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Abstract

Representing and reasoning about incomplete and inde�nite qualita�
tive temporal information is an essential part of many arti�cial intelligence
tasks� An interval�based framework and a point�based framework have
been proposed for representing such temporal information� In this paper�
we address two fundamental reasoning tasks that arise in applications of
these frameworks� Given possibly inde�nite and incomplete knowledge
of the relationships between some intervals or points� �i� �nd a scenario
that is consistent with the information provided� and �ii� �nd the feasible
relations between all pairs of intervals or points�

For the point�based framework and a restricted version of the interval�
based framework� we give computationally e�cient procedures for �nding
a consistent scenario and for �nding the feasible relations� Our algorithms
are marked improvements over the previously known algorithms� In par�
ticular� we develop an O�n�� time algorithm for �nding one consistent
scenario that is an O�n� improvement over the previously known algo�
rithm� where n is the number of intervals or points� and we develop an
algorithm for �nding all the feasible relations that is of far more practical
use than the previously known algorithm� For the unrestricted version of
the interval�based framework� �nding a consistent scenario and �nding the
feasible relations have been shown to be NP�complete� We show how the
results for the point algebra aid in the design of a backtracking algorithm
for �nding one consistent scenario that is shown to be useful in practice
for planning problems�

�A preliminary version of this paper appeared in the Proceedings of the Eighth National

Conference on Arti�cial Intelligence� Boston� Mass�� ����� AAAI Press � The MIT Press�
Cambridge� Mass�� pp� ���	�
��
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� Introduction

Representing and reasoning about incomplete and inde�nite qualitative tempo�
ral information is an essential part of many arti�cial intelligence tasks� Allen
��� has proposed an interval algebra framework and Vilain and Kautz ���� have
proposed a point algebra framework for representing such qualitative informa�
tion� The frameworks are in�uential and have been applied in such diverse areas
as natural language processing �	�
 planning ���
 plan recognition ����
 and diag�
nosis ����� In this paper
 we address two fundamental temporal reasoning tasks
that arise in these application areas
 Given possibly inde�nite and incomplete
knowledge of the relations between some intervals or points


� �nd a scenario that is consistent with the information provided
 and

� �nd the feasible relations between all pairs of intervals or points�

The frameworks have in common that the representations of temporal informa�
tion can be viewed as binary constraint networks and that constraint satisfaction
techniques can be used to reason about the information�

For point algebra networks and a restricted class of interval algebra networks

we present new
 more e�cient
 algorithms for both of the reasoning tasks� In
particular
 for �nding one consistent scenario
 we develop an O�n�� time algo�
rithm that is an O�n� improvement over the previously known algorithm ����

where n is the number of points� For �nding the feasible relations
 we develop
an O�max�mn�� n��� time algorithm for �nding all pairs of feasible relations

where n is the number of points and m is the number of pairs of points that are
asserted to be not equal� The new algorithm is of far more practical use than
the previously known algorithm �����

For general interval algebra networks
 �nding a consistent scenario and �nd�
ing the feasible relations has been shown to be NP�complete and thus almost
assuredly intractable in the worst case ���
 ���� For �nding a consistent scenario

we show how the results for the point algebra aid in the design of a backtracking
algorithm� The algorithm is shown experimentally to be useful in practice for
planning problems and problems with similar characteristics� For �nding the
feasible relations
 the intractability of �nding solutions for the general problem
has led us elsewhere to explore algorithms that �nd approximate solutions �����

The rest of the paper proceeds as follows� We begin by reviewing each of the
frameworks and illustrating each with examples from natural language
 show�
ing how the temporal information is represented and giving examples of the
reasoning tasks� We then formalize the reasoning tasks as binary constraint
satisfaction problems� We then develop our algorithms for solving the two rea�
soning tasks
 �rst for point algebra networks and a restricted class of interval
algebra networks and
 second for general interval algebra networks�
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� Representing Temporal Information

In this section
 we review Allen�s framework ��� for representing relations be�
tween intervals and Vilain and Kautz�s framework ���� for representing relations
between points
 and illustrate the kinds of temporal information that can be rep�
resented within each framework� We then formalize the reasoning tasks using
networks of binary constraints �����

��� Allen�s framework

There are thirteen basic relations that can hold between two intervals �see
Fig� �
 ��
 ���� In order to represent inde�nite information
 the relation between
two intervals is allowed to be a disjunction of the basic relations� Sets are used
to list the disjunctions� For example
 the relation fm
o
sg between events A and
B represents the disjunction


�A meets B� � �A overlaps B� � �A starts B��

Let I be the set of all basic relations
 fb
bi
m
mi
o
oi
s
si
d
di
f
�
eqg� Allen
allows the relation between two events to be any subset of I�

We use a graphical notation where vertices represent events and directed
edges are labeled with sets of basic relations� As a graphical convention
 we
never show the edges �i� i�
 and if we show the edge �i� j�
 we do not show the
edge �j� i�� Any edge for which we have no explicit knowledge of the relation is
labeled with I� by convention such edges are also not shown� We call networks
with labels that are arbitrary subsets of I
 interval algebra or IA networks�

Example �� As an example of representing temporal information using
IA networks and of the reasoning tasks of �nding a consistent scenario and of
�nding the feasible relations
 consider the description of events shown in Fig� �a�
Not all of the temporal relations between events are explicitly or unambiguously
given in the description� The �rst sentence tells us only that the interval of time
over which Fred read the paper intersects with the interval of time over which
Fred ate breakfast� We represent this as �paper fo
oi
s
si
d
di
f
�
eqg breakfast��
The second sentence �xes the relationship between some of the end points of the
intervals over which Fred read his paper and over which Fred drank his co�ee
but it remains inde�nite about others� We represent this as �paper fo
s
dg
co�ee��� But we also know that drinking co�ee is a part of breakfast and so
occurs during breakfast� We represent this as �co�ee fdg breakfast�� Finally

the information in the third sentence is represented as �walk fbig breakfast��
The resulting network is shown in Fig� �a
 where we have drawn a directed edge
from �breakfast� to �walk� and so have labeled the edge with the inverse of the
�bi� �after� relation�

�Another possibility is the relation fb�m�o�s�dg� since the scenario where reading the paper
occurred entirely before drinking the co�ee is not explicitly ruled out by the sentence�

	



Relation Symbol Inverse Meaning

x before y b bi
x y

x meets y m mi
x y

x overlaps y o oi
x

y

x starts y s si
x
y

x during y d di
x
y

x �nishes y f �
x
y

x equal y eq eq
x
y

Figure �
 Basic relations between intervals

One scenario consistent with the description of events is shown in Fig� �c�
Another possible consistent scenario is one where Fred starts to read his paper
before he starts his breakfast� The feasible relations between all pairs of in�
tervals are shown in Fig� �b� Determining the feasible relations can be viewed
as determining the deductive consequences of our temporal knowledge� We are
able to derive
 for example
 that Fred went for a walk after reading his paper
and drinking his co�ee and that Fred �nished his paper before he �nished his
breakfast�

��� Vilain and Kautz�s framework

There are three basic relations that can hold between two points
 �
 �
 and
�� In order to represent inde�nite information
 the relation between two points
is allowed to be a disjunction of the basic relations� Sets are used to list the
disjunctions� For example
 the relation f���g between points A and B repre�
sents the disjunction
 �A � B�� �A � B�� Let � be the set of all basic relations

f���� �g� The set of possible relations between two points is f�
 �
 �
 �
 �

�
 ��
 �g
 where �
 for example
 is an abbreviation of f���g� We call networks
with labels that are subsets of �
 point algebra or PA networks�
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�a� Example� Fred was reading the paper while eating his breakfast� He put

the paper down and drank the last of his co�ee� After breakfast he went for a

walk�
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Figure �
 Representing qualitative relations between intervals
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�a� Example� Fred put the paper down and drank the last of his co�ee�
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Figure 	
 Representing qualitative relations between points

Example �� As an example of representing temporal information using PA
networks
 consider the description of events shown in Fig� 	a� As discussed in
Ex� �
 this sentence �xes the relationship between some of the end points of the
intervals of time over which Fred read his paper and over which Fred drank his
co�ee but it remains inde�nite about others� We represent this by the network
shown in Fig� 	a
 where paper� and paper� represent the start and end points
of the event� One scenario consistent with the temporal information is shown
in Fig� 	b� If a directed edge from paper� to co�ee� labeled � was added to
the network shown in Fig� 	a
 the resulting network would show the feasible
relations between all pairs of points�

��� Translations between representations

Vilain and Kautz ���� show that a restricted class of IA networks
 denoted
here as SA networks
 can be translated without loss of information into PA
networks� In IA networks
 the relation between two intervals can be any subset
of I
 the set of all thirteen basic relations� In SA networks
 the allowed relations
between two intervals are only those subsets of I that can be translated
 using
the relations f�
 �
 �
 �
 �
 ��
 �g
 into conjunctions of relations between the
endpoints of the intervals� For example
 the IA network in Fig� �a is also an
SA network� As a speci�c example
 the part of the interval network �paper
fo
s
dg co�ee� can be expressed as the conjunction of point relations


�paper� � paper�� � �co�ee� � co�ee���
�paper� � co�ee�� � �paper� � co�ee��


and the equivalent representation as a PA network is shown in Fig� 	a
 where
paper� and paper� represent the start and end points of the interval denoted

�



paper
 respectively� �See ���� for an enumeration of the allowed relations for SA
networks and the translation into PA relations� also enumerated by G�uther ����
and Ladkin and Maddux ��	�
 where the relations are called the �pointisable�
relations��

The allowed relations for SA networks is a small but important and useful
subset of the ��� relations allowed for IA networks
 as many applications of IA
networks in the literature actually only use SA networks� For example
 Almeida
��� and Song �	��
 in independent work on computer understanding of English
narratives
 both adopt Allen�s framework but choose to use only relations that
are allowed for SA networks� Hamlet and Hunter ���� adopt Allen�s framework
for representing temporal information in medical expert systems but
 with the
exception of the disjointedness relation fb
bi
m
mig
 choose to use only relations
that are allowed for SA networks �in their example
 later temporal information
is used to strengthen the disjointedness relation to fb
mg which is allowed��
N�okel ���� uses SA networks in a diagnostic setting� With the exception of
N�okel ����
 it does not appear that the authors intentionally restricted their
representation language or were aware of the computational advantages� rather

the relations used were simply the right ones for the task at hand�

As alluded to above
 what cannot be expressed in SA networks that can
be expressed in IA networks is �disjointedness� of intervals� For example
 we
cannot say that �A fb
big B�
 i�e�
 that A is either before or after B
 since this
interval relation cannot be expressed as simply a conjunction of point relations
between the endpoints of the two intervals� It requires the disjunction


��A� � B�� � �A� � B�� � �A� � B�� � �A� � B��� �
��A� � B�� � �A� � B�� � �A� � B�� � �A� � B����

The nearest approximation using only conjunction is


�A� �� B�� � �A� �� B�� � �A� �� B�� � �A� �� B���

and so
 the nearest approximation to �A fb
big B� in SA networks is �A
fb
bi
o
oi
d
dig B�� But as can be seen
 this allows
 for example
 A to over�
lap B
 which we did not intend�

��� Formalization of the reasoning tasks

We formalize our reasoning tasks using networks of binary constraints ����� The
reasoning tasks are then special cases of a general class of problems known as
constraint satisfaction problems� Our development borrows from that found in
Dechter et al� ���� and Ladkin and Maddux ���
 �	�� This approach allows us
to use some previously known algorithms and eases the development of new
algorithms�

A network of binary constraints ���� is de�ned as a set X of n variables
fx�� x�� ���� xng
 a domain Di of possible values for each variable
 and binary

�



constraints between variables� A binary constraint
Cij
 between variables xi
and xj
 is a subset of the Cartesian product of their domains that speci�es the
allowed pairs of values for xi and xj �i�e�
 Cij � Di �Dj�� For the networks of
interest here
 we require that �xj� xi� 	 Cji 
 �xi� xj� 	 Cij� An instantiation
of the variables in X is an n�tuple �X�� X�� ���� Xn�
 representing an assignment
of Xi 	 Di to xi� A consistent instantiation of a network is an instantiation
of the variables such that the constraints between variables are satis�ed� A
network is inconsistent if no consistent instantiation exists�

An IA network is a network of binary constraints where the variables rep�
resent time intervals
 the domains of the variables are the set of ordered pairs
of rational numbers f�s� e� j s � eg
 with s and e representing the start and end
points of the interval
 respectively
 and the binary constraints between variables
are represented implicitly by sets of the basic interval relations�� For example

let Cij � fm
og be the relation between variables xi and xj in some IA network�
The set of allowed pairs of values for variables xi and xj is given by


f��si� ei�� �sj � ej�� j �si� ei� meets �sj � ej� � �si� ei� overlaps �sj � ej�g�

A PA network is a network of binary constraints where the variables rep�
resent time points
 the domains of the variables are the set of rational numbers

and the binary constraints between variables are represented implicitly by sets
of the basic point relations��

The reasoning tasks that we want to solve are �nding a consistent scenario
and �nding the feasible relations� A network S is a consistent scenario of a
network C if and only if

�a� Sij � Cij


�b� jSij j � �
 for all i� j
 and

�c� there exists a consistent instantiation of S�

The basic relations are disjoint� Hence
 if an instantiation of variables xi and
xj satis�es Cij
 then one and only one of the basic relations in Cij is satis�ed�
Thus
 given a consistent instantiation of a PA or IA network
 the basic relations

�Our interests are in temporal reasoning and hence we speak of time intervals� However�
IA networks and the results presented in this paper have other applications� Two exam	
ples are DNA sequencing and optimal arrangement of records on secondary storage 
see ����
pp� ���	������ As well� it should be noted that� by adopting the rationals as the underlying
representation of time� we are committing ourselves to a particular view of time� namely�
that time is dense� linear� and unbounded� This is appropriate in many temporal reasoning
applications� In other applications� however� we may want discrete� branching� or bounded
time�

�With the exclusion of the �� relation� a PA network is simply a system of linear inequal	
ities where each inequality is in two variables and each variable has unit coe�cient� This is
discussed further in Section 
��� Along similar lines� Dean and McDermott ��� and Dechter et
al� ���� propose di�erence constraints� and Malik and Binford ���� propose linear inequalities
to represent and reason about temporal information�
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between variables satis�ed by that consistent instantiation de�ne a consistent
scenario� As an example
 one possible consistent instantiation of the network
in Fig� �a that would give the consistent scenario in Fig� �c is
 paper � ��� 	�

breakfast � ��� ��
 walk � ��� ��
 and co�ee � ��� ��� While there are either
zero or an in�nite number of di�erent consistent instantiations of a PA or IA
network
 there are only a �nite number of di�erent consistent scenarios�

A basic relation B 	 Cij is feasible with respect to a network if and only if
there exists a consistent instantiation of the network where B is satis�ed� Given
an IA network or a PA network
 C
 the set of feasible relations between
two variables xi and xj in the network is the set consisting of all and only

the B 	 Cij that are feasible� The minimal network representation
 M 
 of a
network
 C
 is the network for which Mij is the set of feasible relations between
variables xi and xj in C for every i� j � �� � � � � n� As an example
 the network
in Fig� �b is the minimal network of the network in Fig� �a�
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� Point Algebra Networks and a SubClass of In�

terval Algebra Networks

In this section we examine the computational problems of �nding consistent
scenarios and �nding the feasible relations of PA networks and SA networks�

��� Finding a consistent scenario

Related work� One method of �nding a consistent scenario of a PA network
is to �rst �nd a consistent instantiation of the network� The basic relations
between variables satis�ed by the consistent instantiation then give a consistent
scenario�

Topological sort �see Knuth ����� can be used to �nd a consistent instan�
tiation if the temporal information is a strict partial order� i�e�
 if the allowed
relations are restricted to f�
 �
 �g� Topological sort is O�n���

If the allowed relations are restricted to f�
 �
 �
 �
 �
 �g
 i�e�
 we do
not allow disequality
 PA networks can be viewed as a set of linear equalities
and inequalities� The equalities and inequalities are of the form
 xi � xj � �

xi�xj � �
 and xi�xj � �� A solution to the set of linear inequalities is precisely
a consistent instantiation of the network� Solving a set of linear inequalities�or
recognizing that no solution exists�is easily done using algorithms for solving
linear programs �see Chv�atal ����� Thus
 the simplex algorithm or Karmarkar�s
algorithm can be used to �nd a solution� However
 more e�cient algorithms are
known if the linear program is of a particular form that arises in what is known
as the shortest�path problem�

The shortest�path problem is to �nd the shortest path in a labeled graph
from a vertex s to a vertex t� This can be made into a linear program as follows
�see Papadimitriou and Steiglitz �	���� Let lij be the label on the directed edge
�i� j� and let xi denote the length of the shortest path from s to i� The shortest
path from s to itself is �� We want to minimize xt
 the length of the shortest
path from s to t� Since the shortest path from s to j might pass through i
 we
must have xj � xi� lij
 i�e�
 xj � xi � lij� The result is a linear program of the
form


min xt
xi � xj � lij� i� j � �� � � � � n
xi unconstrained
xs � ��

If all the lij are non�negative then we can use Dijkstra�s algorithm ��	� to �nd a
solution to this linear program� Dijkstra�s algorithm is O�n��� If some of the lij
are negative then we can use the Floyd�Warshall algorithm ��� to �nd a solution�
The Floyd�Warshall algorithm is O�n���

It remains to show how much of our problem can be translated into a
shortest�path problem� The translation is as follows


��



xi � xj 
 xi � xj � �
 xj � xi � �

xi � xj 
 xi � xj � �
 xj � xi � ��

xi � xj 
 xi � xj � ��
 xj � xi � ��


where the left column shows the relation between variables in a PA network and
the right columns shows the translation into constraints for the shortest�path
linear program� Note the use of a small negative value
 ��
 for turning a strict
inequality into a weak inequality �see ��
 p� ���� for how to choose a value for
� such that solutions are preserved and no new solutions are introduced�� In
summary
 if the allowed relations are restricted to f�
 �
 �
 �g
 then Dijkstra�s
algorithm can be used to �nd a consistent instantiation in O�n�� time� If the
allowed relations are restricted to f�
 �
 �
 �
 �
 �g
 then the Floyd�Warshall
algorithm can be used to �nd a consistent instantiation in O�n�� time�

Finally
 Ladkin and Maddux ���� give an algorithm for �nding one consistent
scenario for PA networks that takes O�n�� time with n points� If no consis�
tent scenario exists
 the algorithm reports the inconsistency� Their algorithm
relies on �rst applying the path consistency algorithm ���
 ��� before �nding a
consistent scenario�

An improved algorithm� We develop an algorithm for �nding one consistent
scenario that takes O�n�� time for PA networks with n points� Our starting
point is an observation by Ladkin and Maddux ���
 p� 	�� that topological
sort alone will not work as the labels may be any one of the eight di�erent
relations
 f�
 �
 �
 �
 �
 �
 ��
 �g
 and thus may have less information about
the relation between two points than is required� For topological sort we need
all edges labeled with �
 �
 or �� The �problem� labels are then f�
 �
 �

�
 ��g� The intuition behind the algorithm is that we somehow remove or rule
out each of these possibilities and
 once we have
 we can then apply topological
sort to give a consistent scenario� The algorithm is summarized in Fig� � and
a proof of correctness is given in Appendix A� The input to the algorithm is
a PA network represented as an adjacency matrix C where element Cij is the
label on edge �i� j��

The � relation� To remove the � relation from the network
 we identify
all pairs of points that are necessarily equal and condense them into one vertex�
When saying a pair of points are necessarily equal
 we mean that in every
consistent scenario the relation between the two vertices is the � relation� More
formally
 we want to partition the vertices into equivalence classes Si
 � � i � m

such that vertices v and w are in the same equivalence class if and only if they
are necessarily equal� It turns out that the vertices v and w are necessarily
equal precisely when there is a cycle of the form


v � � � � � w � � � � � v�

where one or more of the � can be � �see Appendix A for a proof�� This is the
same as saying v and w are in the same equivalence class if and only if there is a
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Figure �
 Example PA network

path from v to w and a path from w to v using only the edges labeled with � or
�� This is a well�known problem in graph theory� Determining the equivalence
classes is the same as identifying the strongly connected components �SCCs� of
the graph and an e�cient O�n�� algorithm is known �Tarjan �	����

We condense the graph by collapsing each strongly connected component
into a single vertex� Let fS�� S�� � � � � Smg be the SCCs we have found� The Si
partition the vertices in the graph in that each vertex is in one and only one of
the Si� We construct the condensed graph and its matrix representation
  C
 as
follows� Each Si is a vertex in the graph� The labels on the edges between all
pairs of vertices is given by


 CSiSj
�

T
Cvw� i� j � �� � � � �m�

v 	 Si
w 	 Sj

Example �� The network shown in Fig� � is used to illustrate the discussion�
As usual
 all edges �i� i� and all edges labeled � are omitted� The four strongly
connected components
 S�
 S�
 S�
 and S�
 of the network are as shown in
Fig� �a� The condensed graph of the network of Fig� � is shown in Fig� �b� To
illustrate
 condensing the strongly connected component S� gives


 CS�S� � C�� � C�� �C�� �C�� �C�� � C��

� f���g � f���g � f���g � f���g � f���g � f���g

� f�g�

where we have omitted the self loops Cii �these loops are always labeled with
f�g and so do not a�ect the result�� As a further illustration
 the labels on the
edges between S� and S� are given by


 CS�S� � C�� � C�� �C�� �C��

� f���g � f���� �g � f���� �g � f�g

� f�g�

��



�a� Strongly connected components�

S� � f�� �� �g
 S� � f�� �g

S� � f�� 	g
 S� � f�g�

�b� Condensed PA network�
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Figure �
 Condensing the strongly connected components

The � relation� To rule out the � relation we must determine if the network
is inconsistent� It turns out that the network is inconsistent precisely when there
is a cycle of the form


v � � � � � w �� v�

or of the form


v � � � � � w � � � � � v �� w�

where some or all of the � can be �
 or of the form


v � � � � � w � � � � � v�

where all but one of the � can be � or � �see Appendix A for a proof�� The
�rst two cases are already detected when we identify all pairs of points that are
necessarily equal and condense them into one vertex� That is
 the inconsistencies
are detected when the strongly connected components are condensed� But we
can identify the third case simply by also looking at edges labeled with � when
identifying the strongly connected components� As before
 the inconsistencies
are then detected when the strongly connected components are condensed�
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CSPAN�C�

�� Identify the strongly connected components �SCCs� of C using only edges
labeled with f�g
 f���g
 and f�g� Let S�� � � � � Sm be the SCCs found�

�� for i� j � �� � � � �m

	� do  CSiSj
� f���� �g

�� for each v 	 Si� w 	 Sj

�� do  CSiSj
�  CSiSj

�Cvw

�� if  CSiSj
� �

�� then return��Inconsistent network��

�� Replace any remaining f���g labels in  C with f�g�

�� Perform a topological sort using only the edges in  C labeled with f�g�

Figure �
 Consistent scenario algorithm for PA networks

Example �� Suppose the label on the edge ��
 �� in the graph shown
in Fig� � was � instead of the � shown� Condensing the strongly connected
component S� would give


 CS�S� � C�� � C�� �C�� �C�� �C�� � C��

� f�g � f���g � f�g � f���g � f���g � f���g

� ��

where again we have omitted the self loops Cii�

The ��� relations� To remove the � relation from the network
 we simply
change all � labels to �� This is valid because
 assuming that the � and �
relations have been removed
 we know that a consistent scenario exists and that
no remaining edge is forced to have � as its label in all consistent scenarios� So

for any particular edge labeled with � there exists a consistent scenario with �
as the singleton label� But
 changing a � to a � can only force other labels to
become �� it cannot force labels to become �� �Using the terminology of the
algorithm in Fig� �
 no new strongly connected components are introduced by
this step� hence no new labels are forced to be equal and no new inconsistencies
are introduced�� So
 after all the changes
 a consistent scenario still exists�

The �� relation� We can now perform topological sort to �nd one consistent
scenario� It can be shown that
 because of the previous steps of the algorithm

the �� relations are now handled correctly �and implicitly� by topological sort�
The output of topological sort is an assignment of numbers to the vertices that
is consistent with the information provided�
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Example �� Consider the network shown in Fig� �b� Depending on the
particular implementation of topological sort
 one possible result is that vertex
f�g is assigned the number �
 vertex f�
 �
 �g is assigned �
 vertex f�
 	g is
assigned �
 and vertex f�
 �g is assigned 	� The consistent scenario of the
original network �Fig� �� is easily recovered from this information�

Theorem � Procedure CSPAN correctly �nds a consistent scenario of a PA
network in O�n�� time� where n is the number of points�

Proof� See Appendix A for a detailed proof of correctness� For the time bound

�nding the strongly connected components is O�n�� �	��
 condensing the graph
looks at each edge only once
 and topological sort is O�n�� ����� �

We can �nd a consistent scenario of an SA network by �rst translating it
into a PA network and using algorithm CSPAN to �nd a consistent instanti�
ation� The consistent instantiation of the PA network also gives a consistent
instantiation of the original SA network and hence also de�nes a consistent
scenario of the original SA network� Each of the steps of �i� recognizing that
an IA network is the special case of an SA network
 �ii� translating it into a
PA network
 and �iii� �nding a consistent scenario
 can be done in O�n�� time�

Example 	� Consider the �small� SA subnetwork shown in Fig� �a con�
sisting of paper fo
s
dg co�ee and its translation into a PA network shown
in Fig� 	a� One consistent instantiation of the corresponding PA network is
the assignments
 paper� � �
 co�ee� � �
 paper� � 	
 and co�ee� � ��
The corresponding consistent instantiation of the original SA network is sim�
ply
 paper � ��� 	� and co�ee � ��� ��
 and the consistent scenario is given by

�paper overlaps co�ee��

To summarize
 if our temporal networks are PA networks or SA networks
we can �nd a consistent scenario quickly using algorithm CSPAN�

��� Finding the feasible relations

Related work� Allen ��� shows that a path consistency algorithm ���
 ���
can be used to �nd an approximation to the sets of all feasible relations �see
Fig� �� the path consistency procedure shown there is due to Mackworth ����
but is slightly simpli�ed because of properties of the algebras�� Path consistency
algorithms
 as their name suggests
 ensure that a network is path consistent�
A network is path consistent ���� if and only if
 for every triple �i� k� j� of
vertices


�xi�xj��xi� xj� 	 Cij � �xk�xk 	 Dk � �xi� xk� 	 Cik � �xk� xj� 	 Ckj���

In words
 for every instantiation of xi and xj that satis�es the direct relation

Cij
 there exists an instantiation of xk such that Cik and Ckj are also satis�ed�
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To use the path consistency algorithm
 we need the operators composition and
intersection of relations �see ��
 ��� for discussions of how the operations are
implemented in this context��

Previous work has identi�ed classes of relations for which the path consis�
tency algorithm will �nd the minimal network� Montanari ���� shows that the
path consistency algorithm �nds the minimal network for a restricted class of
binary constraint relations� However
 the relations of interest here do not all
fall into this class� Vald�es�P�erez �	�� shows that the path consistency algorithm
�nds the minimal network for IA networks which use only the basic interval
relations� In �	�
 ���
 we show that the path consistency algorithm �nds the
sets of feasible relations for the subclass of PA networks that do not contain
the �� relation
 and for a corresponding subclass of SA networks� But we also
give examples there that show that
 earlier claims to the contrary
 the path con�
sistency algorithm is not su�cient for �nding the minimal network for general
PA networks nor for general SA networks and we develop an O�n�� consistency
algorithm that is su�cient
 where n is the number of intervals or points�

An improved algorithm� Here we give an O�max�mn�� n��� time algorithm
for �nding all feasible relations
 where n is the number of points and m is the
number of pairs of points that are asserted to be not equal� The algorithm is
of far more practical use than our previous algorithm �that algorithm is still of
importance as an approximation algorithm for instances of the problem from
the full interval algebra� see �	�
 ��� for the details��

Our strategy for developing an algorithm for PA networks is to �rst identify
why path consistency is su�cient if we exclude �� from the language and is not
su�cient if we include ��� Fig� � gives the smallest counter�example showing
that the path consistency algorithm does not correctly determine the minimal
network representation of all PA networks� The network is path consistent�
But it is easy to see that not every basic relation in the label between s and t is
feasible� In particular
 asserting s � t forces v and w to also be equal to s and
t� But this is inconsistent with v �� w� Hence
 the � relation is not feasible as
it is not capable of being part of a consistent scenario� The label between s and
t should be ��

This is one counter�example of four vertices� But are there other counter�
examples for n � �� The following theorem answers this question and is the
basis of an algorithm for �nding all feasible relations for PA networks�

Theorem � �van Beek and Cohen 
���� Any path consistent PA network

which is not the minimal network� has a subgraph of four vertices isomorphic to

the network in Fig� ��

The counter�example then is unique
 up to isomorphism
 if the network is
path consistent� This leads to the following algorithm� We solve an instance of
the feasible relations problem by �rst applying the path consistency algorithm
and then systematically searching for �forbidden� subgraphs and appropriately
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Figure �
 �Forbidden� subgraph

changing the labels� The algorithm is shown in Fig� �� The input to the algo�
rithm is a PA network represented as an adjacency matrix C where element Cij

is the label on edge �i� j�� The algorithm also makes use of adjacency lists� For
example
 adj��v� is the list of all vertices
 w
 for which there is an edge from v

to w that is labeled with !���
Changing the label on some edge �s� t� from !�� to !�� may further constrain

labels on other edges� The question immediately arises of whether we need to
again apply the path consistency algorithm following our search for �forbidden�
subgraphs to propagate the newly changed labels� Fortunately
 the answer is no�
Given a new label on an edge �s� t�
 if we were to apply the path consistency
algorithm
 the set of triples of vertices that would be examined is given by
f�s� t� k�� �k� s� t� j � � k � n� k �� s� k �� tg �see Related�Paths in Fig� ���
Thus there are two cases� For both
 we can show that any changes that a
second application of the path consistency algorithm would make will already
have been made by procedure Find�Subgraphs�

Case �� �s� t� k�� Changing the label on the edge �s� t� from !�� to !�� would
cause the path consistency algorithm to change the label on the edge �s� k� only
in two cases


s � t� t � k� and s � k

s � t� t � k� and s � k

In both
 the label on �s� k� will become !��� For �s� t� to change we must have
the situation depicted in Fig� ��
 for some v and w� But v � t and w � t together
with t � k �or t � k� imply that v � k and w � k �we can assume the relations
were propagated because we applied the path consistency algorithm before the
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Feasible�C�

�� Path�Consistency�C�
�� Find�Subgraphs�C�

Path�Consistency�C�

�� Q�
S

Related�Paths�i� j�
	 � i � j � n

�� while �Q is not empty�
	� do select and delete a path �i� k� j� from Q

�� t� Cij � Cik �Ckj

�� if �t �� Cij�
�� then Cij � t

�� Cji �Inverse�t�
�� Q� Q � Related�Paths�i� j�

Related�Paths�i� j�

�� return f �i� j� k�
 �k� i� j� j � � k � n� k �� i� k �� j g

Find�Subgraphs�C�

�� for each edge �v� w� such that w 	 adj���v�
�� do S � �adj��v� � adj��w��
	� T � �adj��v� � adj��w��
�� for each s 	 S� t 	 T

�� do Cst � !��
�� Cts � !��

Figure �
 Feasible relations algorithm for PA networks

procedure for �nding �forbidden� subgraphs�� Hence
 �s� k� also belongs to a
�forbidden� subgraph and the label on that edge will have been found and
updated�

Case �� �k� s� t�� Similar argument as Case ��

Theorem � Procedure Feasible correctly �nds the feasible relations between

all pairs of points when applied to PA networks and requires O�max�mn�� n���
time� where m is the number of edges labeled with ���� and n is the number of

points�

Proof� Let P 
 M 
 and S be the propositions that �the network is path con�
sistent�
 �the network is not the minimal network�
 and �the network contains
a !forbidden� subgraph�
 respectively� By Theorem � we have
 P � �M � S�
Taking the contrapositive gives
 �S � �P �M � But the algorithm removes all
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�forbidden� subgraphs
 so �S is true
 and
 by the case analysis above
 the net�
work remains path consistent
 so �P is false� Hence
 the network is the minimal
network� For the time bound
 the path consistency procedure is O�n��
 where
n is the number of points ����� The Find�Subgraphs procedure can be seen to
be O�mn��
 where m is the number of edges labeled with !���� Hence the overall
algorithm is O�max�mn�� n���� �

We can �nd all pairs of feasible relations of an SA network by �rst translating
it into a PA network
 applying algorithm Feasible to the PA network
 and
translating the result back into an SA network� For many applications of SA
networks in the literature
 the translation into aPA network results in a network
with few or no �� relations between points� Thus
 a desirable feature of procedure
Find�Subgraphs is that its cost is proportional to the number of edges labeled
!����

To summarize
 if our temporal networks are PA networks or SA networks
we can �nd all pairs of feasible relations quickly using algorithm Feasible�

��



� Interval Algebra Networks

In this section we examine the computational problems of �nding consistent
scenarios and �nding the feasible relations of IA networks�

��� Finding a consistent scenario

Related work� Vilain and Kautz ���
 ��� show that �nding a consistent sce�
nario is NP�Complete for IA networks� Thus the worst cases of the algorithms
that we devise will be exponential and the best we can hope for is that the al�
gorithms are still useful in practice� We discuss to what extent this is achieved
below�

In the previous section we found a consistent scenario by �rst �nding a
consistent instantiation� An alternative method is as follows� Recall that a
network S is a consistent scenario of a network C if and only if

�a� Sij � Cij


�b� jSij j � �
 for all i� j
 and

�c� there exists a consistent instantiation of S�

To �nd a consistent scenario we simply search through the di�erent possible
S�s that satisfy conditions �a� and �b��it is a simple matter to enumerate
them�until we �nd one that also satis�es condition �c�� Allen ��� was the �rst
to propose using backtracking search to search through the potential S�s� In
this formulation of the problem the variables represent the relations between
intervals
 the domains of the variables are the set of basic interval relations
 and
the ternary constraints preclude certain combinations of relationships between
three intervals� Note
 however
 that if the problem size is n in the original
formulation
 it is now n� in this alternative formulation�

There has been much work on improving the performance of backtracking
that could be �or has been� adapted to this problem� This work can be clas�
si�ed according to the following four general considerations when designing a
backtracking algorithm for a particular application ����


�� What kind of preprocessing to do �e�g� ���
 ����� For �nding a consistent
scenario
 Reinefeld and Ladkin �		� give the results of extensive compu�
tational experiments characterizing how e�ective path consistency is in
pruning as a preprocessing step before backtracking search�

�� Which variable to instantiate next �e�g� �	�
 	����

	� Which instantiation to give the variable �e�g� ���
 ����� For general con�
straint networks
 Haralick and Elliott ���� propose a technique called for�
ward checking where it is determined and recorded how the instantiation
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of the current variable restricts the possible instantiations of future vari�
ables� This technique can be viewed as a hybrid of tree search and con�
sistency algorithms �see �	���� For �nding a consistent scenario
 Reinefeld
and Ladkin �		� give an algorithm that interleaves path consistency and
backtracking search in the style of forward checking�

�� How to handle backtracking �e�g� ���
 ���� In chronological backtracking

when a dead end occurs in the search
 the algorithm backs up to the
last variable instantiated� For general constraint networks
 Gaschnig ����
proposes backjumping as an improvement where the idea is to try and
back up further to the source of the problem� For �nding a consistent
scenario
 Vald�es�P�erez �	�� gives a backtracking algorithm in the style of
backjumping�

Improving the algorithms� Here we show how the results for SA networks
can be used to improve the performance of backtracking algorithms for �nding a
consistent scenario� We then design a backtracking algorithm modeled on that
of Reinefeld and Ladkin �		� and present the results of experiments comparing
the performance of the two algorithms on random problems drawn from two
di�erent distributions� Based on the experimental evidence
 we postulate that
the algorithm is useful in practice
 in particular for planning problems and
problems with similar characteristics�

Our proposal for improving the backtracking algorithms is the following�
Rather than search directly for a consistent scenario of an IA network
 as in
previous work
 we �rst search for something more general
 a consistent SA
subnetwork of the IA network� That is
 we use backtrack search to �nd a
subnetwork S of a network C such that


�a� Sij � Cij


�b� Sij is an allowed relation for SA networks
 for all i� j
 and

�c� there exists a consistent instantiation of S�

In previous work
 the search is through the alternative singleton labelings of
an edge
 i�e�
 jSijj � �� The key idea in our proposal is that we decompose
the labels into the largest possible sets of basic relations that are allowed for
SA networks and search through these decompositions� This can considerably
reduce the size of the search space� An example will clarify this� Suppose the
label on an edge is fb
bi
m
o
oi
sig� There are six possible ways to label the edge
with a singleton label
 fbg
 fbig
 fmg
 fog
 foig
 fsig
 but only two possible
ways to label the edge if we decompose the labels into the largest possible sets
of basic relations that are allowed for SA networks
 fb
m
og and fbi
oi
sig�

Example 
� Consider the network shown in Fig� �� For illustration purposes
only
 suppose that we perform naive backtrack search �chronological backtrack�
ing and no forward checking� to �nd a consistent scenario and that the search
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where I � fb
bi
m
mi
o
oi
s
si
d
di
f
�
eqg

Figure �
 Example IA network

looks at the edges in the order ��
��
 ��
	�
 ��
	�
 ��
��
 ��
��
 and �	
��� Fig� ��
shows a record of the search for both methods� Moving to the right and down�
ward in the �gure means a partial solution is being extended
 moving to the
left and downward means the search is backtracking� In this example
 when
searching through alternative singleton labelings
 much search is done before
it is discovered that no consistent scenario exists with edge ��
�� labeled with
feqg
 but when decomposing the labels into the largest possible sets of basic
relations that are allowed for SA networks and searching through the decom�
positions
 no backtracking is necessary �in general
 the search is
 of course
 not
always backtrack free��

CSIAN�C�

�� Find a consistent SA subnetwork
 S
 of the IA network
 C
 using
backtrack search�

�� Translate SA network
 S
 into PA network
 P �
	� CSPAN�P �

Figure ��
 Schema of a consistent scenario algorithm for IA networks

To test whether an instantiation of a variable is consistent with instantiations
of past variables and with possible instantiations of future variables
 we can
either �i� translate the SA network into an equivalent PA network and use the
O�n�� decision portion of procedure CSPAN �Steps �"� of Fig� ��
 or �ii� use a
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Single�
�	�
� �	��� �
��� �	��� �
��� �����
feqg

fbig
fbig

fbg
fog
f�g

fsig
fog
f�g

foig
fsg

fbig
foig

fbg
fbig

fbig
fbg

fog
fbg

SA�

�	�
� �	��� �
��� �	��� �
��� �����
fIg

fbig
fbi�oig

fbg
fo��g

fbg

Figure ��
 Record of backtrack search using naive backtracking

path consistency algorithm� Finally
 the result of the backtracking algorithm is a
consistent SA subnetwork of the IA network �or a report that the IA network
is inconsistent�� After backtracking completes
 the resulting SA network is
translated into a PA network and then passed to algorithm CSPAN to �nd
a consistent scenario of this network and
 hence
 a consistent scenario of the
original IA network� A schema of the algorithm is shown in Fig� ���

Experiments� We tested our ideas experimentally� For the purposes of the
experiments we must make procedure CSIAN concrete by specifying a back�
tracking procedure� We chose to model our algorithmafter that of Reinefeld and
Ladkin �		� as the results of their experimentation suggests that it is very suc�
cessful at �nding consistent scenarios quickly� Following Reinefeld and Ladkin
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our algorithm has the following characteristics
 path consistency preprocessing

randomly chosen and static order of instantiation of the variables
 chronological
backtracking
 and forward checking or pruning using path consistency�

We randomly generated IA networks of size n as follows� We �rst gener�
ated an �instantiation� by randomly generating values for the end points of n
intervals� This was turned into a consistent scenario by determining the ba�
sic relations which were satis�ed by the instantiation� Finally
 we then added
inde�niteness to the relations between intervals by adding basic relations�

All experiments were performed on Sun �#���s with � megabytes of memory�
We implemented two versions of the algorithm that were identical except that
one searched through the decompositions of the labels into the largest possible
allowed relations for SA networks and the other searched through the decompo�
sitions of the labels into singleton labelings� The results are divided according
to how the inde�niteness was randomly generated� Table � shows the results
for random instances from a distribution designed to approximate planning ap�
plications �as estimated from a block�stacking in ���� in planning
 as formulated
by Allen and Koomen ���
 �nding a consistent scenario corresponds to �nding
an ordering of the actions that will accomplish a goal�� In this distribution

approximately ��$ of the edges are labeled with I�meaning there is no con�
straint between the intervals
 and the remaining edges have between � and 	
basic relations added as inde�niteness� For the results in Table �
 all subsets of
I are equally likely to be added as inde�niteness to an edge� The timings do not
include preprocessing time
 as this was common to both methods
 or the addi�
tional time for Steps �%	 of CSIAN� However
 this additional cost is small �for
example
 for n � ���
 it takes about ���� seconds�� For these two distributions

the experiments suggest that decomposing into �larger� relations improves the
performance of backtracking search
 sometimes by a factor of almost 	� The
experiments also provide additional evidence for the e�cacy of Reinefeld and
Ladkin�s algorithm�

To summarize
 if our representation language is IA networks
 we can use
algorithm CSIAN
 which is exponential in the worst case
 to �nd a consistent
scenario� One bright spot is that the algorithm seems to work well in practice
for problems that arise in planning� The algorithm should work similarly well on
any problem with the characteristics of a planning problem� The characteristics
are
 We do not have direct knowledge of the relations between most intervals
and few of the relations are disallowed relations for SA networks� We remark
that it is a simple matter to have a procedure that determines whether an IA
network is also the special case of an SA network and then
 depending on the
outcome
 calls either CSPAN or CSIAN to �nd a consistent scenario� This has
the twofold advantage that the choice of algorithm can be hidden from the user
and that no commitment need be made at the outset by the user to restrict the
representation language �the more expensive CSIAN algorithm can simply be
used as needed��
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Table �
 Solving random instances of consistent IA networks from a distribution
designed to model instances that arise in planning� ���� tests for each n�

SA Single

n pc� calls time �sec�� pc� calls time �sec��

�� ��� ���� ��� ����
�� ���� ���� ���� ����
	� �	�� ���� 	��	 ����
�� ���� ��	� ���� ����
�� 	��� ���� ���� ����
�� 	��� ���� ���� ����
�� 	��� ���� ���� ����
�� 	��� ��	� ���	 ����
�� ���� ���� ���� ����
��� ���� ���� ���� ��	�

Table �
 Solving random instances of consistent IA networks from a distribution
where all labels are added with equal likelihood� ���� tests for each n�

SA Single

n pc� calls time �sec�� pc� calls time �sec��

�� �	�	 ���� ��� ����
�� 	��	 ���� ���� ����
	� ���� ����a ����� ��	�b

�� ���� ���� ���� ����
�� ���� ���� ���� ����
�� ���� ���� ���� ����
�� ���� ���� ���� ��	�
�� ���� ���� ���� ����
�� ���	 ���	 ���� ����

��� �	�� ���� ���� 	���

a 	 test omitted as 	
� limit on number of path consistency calls exceeded�
b � tests omitted as 	
� limit on number of path consistency calls exceeded�
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��� Finding the feasible relations

Vilain and Kautz ���
 ��� show that �nding the feasible relations is NP�Complete
for IA networks� Freuder ���� and Seidel �	�� give algorithms that �nd all con�
sistent instantiations of a general constraint network� Hence
 their algorithms
can be used for �nding the feasible relations� A di�culty is that both algorithms
require the domains of the variables to be �nite but IA networks have in�nite
domains� However
 we can again reformulate the feasible relations problem as
a network of ternary constraints with �nite domains
 the variables represent
the relations between intervals
 the domains of the variables are the set of basic
interval relations
 and the ternary constraints preclude certain combinations of
relationships between three intervals� Seidel�s algorithm �	�� is useful for sparse
constraint networks but here the networks are dense
 there being a ternary con�
straint for every combination of three variables� For the problems of interest
here
 both algorithms appear to be practical only for small instances of the
problem�

A backtracking algorithm similar to the one given in the previous section
can be designed for �nding all the feasible relations� Again
 instead of searching
through the alternative singleton labelings of the edges
 we decompose the labels
into the largest possible sets of basic relations allowed for SA networks and
search through the decompositions� In the previous section when �nding a
consistent scenario we stopped the backtracking algorithm after one consistent
SA network was found� To determine the feasible relations we must �nd all
such consistent SA networks� For each such consistent SA network we �nd the
feasible relations using the algorithm of Fig� �� The feasible relations for the IA
network are then just the union of all such solutions� Initial experience
 however

suggests this method is practical only for small instances of the problem
 or for
instances where only a few of the relations between intervals fall outside of the
allowed relations for SA networks� We conclude that in most cases a better
approach is to
 if possible
 accept approximate solutions to the problem ��
 ����
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� Conclusions

Allen ��� and Vilain and Kautz ���� give frameworks for representing and reason�
ing about qualitative temporal information� We looked at two reasoning tasks
that arise in applications of these frameworks
 Given possibly inde�nite and
incomplete knowledge of the relationships between some intervals or points
 �i�
�nd a scenario that is consistent with the information provided
 and �ii� �nd
the feasible relations between all pairs of intervals or points�

For �nding one consistent scenario
 we give an O�n�� time algorithm for PA
and SA networks� The algorithm is an O�n� improvement over the previously
known algorithm� The results for the point algebra are shown to aid in the
design of a backtracking algorithm for IA networks� The backtracking algorithm
is shown experimentally to be useful for planning problems� For �nding the
feasible relations
 we give an algorithm for PA and SA networks that is of more
practical use than the previously known algorithm�

The algorithms are of importance as the reasoning tasks arise in such diverse
applications as natural language processing
 plan recognition
 planning
 and
diagnosis and within these applications the reasoning tasks often need to be
solved repeatedly� As well
 in related work we show how the algorithms can
be used in answering a broader range of query types
 including �i� determining
whether a formula involving temporal relations between events is possibly true
and necessarily true� and �ii� answering aggregation questions where the set of
all events that satisfy a formula are retrieved �	���
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A Appendix

In this appendix we prove Theorem � by showing statements �a� and �b� below�
The rest of the algorithm is justi�ed by the discussion in the text of Section 	���

a� The vertices v and w are necessarily equal if and only if there is a cycle of
the form


v � � � � � w � � � � � v� ���

where one or more of the � can be ��

b� The network is inconsistent if and only if there is a cycle of the form


v � � � � � w �� v� ���

or of the form


v � � � � � w � � � � � v �� w� �	�

where some or all of the � can be �
 or of the form


v � � � � � w � � � � � v� ���

where all but one of the � can be � or ��

Let M be the minimal network representation of a PA network� The idea
behind the proof is that by Theorem � and Theorem 	
 the path consistency
algorithm correctly determines Mij if Mij is one of f�
 �
 �
 �
 ��
 �g� That
is
 the path consistency algorithm correctly determines
 in particular
 whether
a PA network is inconsistent �this was �rst proved in ��	�� and whether two
vertices are necessarily equal� Thus
 we need to look at only the paths between
vertices to prove statements �a� and �b��

To make the argument precise
 we �rst give some notation� Let P � �v� x��

�x�� x��� � � � � �xm� w� be a path �possibly containing cycles� from vertex v to
vertex w in a PA network� Let the label of a path
 denoted l�P �
 be the
composition of the labels of the edges in the path
 taken in order �see Fig� ��
for the composition table�� For example
 with reference to Fig� �
 let P be the
path ��� ��� ��� 	�� �	���� ������ the label of the path P is � � � � � � �
 which is
simply �� Let i�v� w� be de�ned as the intersection of the labels of all the paths
from v to w� Montanari ����
 p� ��	�� see also ���
 p� ����
 ��
 p� ����� shows that
the path consistency algorithm computes i�v� w�
 for each pair of vertices �v� w��
Therefore
 since the path consistency algorithm correctly determines whether a
PA network is inconsistent and whether two vertices are necessarily equal
 it
is su�cient to look at the intersection of the labels of the paths between two
vertices to prove statements �a� and �b��

��



Composition of two relations


� � � � � � ��

� � � � � � ��
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
�� �� � � � � �

Intersection of two relations


� � � � � � ��

� � � � � � �
� � � � � � �

� � � � � � �

� � � � � � �

� � � � � � �

�� � � � � � ��

Figure ��
 Point algebra operations �Vilain and Kautz �����

For vertices v and w to be necessarily equal �i�e�
 i�v� w� � !���
 there must
exist paths Pi and Pj from v to w such that the intersection of the labels of
these paths is the � relation� The following table gives all the possibilities�

� � 	 �
l�Pi� � � � �
l�Pj� � � �

By examination of the composition table for the point algebra �Fig� ��� it can
be seen that these four cases arise only when there is a cycle of the form in
Eqn� ��

For the network to be inconsistent �i�e�
 i�v� w� � ��
 there must exist paths
Pi
 Pj 
 and Pk from v to w such that the intersection of the labels of these paths
is the empty set� The following table gives all the possibilities�

� � 	 � � � �
l�Pi� � � � � � � �
l�Pj� � � � � � � ��
l�Pk� ��

By examination of the composition table for the point algebra �Fig� ��� it can
be seen that case ��� arises only when there is a cycle of the form in Eqn� 	

cases ������� arise only when there is a cycle of the form in Eqn� �
 and case ���
arises only when there is a cycle of the form in Eqn� �� �

��
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