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Abstract

Constraint networks have been shown to be use�
ful in formulating such diverse problems as scene
labeling� natural language parsing� and temporal
reasoning� Given a constraint network� we often
wish to �i� �nd a solution that satis�es the con�
straints and �ii� �nd the corresponding minimal
network where the constraints are as explicit as
possible� Both tasks are known to be NP�complete
in the general case� Task �i� is usually solved us�
ing a backtracking algorithm� and task �ii� is of�
ten solved only approximately by enforcing vari�
ous levels of local consistency� In this paper� we
identify a property of binary constraints called row

convexity and show its usefulness in deciding when
a form of local consistency called path consistency
is su�cient to guarantee a network is both min�
imal and decomposable� Decomposable networks
have the property that a solution can be found
without backtracking� We show that the row con�
vexity property can be tested for e�ciently and
we show� by examining applications of constraint
networks discussed in the literature� that our re�
sults are useful in practice� Thus� we identify a
large class of constraint networks for which we can
solve both tasks �i� and �ii� e�ciently�

� Introduction

Constraint networks have been shown to be useful
in formulating such diverse problems as graph color�
ing �Montanari� ������ scene labeling �Hu�man� ����	
Waltz� ���
�� natural language parsing �Maruyama�
������ and temporal reasoning �Allen� ���
	 van Beek�
������ A constraint network is de�ned by a set of vari�
ables� a domain of values for each variable� and a set of
constraints between the variables� Given a constraint
network� we often wish to �i� �nd a solution�an in�
stantiation of the variables that satis�es the constraints
and �ii� �nd the corresponding minimal network where
the constraints are as explicit as possible� Finding the
minimal network has applications in removing redun�
dant information from a knowledge base �Meiri et al��
����� and temporal reasoning �van Beek� ������ How�
ever� both tasks are known to be NP�complete in the
general case� Task �i� is usually solved using a back�
tracking algorithm� which is exponential in the worst
case but is often useful in practice� and task �ii� is often

solved only approximately by enforcing various levels of
local consistency�
In this paper� we identify a property of binary con�

straints called row convexity and show its usefulness in
deciding when a form of local consistency called path
consistency is su�cient to guarantee a network is both
minimal and decomposable� Decomposable networks
have the property that a solution can be found without
backtracking� In particular� we �rst show that� if all of
the binary constraints are taken from a language that
is closed under composition� intersection� and transpo�
sition and for which the binary constraints are all row
convex� then we can guarantee a priori that the result of
path consistency will be the minimal network and that
the network will be decomposable� Second� we show
that a large class of networks can be shown to have the
row convexity property after path consistency� If such
is the case� then the network is minimal and decompos�
able� Third� we show that� if there exists an ordering of
the variables and of the domains of the variables such
that the binary constraints can be made row convex�
then a solution can be found without backtracking� We
also show that the row convexity property can be tested
for e�ciently and we show� by examining applications
of constraint networks discussed in the literature� that
our results are useful in practice� Thus� we identify a
large class of constraint networks for which we can solve
both tasks �i� and �ii� e�ciently�

� Background

We begin with some needed de�nitions and describe re�
lated work�
A network of binary constraints �Montanari� ����� is

de�ned as a set X of n variables fx�� x�� ���� xng� a do�
mainDi of possible values for each variable� and binary
constraints between variables� A binary constraint or
relation� Rij� between variables xi and xj� is a subset
of the Cartesian product of their domains that spec�
i�es the allowed pairs of values for xi and xj �i�e��
Rij � Di � Dj�� For the networks of interest here�
we require that �xj � xi� � Rji � �xi� xj� � Rij�
An instantiation of the variables in X is an n�tuple

�X�� X�� ���� Xn�� representing an assignment of Xi � Di

to xi� A consistent instantiation of a network is an in�
stantiation of the variables such that the constraints



between variables are satis�ed� A consistent instanti�
ation is also called a solution� A network is minimal
if each pair of values allowed by the constraints par�
ticipates in at least one consistent instantiation �i�e� if
�xi� xj� � Rij� then �xi� xj� is part of some consistent
instantiation of the network��
Mackworth �����	 ����� de�nes three properties of

networks that characterize local consistency of net�
works� node� arc� and path consistency� A network is
path consistent if and only if� for every triple �xi� xk� xj�
of variables� we have that� for every instantiation of xi
and xj that satis�es the direct relation� Rij� there exists
an instantiation of xk such that Rik and Rkj are also
satis�ed� Montanari ������ and Mackworth ������ pro�
vide algorithms for achieving path consistency� Freuder
������ generalizes this to k�consistency� A network is
k�consistent if and only if given any instantiation of any
k � � variables satisfying all the direct relations among
those variables� there exists an instantiation of any kth
variable such that the k values taken together satisfy all
the relations among the k variables� Freuder ������ de�
�nes strongly k�consistent as j�consistent for all j � k�
Node� arc� and path consistency correspond to strong
one�� two�� and three�consistency� respectively�
A strongly n�consistent network is called decompos�

able� Decomposable networks have the property that
any consistent instantiation of a subset of the variables
can be extended to a consistent instantiation of all of
the variables without backtracking �Dechter� ������ A
strongly n�consistent network is also minimal� However�
the converse is not true as it is possible for a network
to be minimal but not strongly n�consistent�
Following Montanari ������� a binary relation Rij be�

tween variables xi and xj is represented as a ������
matrix with jDij rows and jDj j columns by imposing
an ordering on the domains of the variables� A zero en�
try at row a� column b means that the pair consisting
of the ath element of Di and the bth element of Dj is
not permitted	 a one entry means the pair is permitted�
A ������matrix is row convex if and only if in each

row all of the ones are consecutive	 that is� no two ones
within a single row are separated by a zero in that same
row� A binary relation R represented as a ������matrix
is monotone if and only if the following conditions hold�
if Rij � � and k � i� then Rkj � �� and if Rij � � and
k � j� then Rik � �� A binary relation R represented
as a ������matrix is functional if and only if there is at
most one one in each row and in each column of R�
We use a graphical notation where vertices represent

variables and directed arcs are labeled with the con�
straints between variables� As a graphical convention�
we never show the edges �i� i�� and if we show the edge
�i� j�� we do not show the edge �j� i�� Any edge for
which we have no explicit knowledge of the constraint
is labeled with the ������matrix consisting of all ones	 by
convention such edges are also not shown� For example�
consider the simple constraint network with variables x�
and x� and domains D� � fa� b� cg and D� � fd� e� fg�
shown below�
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The constraint R�� does not allow� for example� the pair
�a� d� but does allow the pairs �a� e�� �a� f�� It can be
seen that the constraint has the row convexity property�

��� Related work

Much work has been done on identifying restrictions on
constraint networks such that �nding a solution and
�nding the minimal network can be done e�ciently�
These restrictions fall into two classes� restricting the
topology of the underlying graph of the network and
restricting the type of the allowed constraints between
variables�
For work that falls into the class of restricting the

topology� Montanari ������ shows that if the constraint
graph is a tree� path consistency is su�cient to ensure
a network is minimal� Freuder �����	 ���
� identi�es
a relationship between a property called the width of
a constraint graph and the level of local consistency
needed to ensure a solution can be found without back�
tracking� As a special case� if the constraint graph is
a tree� arc consistency is su�cient to ensure a solution
can be found without backtracking� Dechter and Pearl
������ provide an adaptive scheme where the level of
local consistency is adjusted on a node�by�node basis�
Freuder ������ generalizes the results on trees to k�trees�
For work that falls into the class of restricting the

type of the constraints �the class into which the present
work falls�� Dechter ������ identi�es a relationship be�
tween the size of the domains of the variables and the
level of local consistency needed to ensure the network
is strongly n�consistent� and thus minimal and decom�
posable� Montanari ������ shows that path consistency
is su�cient to guarantee a network is both minimal and
decomposable if the relations are monotone� and Dev�
ille and Van Hentenryck ������ show that arc consis�
tency is su�cient to test the satis�ability of networks
with only functional and monotone constraints� Func�
tional and monotone relations are row convex	 hence�
it will be seen that our results generalize Montanari�s
and extend Deville and Van Hentenryck�s results� Im�
portantly� in the above work� the problem of deciding
whether the constraints have the desired properties is
left to the user� We identify an e�cient procedure for
deciding whether a constraint network can be made row
convex�
Finally� for work that falls into both classes� Dechter

and Pearl ������ present e�ective procedures for deter�
mining whether a constraint network can be formulated
as a causal theory and thus a solution can be found with�
out backtracking� Whether a constraint network can be
so formulated depends on the topology of the underly�
ing constraint graph and the type of the constraints�



� A Su�cient PreCondition

Informally� the basic result of this section is that if we
know that the result of applying path consistency will
be that all of the relations will be row convex� we can
guarantee a priori that path consistency will �nd the
minimal network and the minimal network will be de�
composable� To use the path consistency algorithms�
three operations on relations are needed� composition�
intersection� and inverse�� Thus� if the relations in our
constraint network are row convex and remain row con�
vex under these operations� the result applies�
More formally� the following lemma on the intersec�

tion of ������row vectors that are row convex� is needed
in the proof of the result�

Lemma � Let F be a �nite collection of ������row vec�
tors that are row convex and of equal length such that
every pair of row vectors in F have a non�zero entry
in common� that is� their intersection is not the vector
with all zeroes� Then all the row vectors in F have a
non�zero entry in common�

Theorem � Let L be a set of ������matrices closed un�
der composition� intersection� and transposition such
that each element of L is row convex� Let R be a bi�
nary constraint network with all relations taken from
L� The path consistency algorithm will correctly deter�
mine the minimal network of R� Further� the minimal
network will be decomposable�

Proof� The theorem is proved by showing that if
all ������matrices are from L and the network is made
path consistent� then the network is k�consistent for all
k � n� Hence� the network is strongly n�consistent and
therefore the network is minimal�
To show that the network is k�consistent for all k � n�

we show that it is true for an arbitrary k� Suppose that
variables x�� � � � � xk�� can be consistently instantiated�
That is� let X�� � � � � Xk�� be an instantiation such that

Xi Rij Xj i� j � �� � � � � k� �

is satis�ed� To show that the network is k�consistent�
we must show that there exists at least one instantiation
of variable xk such that

Xi Rik xk i � �� � � � � k � � ���

is satis�ed� We do so as follows� The X�� � � � � Xk�� re�
strict the allowed instantiations of xk� For each i in
Eqn� �� the non�zero entries in row Xi of the ������
matrix Rik are the allowed instantiations of xk� The
key is that all of these row vectors are row convex� i�e��
the ones are consecutive� Hence� by Lemma � it is su��
cient to show that any two row vectors have a non�zero
entry in common to show that they all have a non�zero

�When the relations are represented as ���	��matrices�
these operations correspond to binary matrix multiplication�
binary matrix intersection� and transposition of the ma�
trix� respectively� The reader may consult 
Montanari� 	��
�
Mackworth� 	���� for the details�

entry in common� But this follows directly from the def�
inition of path consistency� Hence� all the constraints
have a non�zero entry in common and there exists at
least one instantiation of xk that satis�es Eqn� � for all
i� Because we require that xjRjixi � xiRijxj we have
also shown that there exists at least one instantiation
of variable xk such that

xk Rki Xi i � �� � � � � k � �

is satis�ed� Hence� we have shown that� for any con�
sistent instantiation of k � � variables� there exists an
instantiation of any kth variable such that

Xi Rij Xj i� j � �� � � � � k

is satis�ed� Hence� the network is k�consistent� �

The proof of the Theorem � is constructive and
gives an algorithm for �nding a consistent instantia�
tion� Without loss of generality� we assume the order of
instantiation of the variables is x�� � � � � xn�

Instantiate�R�

�� choose an instantiation X� of x� that satis�es R��

�� for i� � to n

� do r � �� � � � � ��
�� for j � � to i � �

� do r� r 	 �rowXj ofRji�
�� choose an instantiation Xi of xi that

satis�es r

Intersecting two row vectors in Step 
 takes O�d� time�
hence the algorithm is O�dn��� where n is the number of
variables and d is the size of the domains� The path con�
sistency procedure is O�n�� �Mackworth and Freuder�
���
�� So� we can �nd a solution and the minimal net�
work for the class of constraint networks characterized
by Theorem � in O�max�dn�� n��� time�

Example �� Let the domains of the variables be of
size two� The set of all � � � ������matrices is closed
under composition� intersection� and transposition and
each �� � ������matrix is row convex� Hence� the theo�
rem applies to all constraint networks with domains of
size two� As a speci�c example� the Graph ��coloring
problem can be formulated using such constraint net�
works� Dechter ������ p��

� also shows� but by a dif�
ferent method� that a strong 
�consistent �or path con�
sistent� bi�valued network is minimal�

Example �� Let the domains of the variables be ��
nite subsets of the integers and let a binary constraint
between two variables be a conjunction of linear inequal�
ities of the form axi � bxj � c or axi � bxj � c� where
a� b� and c are rational constants� For example� the
conjunction

�
xi � �xj � 
� 
 ���xi � 
xj � ��

is an allowed constraint between variables xi and xj�
A network with constraints of this form can be viewed
as an integer linear program where each constraint is
in two variables and the domains of the variables are



restricted to be �nite subsets of the integers� It can be
shown that each element in the closure under composi�
tion� intersection� and transposition of the resulting set
of ������matrices is row convex� Hence� by Theorem �
we can guarantee that the result of path consistency
will be the minimal network and the network will be
decomposable� Two special cases are a restricted and
discrete version of Dechter� Meiri� and Pearl�s ������
continuous� bounded di�erence framework for temporal
reasoning and a restricted and discrete version of Vilain
and Kautz�s ������ qualitative framework for temporal
reasoning�

� Su�cient PostConditions

Informally� the basic result of this section is that if we
have applied path consistency to a network and the re�
lations are row convex or can be made row convex� then
the network is minimal and decomposable� We also
show that a known procedure from graph theory can
be used for deciding whether a constraint network can
be made row convex�

Theorem � Let R be a path consistent binary con�
straint network� If there exists an ordering of the do�
mains D�� � � � � Dn of R such that the ������matrices are
row convex� the network is minimal and decomposable�

Example �� Scene labeling in computer vision �Hu��
man� ����	 Clowes� ����� can be formulated as a prob�
lem on constraint networks� We use an example to il�
lustrate the application of Theorem �� Fig� � shows the
variables in the constraint network and the constraints	
Fig� � shows the domains of the variables and the order�
ing imposed� For example� variable x� in Fig� � is a fork
and can be instantiated with any one of the �ve label�
ings shown in Fig� �� The constraints between variables
are simply that� if two variables share an edge� then the
edge must be labeled the same at both ends� Not all of
the constraints are row convex� However� once the path
consistency algorithm is applied� the relations become
row convex� Therefore� in this example� no reordering
of the domains is needed in order to satisfy the theorem�
Procedure Instantiate from the previous section can be
used to �nd a solution� The four possible solutions are
shown in Fig� 
�
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Figure �� Hu�man�Clowes junction labelings
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Figure �� Scene labeling constraint network

The scene�labeling problem has been shown to be NP�
complete in the general case �Kirousis and Papadim�
itriou� ���
�� We are attempting to prove the conjec�
ture that constraint networks arising from orthohedral
scenes are row convex once path consistency is applied�

�a�

���

���HHH

���HHH
HHH

�

�

�

�

�

Y �

j

� �b�

���

���HHH

���HHH
HHH

�

�

�

�

��

Y

�

�

�c�

���

���HHH

���HHH
HHH

�

�

�

j�

Y �

��

�d�

���

���HHH

���HHH
HHH

�

�

�

� �

j�

��

�����������

� � � � � � � � � � �

��
��
��
��
��
�

Figure 
� Solutions� �a� stuck on left wall� �b� stuck
on right wall� �c� suspended in mid�air� �d� resting on
�oor�

As noted in the previous example� when constructing
a constraint network and the ������matrices that repre�
sent the constraints� we must impose an ordering on the
domains of the variables� Sometimes a natural order�
ing exists� as when the domain is a �nite subset of the
integers� but often the ordering imposed is arbitrary
and with no inherent meaning� An unlucky ordering
may hide the fact that the constraint network really is
row convex or� more properly� can be made row convex�
How can we distinguish this case from the case where
no ordering of the domains will result in row convexity�



The following theorem shows that we can test for this
property e�ciently�

Theorem � �Booth and Lueker �����	
 An m � n
������matrix speci�ed by its f nonzero entries can be
tested for whether a permutation of the columns exists
such that the matrix is row convex in O�m � n � f�
steps�

Example �� Maruyama ������ shows that natural
language parsing can be formulated as a problem on
constraint networks� In this framework� intermediate
parsing results are represented as a constraint network
and every solution to the network corresponds to an in�
dividual parse tree� We use an example network from
�Maruyama� ����� to illustrate the application of The�
orems � and 
� Consider the following sentence�

Put the block on the �oor on the table in the room�
V� NP� PP� PP� PP�

The sentence is structurally ambiguous �there are four�
teen di�erent parses� as there are many ways to at�
tach the prepositional phrases� Fig� � shows the vari�
ables and their domains	 Fig� 
 shows the constraint
network �the symbol I in the �gure denotes the iden�
tity matrix�the ������matrix consisting of ones along
the diagonal and zeroes everywhere else�� Maruyama
states that a �simple backtrack search can generate the
�� parse trees of the sentence from the constraint net�
work at any time�� The network is path consistent but
it can be seen that the constraints are not all row convex
given the original domain ordering used in �Maruyama�
������ However� using the new domain ordering shown
in Fig� �� the constraints are now row convex� Hence�
procedure Instantiate from the previous section can be
used to �nd a solution in a backtrack�free manner�

Variable Domain
Original ordering New ordering

V� fRnilg fRnilg
NP� fO�g fO�g
PP� fL�� P�g fL�� P�g
PP� fL�� P�� P
g fP�� P
� L�g
PP� fL�� P�� P
� P�g fP
� P�� L�� P�g

Figure �� Variables and domains for parsing example

Let R be a path consistent binary constraint net�
work� It remains to show how Theorem 
 can be used
to determine whether an ordering of the domains of the
variables exists such that all of the ������matrices Rij�
� � i� j � n� are row convex� The procedure is sim�
ple� for each variable� xj� we take the matrix de�ned by
stacking up R�j on top of R�j on top of � � �Rnj and test
whether the matrix can be made row convex� For exam�
ple� with reference to Fig� 
� for variable PP� we would
test whether the columns of the matrix consisting of the

 columns and �� rows under the column heading PP�
can be permuted to satisfy the row convexity property�
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Figure 
� Matrix representation of constraint network
for parsing example �Maruyama� �����

In this example such a permutation exists and corre�
sponds to the new ordering of the domain of variable
PP� shown in Fig� ��

It is� of course� not true that for every path consistent
network there exists an ordering of the domains such
that the constraints are row convex� However� in those
cases where there does not� sometimes a weaker result
still applies�

Theorem � Let R be a path consistent binary con�
straint network� If there exists an ordering of the vari�
ables x�� � � � � xn and of the domains D�� � � � � Dn of R
such that the ������matrices Rij� � � i � j � n� are
row convex� then a consistent instantiation can be found
without backtracking�

Example �� Consider the constraint network with
three variables and domains D� � D� � D� � fa�b�cg
shown in Fig� �� The example is path consistent and no
ordering of the domain of x� exists that will simultane�
ously make the ������matrices R�� and R�� row convex�
However� order D� � fa�c�bg satis�es the condition of
Theorem � and the variables can be instantiated in the
order x�� x�� x� using procedure Instantiate� and it can
be guaranteed that no backtracking is necessary �the
example was chosen to illustrate the application of the
theorem as simply as possible	 in actuality� path consis�
tency is su�cient for guaranteeing the minimality and
decomposability of any three node network��
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Figure �� Matrix representation of constraint network
that can be made �su�ciently� row convex



� Conclusions

Constraint networks have been shown to have many ap�
plications� However� two common reasoning tasks� �i�
�nd a solution that satis�es the constraints and �ii� �nd
the corresponding minimal network are known to be
NP�complete in the general case� In this paper� we have
identi�ed a large� and we believe interesting and useful�
class of constraint networks for which we can solve both
tasks �i� and �ii� e�ciently�
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