� �ji� jj �� jai� aj j�g� Figure � shows two
instances of the ��queens problem� The instance on the left depicts tuple ��x�� ��� �x�� ����
which is a partial solution� The tuple is itself consistent and it is consistent with the set
of variables fx�� x�� x�g and all its subsets� including the empty set� It is inconsistent with
all sets of variables that include x�� It is consistent with variables x�� x�� and x�� but not
with variable x�� The instance on the right depicts tuple ��x�� ��� �x�� ��� �x�� ��� �x�� ���� or
simply ���������� which is a full solution� The tuple is consistent with all sets of variables�
Since the network has a solution� the empty tuple is also consistent with all sets of variables�

Q

Q

1 2 3

3

1

2

4

4

1 2 3

3

1

2

4

4

Q

Q

Q

Q

Figure �� A partial and a full solution to the ��queens problem� The shaded squares denote
the positions which are excluded from consideration by the already placed queens�

The idea of a backtracking algorithm is to extend partial solutions� At every stage of
backtracking search� there is some current partial solution which the algorithm attempts to
extend to a full solution� Each variable occurring in the current partial solution is said to
be instantiated to some value from its domain� For ease of exposition� we assume the static
order of instantiation in which variables are added to the current partial solution according
to the prede�ned order� x�� � � � � xn� �This assumption is later relaxed in Section 
�� It is
convenient to divide all variables into three sets� past variables �already instantiated�� current
variable �now being instantiated�� and future variables �not yet instantiated�� A dead�end
occurs when all values of the current variable are rejected by a backtracking algorithm when
it tries to extend a partial solution� In such a case� some instantiated variables become
uninstantiated� that is� they are removed from the current partial solution� This process is
called backtracking� If only the most recently instantiated variable becomes uninstantiated
then it is chronological backtracking� Otherwise� it is backjumping� A backtracking algorithm
terminates when all possible assignments have been tested or a certain number of solutions
have been found�

A backtrack search may be seen as a search tree traversal� In this approach we identify
tuples �assignments of values to variables� with nodes� the empty tuple is the root of the
tree� the �rst level nodes are ��tuples �representing an assignment of a value to variable
x��� the second level nodes are ��tuples� and so on� The levels closer to the root are called
shallower levels� and the levels farther from the root are called deeper levels� Similarly�
the variables corresponding to these levels are called shallower and deeper� The nodes that
represent consistent tuples are called consistent nodes� The nodes that represent inconsistent
tuples are called inconsistent nodes� We say that a backtracking algorithm visits a node if
at some stage of the algorithm�s execution the instantiation of the current variable and the
instantiations of the past variables form the tuple identi�ed with this node� The nodes
visited by a backtracking algorithm form a subset of the set of all nodes belonging to the
search tree� We call this subset� together with the connecting edges� the backtrack tree

�



generated by a backtracking algorithm� Backtracking itself can be seen as retreating to
shallower levels of the search tree� Whenever some variables become uninstantiated and
xh is set as the new current variable� we say that the algorithm backtracks to level h� We
consider two backtracking algorithms to be equivalent if on every constraint network they
generate the same backtrack tree and perform the same consistency checks�

Chronological Backtracking �BT� ��� is the generic backtracking algorithm� The con�
sistency checks between the instantiation of the current variable and the instantiations of
the past variables are performed according to the original order of instantiations� If a con�
sistency check fails� the next domain value of the current variable is tried� If there are no
more domain values left� BT backtracks to the most recently instantiated past variable� If
all checks succeed� the branch is extended by instantiating the next variable to each of the
values in its domain� A solution is recorded every time that all consistency checks succeed
after the last variable has been instantiated�

Backjumping �BJ� �
� is similar to BT� except that it behaves more e
ciently when no
consistent instantiation can be found for the current variable xi �at a dead�end�� Instead of
chronologically backtracking to the preceding variable� BJ backjumps to the deepest past
variable xh that was checked against the current variable� Changing the instantiation of xh
may allow a consistent instantiation to be found for xi� whereas changing the instantiation
of any of the variables between xi and xh is guaranteed to be fruitless since we will not have
changed the reason for the dead�end�

Con�ict�Directed Backjumping �CBJ� ��
� has a more sophisticated backjumping be�
haviour than BJ� Every variable has its own con�ict set that contains the past variables
which failed consistency checks with its current instantiation� Every time a consistency
check fails between an instantiation ai of the current variable xi and an instantiation ah of
some past variable xh� the variable xh is added to the con�ict set of xi� When there are no
more values to be tried for the current variable xi� CBJ backtracks to the deepest variable
xh in the con�ict set of xi� At the same time� the variables in the con�ict set of xi� with the
exception of xh� are added to the con�ict set of xh� so that no information about con�icts
is lost�

In contrast with the above backward checking algorithms� Forward Checking �FC� ��� ���
performs consistency checks forward� that is� between the current variable and the future
variables� After the current variable has been instantiated� the domains of the future vari�
ables are �ltered in such a way that all values inconsistent with the current instantiation are
removed� If none of the future domains is annihilated� the next variable becomes instanti�
ated to each of the values in its �ltered domain� Otherwise the e�ects of forward checking
are undone� and the next value is tried� If there are no more values to be tried for the
current variable� FC backtracks chronologically to the most recently instantiated variable�
A solution is recorded every time the last variable becomes instantiated�

Example �� Figure � shows a fragment of the backtrack tree generated by Chronological
Backtracking �BT� for the 
�queens problem� White dots denote consistent nodes� Black
dots denote inconsistent nodes� For simplicity� when referring to nodes we omit commas and
parentheses� The board in the upper right corner depicts the placing of queens corresponding
to node �	� in the backtrack tree� Capital Q�s on the board represent queens which have
already been placed on the board� The shaded squares represent positions that must be
excluded due to the already placed queens� The numbers inside the squares indicate the
�rst queen responsible for the exclusion� ����� correspond to the �rst� second� and third
queen respectively�

The dark�shaded part of the tree contains two nodes that are skipped by Backjumping
�BJ�� The algorithm detects a dead�end at variable x� when it tries to expand node �	�
��
It then backjumps to the deepest variable in con�ict with x�� in this case x�� The backjump
is represented by a dashed arrow� We could say that BJ discovers that the tuple ���	���
��

	



25314

3

2

4

5

6

25

253

25362531

1

2

3

4

5

6

1 2 3 4 5 6

1

1

1

1 1 1 1

1

1

2 2 2

2

2

3

3 3

3

3

Q

Q

Q 2

1

25364

Figure �� A fragment of the BT backtrack tree for the 
�queens problem�

which is composed of the instantiations in con�ict with x�� is inconsistent with variable
x�� To see this� notice that if we place a queen in column � row 
� every square in column

 is attacked by the queens placed in the �rst four columns� Indeed� there is no point in
trying out the remaining values for x� because that variable plays no role in the detected
inconsistency� Nodes �	�
	 and �	�

 may be safely skipped�

The light�shaded part of the tree contains nodes that are skipped by Con�ict�Directed
Backjumping �CBJ�� The algorithm reaches a dead�end when expanding node �	���� At this
moment the con�ict set of x� is f�� �� �� 	g because the instantiations of these four variables
prevent a consistent instantiation of variable x�� To see this� notice that after the fourth
and the �fth queen are placed� column 
 of the chess board will contain numbers �� �� ��
and 	� CBJ backtracks to the deepest variable in the con�ict set� which is x�� No nodes
are skipped at this point� The con�ict set of x� is added to the con�ict set of x�� which
now becomes f�� �� �g� After trying the two remaining values for x�� CBJ backjumps to x�
skipping the rest of the subtree� The backjump is represented by a dashed arrow� In terms
of consistency� we could say that the algorithm discovered that tuple ���	��� is inconsistent
with the set of variables fx�� x�g� A look at the board in Figure � convinces us that indeed
such a placement of queens cannot be extended to a full solution� It is impossible to �ll
columns 	 and 
 simply because the two available squares are in the same row� Note that
���	��� is consistent with both x� and x� taken separately�

Forward Checking �FC�� in contrast with the backward checking algorithms� visits only
consistent nodes� although not necessarily all of them� In our example� nodes �	�� �	���
�	��� and �	�
 are visited� but not �	�
�� The board in Figure � can be interpreted in the
context of this algorithm as follows� The shaded numbered squares correspond to the values
�ltered from domains of variables by forward checking� The squares that are left empty as






the search progresses correspond to the nodes visited by FC� Due to the �ltering scheme�
FC detects an inconsistency between the current partial solution and some future variable
without ever reaching that variable� but it is unable to discover an inconsistency with a set
of variables� In our example� the algorithm �nds that both �	��� and �	�
 are inconsistent
with x�� However� it does not discover that node �	� is inconsistent with fx�� x�g� That is
why node �	�
 is visited by FC even though it is skipped by the backward checking CBJ�

� Characterizations of Four Basic Algorithms and Their

Implications

We are now ready to present some new results� First� we give two lemmas that de�ne
backjumps in terms of inconsistency between variables and instantiations� Then� we present
theorems about the backtrack trees of the four basic backtracking algorithms� BT� BJ�
CBJ� and FC� The theorems enable us to �a� partially order the algorithms according to
the number of visited nodes� and �b� prove the correctness of the algorithms� It is assumed
that all constraints are binary� the order of instantiations is �xed and static� and the order
of performing consistency checks within the node follows the order of instantiations� When
faced with a constraint satisfaction problem one can ask several questions about it ��	��
Is there a solution� How many solutions are there� What is one solution� What are all
the solutions� We focus �rst on those variants of the backtracking algorithms that �nd all
solutions� We make the assumption of a static variable ordering and the assumption that
all solutions are sought in order to simplify the statements of the results and their proofs�
These two assumptions are later relaxed in Section 
� The proofs that are not included here
can be found in ����

In Example � we made an observation concerning the relation between a BJ backjump
and the consistency of the current instantiation� Let us generalize this observation in the
form of the following lemma�

Lemma � If BJ performs a backtrack to variable xh from a dead�end at variable xi then
�a�� � � � � ah� is inconsistent with xi�

Proof� After no consistent instantiation can be found for xi� BJ chooses as the point of
backtrack the variable xh which is the deepest variable in con�ict with xi� Let C denote
the tuple composed of the instantiations of all variables that are in con�ict with xi� Clearly�
C is inconsistent with xi� Since ah is the instantiation of the deepest variable in C� C is a
subtuple of �a�� � � � � ah�� Therefore� �a�� � � � � ah� is also inconsistent with xi� �

In order to present a similar lemma for the CBJ algorithm� we need to consider two
additional issues� The �rst issue concerns the one solution�all solutions dichotomy� Back�
tracking algorithms are usually designed to stop after �nding the �rst solution and have to
be modi�ed in order to �nd all solutions� For many algorithms� including BT� BJ� and FC�
the changing of the termination condition is su
cient� In the case of CBJ and its hybrids�
however� a more substantial modi�cation is necessary� Recall that the con�ict sets of CBJ
are meant to indicate which instantiations are responsible for a previously discovered incon�
sistency� However� after a solution is found� con�ict sets cannot be interpreted in this way�
It is the search for other solutions� rather than an inconsistency� that forces the algorithm
to backtrack� We need to di�erentiate between these two types of CBJ backtracks� namely
�A�type� the backtracks caused by detecting an inconsistency� and �B�type� the backtracks
caused by searching for other solutions� In the latter case the backtrack must be always
chronological �i�e�� to the immediately preceding variable� and no nodes can be skipped�
otherwise we would risk pruning out solutions� One possible solution is to add to every
con�ict set a �ag that indicates whether the con�ict set is valid� If the vcf �valid con�ict

�



set� �ag is set� the deepest variable in the con�ict set should be taken as the backtrack point�
otherwise� a chronological B�type backtrack must be applied� When a solution is found� all
vcf �ags should be cleared�

The second issue concerns the ability of CBJ to performmultiple backjumps� To deal with
this problem� we need the notion of backtrack rank for the A�type backtracks� Informally� the
rank of a backtrack is the distance� measured in backtracks� from the backtrack destination
to the �farthest� dead�end� The de�nition is recursive�

De�nition �

�� A backtrack from variable xi to variable xh is of rank � if it is performed directly from
a dead�end at xi�

	� A backtrack from variable xi to variable xh is of rank d � �� if all backtracks performed
to variable xi are of rank less than d� and at least one of them is of rank d� ��

The following lemmadescribes the relation between a CBJ backjump and the consistency
of the current instantiation�

Lemma � If CBJ performs an A�type backtrack from variable xi to variable xh� then there
exists a set of variables S such that S is a subset of fxi� � � � � xng containing xi and the tuple
composed of the instantiations of the variables in the con�ict set of xi is inconsistent with
S�

Proof� Recall that CBJ chooses as the point of backtrack the deepest variable in the con�ict
set of the current variable� The con�ict set of xi is the union of the set of all past variables
in con�ict with xi and all con�ict sets inherited from variables deeper than xi� Let C denote
the tuple composed of the instantiations of the variables in the con�ict set of xi�

The proof proceeds by induction on the rank of the backtrack� For the basis� consider
a backtrack of rank �� that is� one performed from a dead�end� Since no con�ict sets are
inherited from deeper variables� the con�ict set of xi contains only variables in con�ict with
xi� Clearly� C is inconsistent with the set S � fxig� �Note that in this case the behaviour
of CBJ is identical to that of BJ��

Now� assume the inductive hypothesis is true for all backtracks of rank less than d and
consider a backtrack of rank d� We want to �nd a set S such that C is inconsistent with it�
Let C�xi�t� denote the tuple produced by extending C with some instantiation �xi� t�� t � Di�
C�xi�t� itself may be consistent or not�

A� If C�xi�t� is a consistent tuple� there must have been a backtrack of rank less than d

from some variable xt to variable xi� From the inductive hypothesis we know that
the tuple Ct composed of the instantiations of the variables in the con�ict set of xt

is inconsistent with some set St� Since the con�ict set of xi contains all elements of
the con�ict set of xt except xi� Ct is a subtuple of C�xi�t�� and so the latter is also
inconsistent with St�

B� If C�xi�t� is an inconsistent tuple� it is also inconsistent with any set of variables� so
take St � ��

Let S� be the sum of all the St sets� S� �
S

t�Di
St� For every instantiation �xi� u�� u � Di�

C�xi�u� is inconsistent with S�� Therefore C is inconsistent with the set S � fxig � S�� �

We now present two theorems that specify the su
cient and the necessary conditions
respectively� for a node to be visited by the four basic backtracking algorithms� The �rst
theorem can be interpreted as a description of the sets of nodes which are guaranteed to be
visited by the algorithms� The assumption is that all solutions are sought�

�



parent(p) consistent

with all variables

p consistent and

FC visits p CBJ visits p

BJ visits p

BT visits p

parent(p) consistent

with all variables

parent(p) consistent

parent(p) consistent

with all sets of variables

Figure �� Conditions graph�

Theorem �

a� If the parent of a node is consistent� then BT visits the node�

b� If the parent of a node is consistent with every variable� then BJ visits the node�

c� If the parent of a node is consistent with every set of variables� then CBJ visits the
node�

d� If a node is consistent and its parent is consistent with every variable� then FC visits
the node�

Proof�

b� Suppose that node �a�� � � � � ai��� is consistent with every variable� and its child p �
�a�� � � � � ai� is not visited by BJ� Take the deepest j such that node p� � �a�� � � � � aj�
is visited by BJ� Node p� is a proper ancestor of node p and is consistent with every
variable� When BJ is at node p�� all consistency checks between aj and previous
instantiations succeed� The only reason for not instantiating the next variable xj��
to aj�� can be a backjump from some variable xh to some variable xg� where g 	 j

and h � j � �� But if this is the case� Lemma � implies that node �a�� � � � � ag� is
inconsistent with xh� which contradicts the initial assumption that node �a�� � � � � ai���
is consistent with every variable�

c� Similar to the proof of b�� except that we use Lemma �� Note that we are concerned
here only with the A�type backtracks because the B�type backtracks are always chrono�
logical and do not involve node skipping�

Proofs of the remaining cases are straightforward� �

The next theorem can be seen as describing the sets of nodes that may be visited by the
algorithms� or� if we consider their complements� the sets of nodes that are never visited by
the algorithms�

�



Theorem �

a� If BT visits a node� then its parent is consistent�

b� If BJ visits a node� then its parent is consistent�

c� If CBJ visits a node� then its parent is consistent�

d� If FC visits a node� then it is consistent and its parent is consistent with every variable�

Proof�

a��c� The proofs follow from the fact that the backward checking algorithms expand only
consistent nodes�

d� We prove the second conjunct �rst� Suppose that FC visits node p � �a�� � � � � ai�
although its parent �a�� � � � � ai��� is inconsistent with some variable� Take the deepest
j� j � i� such that node �a�� � � � � aj��� is consistent with every variable� Node p� �
�a�� � � � � aj� is a proper ancestor of node p� so p� is also visited by FC� When FC is at
node p�� consistency checking annihilates the domain of some variable� thus causing
the branch to be abandoned� Therefore� no descendants of p� are visited by FC� a
contradiction�

Now� suppose that FC visits node p � �a�� � � � � ai� which is inconsistent� From the
�rst part of the proof� we know that its parent �a�� � � � � ai��� must be consistent� Take
the shallowest k� k � i� such that instantiation ak is inconsistent with instantiation
ai� When FC is at node �a�� � � � � ak�� the value ai is removed from the domain of
the variable xi and cannot be reinstated before the instantiation of xk is changed�
Therefore� p cannot be visited by FC� a contradiction� �

Figure � summarizes the results presented so far� The arrows represent implications
formulated in Theorems � and �� Note the di�erence between the chronologically backtrack�
ing algorithms BT and FC� and the backjumping algorithms BJ and CBJ� The former are
completely characterized as the necessary and su
cient conditions coincide� for every node
we can decide whether it is visited by the algorithm without generating the whole backtrack
tree� The latter are only partially characterized� there is a set of nodes for which we are
unable to tell a priori if they belong to the algorithm�s search tree or not� It is an open
question if better characterizing conditions for the backjumping algorithms can be found�

The following corollary has been formulated by simply following the arrows in Figure ��

Corollary �

a� BT visits all nodes that BJ visits�

b� BT visits all nodes that CBJ visits�

c� BT visits all nodes that FC visits�

d� BJ visits all nodes that FC visits�

The relationship between BJ and FC is the most interesting� It has never been reported
before� although the two algorithms have been often empirically compared�

A relationship between BJ and CBJ� although not implied by the theorems� can also be
proven using Lemmas � and �� These relationships and more are summarized in Figure ��

��



Theorem � BJ visits all nodes that CBJ visits�

Proof� Suppose that in the search tree of CBJ there is a node p � �p�� � � � � ph� which is not
visited by BJ �Figure �� left�� The only reason for skipping p can be a backjump performed
by BJ from some node q � �q�� � � � � qk� to level g � h� Recall that BJ performs backjumps
only immediately after detecting a dead�end� and that in such a case it behaves exactly like
CBJ� Therefore� node q cannot be visited by CBJ� otherwise CBJ would also skip node
p� The only reason for skipping q can be a backjump performed by CBJ from some node
r � �r�� � � � � rj� to level i � k �Figure �� right��

BJ CBJ

r

v

q

u

p

r

v

q

u

p

g

h

i

j

k

g

h

i

j

k

Figure �� A hypothetical situation where CBJ visits a node not visited by BJ�

Let u � �p�� � � � � pg� � �q�� � � � � qg� � �r�� � � � � rg��� and v � �q�� � � � � qi� � �r�� � � � � ri��
From Lemma � we have that u is inconsistent with variable xk� From Lemma � we have
that v is inconsistent with set S� where S � fxj� � � � � xng�

Let us denote the deepest variable in S by max�S�� What is the relationship between
xk and max�S��


 If xk � max�S�� BJ would never reach xk after visiting node v because it would hit a
dead�end at max�S� �rst�


 If xk � max�S�� CBJ would never reach max�S� after visiting node u because it would
hit a dead�end at xk �rst�


 If xk � max�S�� CBJ would not visit node p because from xk it would jump back
directly to level g�

Thus� we arrive at a contradiction� �

Corollary � together with Theorem � enable us to construct a partial order of back�
tracking algorithms with respect to the number of visited nodes� BT generates the largest
backtrack tree� which contains all nodes visited by the other algorithms� BJ visits more
nodes than CBJ or FC� The order would be linear if there was a relationship between FC
and CBJ� but this is not the case� Figure � provides a counterexample� some nodes visited
by CBJ are not visited by FC� and vice versa�

The correctness of the four basic algorithms is also an almost immediate consequence
of the theorems� A backtracking algorithm is correct if it is sound ��nds only solutions��
complete ��nds all solutions�� and terminates� That all the algorithms terminate is clear� so
only soundness and completeness have to be shown�

��



Corollary �

a� BT is correct�

b� BJ is correct�

c� CBJ is correct�

d� FC is correct�

Proof�

b� Soundness� A solution is claimed by BJ if all consistency checks succeed at an n�level
node� This means that �a�� � � � � an� is visited and �i � n � ai is consistent with an�
Theorem � implies that node �a�� � � � � an��� is consistent� Therefore� �a�� � � � � an� is
consistent�

Completeness� Suppose that some n�level node �a�� � � � � an� in the search tree is con�
sistent� Then� its parent �a�� � � � � an��� is consistent as well� and it is also consistent
with xn� Therefore� �a�� � � � � an��� is consistent with every variable� From Theorem �
we know that �a�� � � � � an� is visited by BJ� Since all consistency checks between an
and previous instantiations must succeed� a solution is claimed by BJ�

Proofs of the remaining cases are similar� �

� Backmarking and its Hybrids

In this section we discuss Backmarking �BM� �	� and its two hybrids� We prove the correct�
ness of BM and propose a modi�cation to the hybrid algorithms� These algorithms are then
included in our hierarchies �see Section 
��

In the Chronological Backtracking �BT� algorithm consistency checks are performed un�
conditionally� A consistency check is performed to determine if the current instantiations
of two variables satisfy the constraint between the variables even if neither of the instan�
tiations has changed since the check was most recently executed� Backmarking �BM� �	�
addresses this ine
ciency by imposing a marking scheme on the Chronological Backtrack�
ing algorithm� The marking scheme employed by BM and its hybrids does not have any
in�uence on the backtrack tree generated by a backtracking algorithm but usually results in
a dramatic reduction in the number of consistency checks� It is based on the following two
observations �����

A� If� at the most recent node where a given instantiation was checked� the instantiation
failed against some past instantiation that has not yet changed� then it will fail against
it again� Therefore� all consistency checks involving it may be avoided�

B� If� at the most recent node where a given instantiation was checked� the instantiation
succeeded against all past instantiations that have not yet changed� then it will succeed
against them again� Therefore we need to check the instantiation only against the more
recent past instantiations which have changed�

The above two statements can be formally proven correct using our framework�

Lemma � The marking scheme formulated by the observations A and B is correct�

Proof� Let p � �a�� � � � � ai� be a node visited by a backward checking algorithm� Node p

may be consistent or not� If p is a consistent node then

�j � i � �aj � ai� � Rji�

��



If p is an inconsistent node then

�� s � i � ���as� ai� �� Rsi� � ��j � s � �aj� ai� � Rji���

where �� means there uniquely exists� Let p� � �a��� � � � � a
�

i� be the �rst node visited after p
such that a�i � ai� We have

�� r � i � ��a�r �� ar� � ��j � r � a�j � aj���

There are now two possibilities� which correspond exactly to the observations A and B�

A� �
consistent�p� � �s � r�� � ��a�s� a
�

i� �� Rsi� � �
consistent�p���

B� �consistent�p� � �
consistent�p� � �s � r��� � ��j � r � �a�j� a
�

i� � Rji�

�

BM is essentially BT enhanced by the above marking scheme� Its standard implemen�
tation uses a one�dimensional array mbl �minimum backup level� of size n and a two�
dimensional array mcl �maximum checking level� of size n � m� where n is the number
of variables� and m is the size of the largest domain� The entry mbl�i� contains the number
of the shallowest variable whose instantiation has changed since the variable xi was last in�
stantiated with a new value� The entry mcl�i��j� contains the number of the deepest variable
that was checked against the j�th value in the domain of the variable xi� All entries in both
arrays are initially set to �� Roughly speaking� mbl holds the values of r� and mcl holds the
values of s� For the implementation details see for example ��
��

From a theoretical point of view� BM may be treated as an abstract algorithm which has
a number of possible implementations� Within this approach� proving the correctness of the
marking scheme is in fact equivalent to proving the correctness of BM�

Theorem � BM is correct�

Proof� Since BM is BT enhanced by the marking scheme formulated by the observations A
and B� the correctness of BT and the correctness of the marking scheme imply the correctness
of BM� �

BM generates exactly the same search tree as BT� but often performs less checks within
a node� This is in contrast with BJ� which reduces the number of consistency checks by
skipping search tree nodes� It turns out that the two types of savings can be incorporated
into one backtracking algorithm� Nadel ���� was the �rst to suggest combining BM and BJ
into a new hybrid algorithm� Prosser ��
� presented such an algorithm� called Backmarking
and Backjumping �BMJ�� BMJ� however� does not retain all the power of each base algorithm
in terms of consistency checks� Prosser observed that on some instances of the zebra problem
BMJ performs more consistency checks than BM� BMJ is also worse than BM on the
benchmark ��queens problem�

Example �� Consider the constraint network of four variables represented by the graph
in Figure 	� The domains of the variables are given inside the nodes� and the constraints be�
tween variables are speci�ed by the allowed pairs along the arrows� The search is performed
in the order x�� x�� x�� x�� It is easy to verify that there is only one solution to the network�
Figure 
 shows the backtrack tree generated by BT� which performs �� consistency checks
on this constraint network� In comparison with BT� BM saves one consistency check on each
of the nodes numbered � to ��� which brings down the total number of consistency checks
to ��� The saving on node � corresponds to observation A in the marking scheme� while
the other three savings correspond to observation B� BMJ saves two consistency checks by
backjumping over node 
 but on the whole performs �� checks�

��



x

x

x

x

3

1

4

2

{a,b,c}

{a} {a,b}

{a}

ab
ac

ab
bc

ba

Figure 	� The constraint network of Example ��

3 4

5

2

6

1

8 9

7

11

10

aaa aab

aaba

aa

aac

root

a

aba abb

ab

abc

abca

0

1

2

3

4

Figure 
� The backtrack tree generated by BT on the constraint network of Example ��

A careful analysis of the above example leads us to the conclusion that BMJ is sometimes
worse than BM because it does not implement the above marking scheme accurately� The
one�dimensionalmbl array� which was originally designed for a chronologically backtracking
algorithm� is no longer adequate for a backjumping algorithm� BM always instantiates a
variable in turn to all possible values in its domain� Therefore� the r�values are the same
throughout the domain of a variable� and a single mbl entry is su
cient to hold them all� In
BMJ� however� because of backjumps� not all values in the domain are always tested� When
this happens� the r�values may di�er within the domain� The loss of information caused by
the inadequacy of the mbl array is the sole reason why BMJ is sometimes outperformed by
BM� In such cases� the number of redundant checks performed by BMJ exceeds the number
of checks avoided by the node skipping�

We propose a modi�ed BackMarkJump �BMJ��� which solves the problem by makingmbl
a two�dimensional rather than a one�dimensional array� The new mbl array is of size n�m�
so that each mcl entry has a corresponding mbl entry �this is a reasonable space requirement
because BMJ already uses one n�m array�� Each mcl entry now has a corresponding mbl

entry� A separate entry for each domain value makes it possible to preserve all collected
consistency information� The mbl�i��j� entry stores the number of the shallowest variable

��



whose instantiation has changed since the variable xi was last instantiated with the j th
value� As in the case of BM� the correctness of BMJ� is a consequence of the correctness of
the marking scheme and the correctness of the underlying algorithm �BJ��

BMJ� is not only never worse than BMJ� but also never worse than BM� The set of nodes
visited by BMJ� is the same as the set of nodes visited by BJ and BMJ� and is a subset of
the nodes visited by BM� At any given node BMJ� performs no more consistency checks
than BJ or BMJ� It uses the same marking scheme as BM and therefore is never worse
than BM� However� thanks to its backjumping abilities� BMJ� makes additional savings
by skipping nodes� which explains why it often performs less consistency checks than BM�
On the constraint network of Example � �see Figures 	 and 
�� BMJ� performs only ��
consistency checks�

An analogous modi�cation of Backmarking and Con�ict�Directed Backjumping �BM�
CBJ�� which is another hybrid proposed by Prosser� produces BM�CBJ�� mbl should be
made a ��dimensional array� and maintained in the same way as in BMJ��

� The Hybrid Algorithm FC�CBJ

In this section we discuss the hybrid algorithm Forward Checking and Con�ict�Directed
Backjumping �FC�CBJ� ��
�� We prove the correctness of the algorithm and characterize
the set of search tree nodes visited by the algorithm� The algorithm is then included in our
hierarchies �see Section 
��

FC�CBJ� proposed by Prosser ��
�� is an attempt to combine the advantages of FC and
CBJ� In contrast with FC� which always backtracks chronologically� FC�CBJ records the
information about the variables that caused current inconsistency� and later uses this infor�
mation to determine the backtracking point� Every time a consistency check fails between
the instantiation ai of the current variable xi and an instantiation of some future variable
xj� the variable xi is added to the con�ict set of xj � Every time a domain annihilation of a
variable xk occurs� the variables in the con�ict set of xk are added to the con�ict set of the
current variable xi� When there are no more values to be tried for the current variable xi�
FC�CBJ backtracks to the deepest variable xh in the con�ict set of xi� At the same time�
the variables in the con�ict set of xi� with the exception of xh� are added to the con�ict set
of xh� so that no information about con�icts is lost�

FC�CBJ was identi�ed by Prosser as the champion among the nine backtracking algo�
rithms that he tested on the zebra problem� More recently B� Smith ���� observed that a
variant of FC�CBJ performs well on exceptionally hard problems� It is therefore important
to characterize and prove the correctness of this algorithm�

Let us start by determining the necessary and su
cient conditions for a search tree node
to be visited by FC�CBJ� The necessary condition for FC�CBJ is the same as for FC�

Theorem � If FC�CBJ visits a node� then it is consistent and its parent is consistent with
every variable�

Proof� Similar to the proof of Theorem �� case �d�� �

The above theorem together with Theorem � imply that if a node is visited by FC�
CBJ� it is also visited by FC� In the worst case� FC�CBJ visits the same set of nodes as
FC� However� since there exist constraint networks on which FC�CBJ visits less nodes than
FC� we can place FC�CBJ in the node hierarchy directly below FC �see Figure ��� The
relationship holds also for the checks hierarchy because at any given node FC�CBJ performs
exactly the same number of consistency checks as FC �see Figure ���

In order to obtain the su
cient condition for FC�CBJ� it is necessary to formulate an
equivalent of Lemma �� Surprisingly� the following lemma is virtually identical to Lemma
�� The statement of the lemma uses the concept of A�type backtracks de�ned in Section ��

�	



Lemma � If FC�CBJ performs an A�type backtrack from variable xi to variable xh� then
there exists a set of variables S such that S is a subset of fxi� � � � � xng containing xi and the
tuple composed of the instantiations of the variables in the con�ict set of xi is inconsistent
with S�

Proof� The proof is similar to the proof of Lemma �� First� observe that when a domain
annihilation of variable xk occurs� we have the case of inconsistency of the current tuple
�a�� � � � � ai� with the variable xk� In a forward checking algorithm a dead�end occurs when
every instantiation of the current variable either has already been �ltered or causes annihi�
lation of the domain of some future variable� The above de�nition of a dead�end allows us
to adopt here without any change the de�nition of backtrack rank from Section � for the
CBJ algorithm�

The proof proceeds by induction on the rank of the backtrack� For the basis� consider
a backtrack of rank �� that is� one performed from a dead�end� Let C denote the tuple
composed of the instantiations of the variables in the con�ict set of xi� We want to �nd a
set S such that C is inconsistent with it� Let C�xi�t� denote the tuple produced by extending
C with some instantiation �xi� t�� t � Di� C�xi�t� itself may be consistent or not�

A� Assume that C�xi�t� is a consistent tuple� Since all variables that �lter values from the
domain of xi are included in the con�ict set of xi� and C�xi�t� is consistent� t could
not have been �ltered from the domain of xi� Furthermore� because it is a dead�end�
domain annihilation of some variable xt must have occurred� Therefore� C�xi�t� is
inconsistent with the one�element set St � fxtg�

B� If C�xi�t� is an inconsistent tuple� it is also inconsistent with any set of variables� so
take St � ��

Let S� be the sum of all the St sets� S� �
S

t�Di
St� For every instantiation �xi� u�� u � Di�

C�xi�u� is inconsistent with S�� Therefore C is inconsistent with the set S � fxig � S��
The remaining part of the proof is identical to the second part of the proof of Lemma ��

�

Using the above lemma� we can show that the su
cient condition for FC�CBJ is similar
to the su
cient condition for CBJ�

Theorem � If a node is consistent and its parent is consistent with every set of variables�
then FC�CBJ visits the node�

Proof� Suppose that node �a�� � � � � ai��� is consistent with every set of variables� and its
child p � �a�� � � � � ai� is consistent and not visited by FC�CBJ� Take the deepest j such that
node p� � �a�� � � � � aj� is visited by FC�CBJ� Node p� is a proper ancestor of node p and is
consistent with every set of variables� When FC�CBJ is at node p�� none of the domains of
the future variables is annihilated� The only reason for not instantiating the next variable
xj�� to aj�� can be an A�type backtrack from some variable xh to some variable xg� where
g 	 j and h � j � �� From Lemma � we know that the tuple composed of instantiations of
the variables in the con�ict set of xh is inconsistent with some set of variables� Since the
con�ict set of xh is a subset of fx�� � � � � xgg and g � i� this contradicts the initial assumption
that �a�� � � � � ai��� is consistent with every set of variables� �

Now it is straightforward to prove the correctness of FC�CBJ�

Corollary � FC�CBJ is correct�

Proof� As in the proof of Corollary �� the soundness is implied by the necessary condition�
and the completeness by the su
cient condition� �

�




BJ = BMJ = BMJ2

FC

FC-CBJ

BT = BM

CBJ = BM-CBJ = BM-CBJ2

Figure �� The hierarchy with respect to the number of visited nodes� Two algorithms are
connected by an edge if the set of nodes visited by one of the algorithms is always a subset
of the set of nodes visited by the other�

� Hierarchies

We now present two hierarchies� which include the four basic backtracking algorithms dis�
cussed in Section �� the Backmarking hybrids discussed in Section �� and the FC�CBJ
algorithm discussed in Section 	�

The hierarchy with respect to the number of visited nodes is presented in Figure �� The
relationships derived in Section � form the core of the hierarchy� Note that imposing a
marking scheme on an algorithm does not change the set of nodes that are visited� Thus�
for example� BM generates exactly the same backtrack tree as BT�

Figure � shows the hierarchy of algorithms with respect to the number of consistency
checks� Since BT� BJ� and CBJ perform the same number of consistency checks at any given
node� they are in the same order as in the nodes hierarchy� Imposing a marking scheme on a
backtracking algorithm results in a reduction of the number of consistency checks performed�

Besides the relationships that are shown explicitly� it is important to note the ones that
are implicit in the picture� In order to disprove a relationship between A and B� one needs
to �nd at least one constraint satisfaction problem on which A is better than B� and one on
which B is better than A� For example� BM performs fewer consistency checks than FC on
the regular ��queens problem� but more on the confused ��queens problem ����� Examples
of constraint networks were found that disprove all relationships that are not included in
the hierarchies� Thus� however counterintuitive it may seem� FC�CBJ may visit more nodes
than CBJ� and perform more consistency checks than BT�

The hierarchies are consistent with and explain some of the empirical results reported
in the literature� For example� Prosser ��
� compared how often one algorithm performed
better than another with respect to consistency checks in a series of experiments to evaluate
nine backtracking algorithms �Table �� p� ��� in ��
��� In this paper we have characterized
eight of these nine backtracking algorithms �omitting FC�BJ�� In half ��� out of ��� of the
relevant pairwise comparisons� Prosser�s experimental results showed that one algorithm
always performed fewer consistency checks than the other� For �� of these �� cases� our
theoretical results state that this must be the case� For the remaining � of these �� cases�
we have examples that show that this empirical result is not true in general� In particular�
it is not necessarily the case that FC or FC�CBJ performs fewer consistency checks than BT
or BJ�

The results presented in Sections � 	 and summarized in the hierarchies shown in Fig�
ures � and � are stated and proven under the assumptions that the algorithms search for all
solutions and that they instantiate the variables in a static ordering� We now relax both of

��



BMJ2

BM-CBJ2

BMJ

BT

BM-CBJ

BJ

CBJ

FC-CBJ

FC

BM

Figure �� The hierarchy with respect to the number of consistency checks� Two algorithms
are connected by an edge if one of the algorithms always performs no more consistency
checks than the other�

these assumptions in turn and show that our results are still valid�
The assumption that the search is not interrupted until all possibilities are exhausted is

not generally true if only a �xed number of solutions is sought� In order to deal with this
issue� let us de�ne two additional terms� Node p precedes node q in the search tree if p � q or
p is visited before q by the chronological backtracking algorithm �see the numbering on the
nodes in Figure 
 for an example of such an ordering�� Further� let the termination node be
the last node visited by a backtracking algorithm� In the case of a backtracking algorithm
that stops after �nding the �rst solution� the termination node is either the �rst solution
in the ordering� if a solution exists� or the last node in the ordering� if no solution exists�
Now� we can reformulate the theorems to include an additional condition� For example�
Theorem �a would read�

a� If the parent of a node is consistent and the node precedes the termination node� then
BT visits the node�

and Theorem �a would read�

a� If BT visits a node� then its parent is consistent and the node precedes the termination
node�

Given such a reformulation� the theorems and their corollaries can easily be proven without
the assumption that all solutions are sought� It follows that our results also hold for the
single solution versions of the algorithms�

We conclude this section with a discussion of the implications of our assumption of a
static order of instantiation in which variables are added to the current partial solution
according to the prede�ned order� With a static variable ordering� heuristics to order the
variables may be used� but they must be applied before the constraint network is passed to
a backtracking algorithm� A static order is in contrast to a dynamic order of instantiation
in which the decision of which variable to instantiate next is based on the state of the search
��� ��� Dynamic variable ordering �DVO� is known to be an e�ective technique� For example�
Sabin and Freuder ���� specify a backtracking algorithm that maintains full arc consistency
and performs DVO each time choosing the variable with the minimum remaining values
�MRV� in its domain� They show experimentally that the algorithm performs very well on
hard problems� Further� Bacchus and van Run ��� show that the forward checking algorithm

��



equipped with the same DVO heuristic also performs very well on hard problems and on the
benchmark Zebra and n�queens problems�

Our results are valid for the DVO versions of backtracking algorithms provided that
the heuristic used for choosing the next variable is deterministic and independent of the
backtracking algorithm� By independent we mean that the information exchanged between
the heuristic and the backtracking algorithm is restricted as follows� only the constraint
network and the partial solution are passed to the heuristic and only the next variable to
instantiate is returned� In such a case� the choice of the next variable depends only on
the state of the search and the backtracking algorithms will all make the same decision as
to which variable to instantiate next given that they have reached the same node �partial
solution�� Thus� the ordering of the variables along any path from the root to a node will be
identical and the nodes visited by the algorithms will continue to be a subset of the nodes
visited by the BT algorithm that uses the same heuristic� The number of consistency checks
performed by the algorithms will be uniformly increased by the number of checks performed
by the heuristic� so that the consistency checks hierarchy will also remain una�ected� The
results will not hold if� given the same constraint network and the same partial solution� the
heuristic can return di�erent answers on di�erent invocations� such as would be the case�
for example� if the algorithm broke ties randomly�

The assumption that the heuristic and the backtracking algorithmare independent is nec�
essary for the results to hold for any DVO heuristic� However� given a particular heuristic we
sometimes can relax the independence assumption in a principled way and still have our re�
sults hold� As an example of such an approach� let us consider the set of algorithms proposed
by Bacchus and van Run ���� They combine several backtracking algorithms� including the
ones discussed in this paper� with a heuristic that at each node chooses the variable with the
minimum remaining values �MRV�� All backward checking algorithms� namely BT�MRV�
BM�MRV� BJ�MRV� CBJ�MRV� and their hybrids� satisfy the condition of independence
stated above� therefore� all partial order relationships between them remain valid� For
FC�MRV and FC�CBJ�MRV� the condition is not satis�ed because in both cases the algo�
rithm and the heuristic share information through common data structures� However� since
the direction of the �ow of information is from the algorithm to the heuristic� the search tree
remains una�ected� and consequently the node hierarchy is unchanged� Moreover� as the
heuristic in both algorithms performs no additional consistency checks whatsoever� the re�
lationship between FC�MRV and FC�CBJ�MRV is the same as between FC and FC�CBJ�
Finally� the results stated in the hierarchies can be strengthened by including the result by
Bacchus and van Run ��� that MRV makes standard backjumping redundant� Thus� in the
node hierarchy BT�MRV � BM�MRV � BJ�MRV � BMJ�MRV � BMJ��MRV and in
the consistency check hierarchy BT�MRV � BJ�MRV and BM�MRV � BMJ�MRV �
BMJ��MRV�

� Conclusions and Future Work

We presented a theoretical analysis of several backtracking algorithms� Such well�known
concepts as backtrack� backjump� and domain annihilation were described in terms of in�
consistency between instantiations and variables� This enabled us to formulate general
theorems that fully or partially describe sets of nodes visited by the algorithms� The theo�
rems were then used to prove the correctness of the algorithms and to construct hierarchies
of algorithms with respect to the number of visited nodes and with respect to the number
of consistency checks� The gaps in the resulting hierarchy prompted us to modify existing
hybrid algorithms so that they are superior to the corresponding basic algorithms in every
case� One of the modi�ed algorithms is always better �in terms of consistency checks� than
all six backward checking algorithms described by Prosser in ��
��

��



There are several possible directions for future work� First� the su
cient and the neces�
sary conditions are not identical for most of the algorithms investigated here� Since back�
tracking algorithms are deterministic� it may be possible to �nd single formulas that describe
precisely their backtrack trees� as we did for BT and FC� Second� our approach could be
applied to many other backtracking algorithms that have not been treated here� such as
Dechter�s graph�based backjumping algorithm ��� and Nadel�s backtracking algorithm with
full arc�consistency lookahead ����� Finally� even though there is no absolute relationship
between many pairs of algorithms� it may be possible to specify conditions under which such
a relationship exists� For instance� one could try to specify formally the set of networks on
which FC is always better than BT�

Acknowledgements

We would like to thank Dennis Manchak for his help in implementing the algorithms dis�
cussed in this paper and FahiemBacchus for helpful discussions on dynamic variable ordering
and for comments on earlier versions of the paper� This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada�

References

��� F� Bacchus and P� van Run� Dynamic variable ordering in CSPs� In Proceedings of the
First International Conference on Principles and Practice of Constraint Programming�
pages �	� ��	� Cassis� France� ���	� Available as� Springer Lecture Notes in Computer
Science ��
�

��� J� R� Bitner and E� M� Reingold� Backtrack programming techniques� Comm� ACM�
�������
	� 
	
� ���	�

��� M� Bruynooghe� Solving combinatorial search problems by intelligent backtracking�
Information Processing Letters� �������
 ��� �����

��� R� Dechter� Enhancement schemes for constraint processing� Backjumping� learning�
and cutset decomposition� Arti�cial Intelligence� ��������� ���� �����

�	� J� Gaschnig� A general backtracking algorithm that eliminates most redundant tests� In
Proceedings of the Fifth International Joint Conference on Arti�cial Intelligence� page
�	�� Cambridge� Mass�� �����

�
� J� Gaschnig� Experimental case studies of backtrack vs� waltz�type vs� new algorithms
for satis�cing assignment problems� In Proceedings of the 	nd Biennial Conference of the
Canadian Society for Computational Studies of Intelligence� pages �
� ���� Toronto�
Ont�� �����

��� M� L� Ginsberg� Dynamic backtracking� Journal of Arti�cial Intelligence Research�
���	 �
� �����

��� R� M� Haralick and G� L� Elliott� Increasing tree search e
ciency for constraint satis�
faction problems� Arti�cial Intelligence� ����
� ���� �����

��� G� Kondrak� A theoretical evaluation of selected backtracking algorithms� Technical
Report TR�� ��� University of Alberta� June �����

���� A� K� Mackworth� Constraint satisfaction� In S� C� Shapiro� editor� Encyclopedia of
Arti�cial Intelligence� 	nd Edition� pages ��	 ���� John Wiley ! Sons� �����

��



���� J� J� McGregor� Relational consistency algorithms and their application in �nding
subgraph and graph isomorphisms� Inform� Sci�� ������ �	�� �����

���� U� Montanari� Networks of constraints� Fundamental properties and applications to
picture processing� Information Sciences� ���	 ���� �����

���� B� A� Nadel� Constraint satisfaction algorithms� Computational Intelligence� 	���� ����
�����

���� B� A� Nadel� Representation selection for constraint satisfaction� A case study using
n�queens� IEEE Expert� 	�����
 ��� �����

��	� B� Nudel� Consistent�labeling problems and their algorithms� Expected�complexities
and theory�based heuristics� Arti�cial Intelligence� �����	 ���� �����

��
� P� Prosser� Hybrid algorithms for the constraint satisfaction problem� Computational
Intelligence� ������
� ���� �����

���� D� Sabin and E� C� Freuder� Contradicting conventional wisdom in constraint satisfac�
tion� In Proceedings of the ��th European Conference on Arti�cial Intelligence� pages
��	 ���� Amsterdam� �����

���� T� Schiex and G� Verfaillie� Nogood recording for static and dynamic constraint satis�
faction problems� International Journal on Arti�cial Intelligence Tools� ��� �	� �����

���� B� M� Smith and S� A� Grant� Sparse constraint graphs and exceptionally hard prob�
lems� In Proceedings of the Fourteenth International Joint Conference on Arti�cial
Intelligence� pages 
�
 
	�� Montreal� Que�� ���	�

���� E� Tsang� Foundations of Constraint Satisfaction� Academic Press� �����

��


