Performing Incremental Bayesian Inference by Dynamic Model Counting

Wei Li and Peter van Beek and Pascal Poupart
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
{w22li, vanbeek, ppoupart} @cs.uwaterloo.ca

Abstract

The ability to update the structure of a Bayesian net-
work when new data becomes available is crucial for
building adaptive systems. Recent work by Sang,
Beame, and Kautz (AAAI 2005) demonstrates that the
well-known Davis-Putnam procedure combined with a
dynamic decomposition and caching technique is an ef-
fective method for exact inference in Bayesian networks
with high density and width. In this paper, we define
dynamic model counting and extend the dynamic de-
composition and caching technique to multiple runs on
a series of problems with similar structure. This allows
us to perform Bayesian inference incrementally as the
structure of the network changes. Experimental results
show that our approach yields significant improvements
over the previous model counting approaches on multi-
ple challenging Bayesian network instances.

Introduction

Many real world Bayesian network applications need to
update their networks incrementally as new data becomes
available. For example, the capability of updating a
Bayesian network is crucial for building adaptive systems.
Many methods for refining a network have been proposed,
both for improving the conditional probability parameters
and for improving the structure of the network (see, e.g.,
(Buntine 1991; Lam & Bacchus 1994; Friedman & Gold-
szmidt 1997) and references therein). However, little atten-
tion has been directed toward improving the efficiency of ex-
act inference in incrementally updated Bayesian networks.

Most methods for exact inference in Bayesian networks
do not take advantage of previous computations when solv-
ing an incrementally updated Bayesian network. Methods
based on join trees can efficiently update the conditional
probability parameters for a fixed network structure. How-
ever, when the network structure changes, the join tree usu-
ally must be reconstructed from scratch. Recent work by
Sang, Beame, & Kautz (2005) demonstrates that the well-
known Davis-Putnam procedure combined with a dynamic
decomposition and caching technique is an effective method
for exact inference in computationally challenging Bayesian
networks.

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this paper, we propose dynamic model counting (Dy-
naMCQC). The philosophy behind dynamic model counting is
intuitive. Bayesian networks can be efficiently compiled into
CNFs (Darwiche 2002; Sang, Beame, & Kautz 2005). When
two CNF formulas share many common clauses, it is possi-
ble to use the knowledge learned while counting the solu-
tions of the first formula to simplify the solving and count-
ing of the second formula. We show that component caching
(good learning) can significantly improve Bayesian infer-
ence and other encoded dynamic model counting problems.
The updating of Bayesian networks, such as adding an edge
or deleting an edge, are presented as a sequence of regu-
lar model counting problems. We extend component (good)
caching (Bacchus, Dalmao, & Pitassi 2003) to different runs
of a series of changing problems. In each run, the previous
problem evolves through local changes, and the number of
models of the problem can be re-counted quickly based on
previous results after each modification.

In this paper, our focus is to improve the efficiency of
exact inference when the network structure is updated. We
introduce DynaMC and perform experiments on real world
problems to see how state-of-the art model counting algo-
rithms handle DynaMC problems. The experiments show
that our approach can solve various real world problems and
improve the performance significantly.

Related Work

Darwiche (1998) proposes dynamic join trees, but in his
framework the network structure is fixed and the query
changes over time. Flores, Gdmez, & Olesen (2003) pro-
pose the incremental compilation of a join tree in the case
where the structure of the network changes. Their idea is
to identify the parts of the join tree that are affected by the
changes and only reconstruct those parts. However, join tree
algorithms do not perform well on Bayesian networks with
high density and large width. Hence, our interest in dynamic
model counting approaches.

Dynamic versions of CSPs (Dechter & Dechter 1988;
Schiex & Verfaillie 1994) and SAT (Hoos & O’Neill 2000;
Jin & Somenzi 2005) have been proposed. However,
the focus of previous work has been on the satisfiabil-
ity problem—finding one solution or showing that no so-
lution exists—and the learned knowledge is expressed in
terms of conflict clauses (or nogoods). In nogood learn-

P(S1)

P(S2)

»
1%
4

P(L)
0.90
0.04
0.05
0.01

LIEIRIE]
LIRIEIE]

Valve is
ON

F 0.01

P(V)
0.75
0.10
0.15
0.05

RIEIRIEIE]
LIRIEIEIE

Figure 1: Oil tank monitoring system

ing, a constraint that captures the reason for a failure is
computed from every failed search path. Both compo-
nent caching and nogood learning collect information dur-
ing search. However, it has been shown experimentally that
good recording can be more effective than nogood recording
for modeling counting (Bacchus, Dalmao, & Pitassi 2003;
Sang et al. 2004). In our work, to maintain the partial solu-
tions of the problems having similar structure, we generalize
the caching (good learning) to multiple runs.

Background

The conventional model counting problem (#SAT) asks,
given a Boolean formula F' in CNF, how many of its assign-
ments are satisfying? There are natural polynomial-time re-
ductions between the Bayesian inference problem and model
counting problems (Bacchus, Dalmao, & Pitassi 2003). Dar-
wiche has described a method for compiling Bayesian net-
works as a set of multi-linear functions (Darwiche 2003).
Recent work on compiling Bayesian networks reduces the
problem to CNFs (Darwiche 2002; Littman 1999; Sang,
Beame, & Kautz 2005). This allows advances in SAT solv-
ing techniques—such as non-chronological backtracking,
clause learning and efficient variable selection heuristics—
to be used.

A Bayesian network can be described as a weighted
model counting problem (Sang, Beame, & Kautz 2005).

Definition 1 A (static) weighted model counting problem
consists of a CNF formula F with two kinds of variables:
chance variables V. and state variables V. A clause C' in
F'is a propositional sentence over Vi and V.. Both chance
variables and state variables have weights, which satisfy the
following constraints:

weight(+v.) + weight(—v.) = 1

weight(+vs) = weight(—vs) = 1
The weight of a single satisfying assignment is the product
of the weights of the literals in that assignment. A solution of

a weighted model counting problem is the sum of the weights
of all satisfying assignments.

We use the following example to show the method of en-
coding a Bayesian network into a weighted model counting

State Variables: O, L,V

Chance Variables:

81(0.5), 82(0.5), 01 (099)7 0()(0.01)7 l11(0.9), 101(0.04), ll()(0.05),
loo(0.0l), 1)11(0.75)7 Vo1 (0.1), U10(0.15), ’Uoo(o.05)

Node O Clauses:

(_517 —01, O)(_Sly 01, _O)(Sl7 —0o0, O)(817 00, _O)
Node L Clauses:

(—s1,—s2,—1l11,0)(—s1, —s2,l11, —O)(s1, =2, —lo1, O)
(s1,—52,lo1, —O)(s1, 52, —loo, O)(s1, 52, lo0, —O)

(_517 52, _l107 O)(_517 52, l107 _O)

Node V Clauses:

(_07 _L7 —V11, V)(_07 _L7 v11, _V)(O7 _La —%vo1, V)
(07 _L7 Vo1, _V)(07 L7 —00, V)(O7 L7 V00, _V)

(705 La —?10, V)(707 L7 V10, 7V)

Figure 2: Variables and clauses for oil tank monitoring

problem. In an oil industry application, two sensors are de-
ployed to monitor an oil tank. The Bayesian network in Fig-
ure 1 corresponds to the weighted model counting problem
in Figure 2 (see (Sang, Beame, & Kautz 2005) for more in-
formation about the encoding).

Dynamic Model Counting

We define conventional model counting problems as static
model counting problems.

Definition 2 A dynamic model counting problem (Dy-
naMC) is a sequence Moy, My, Ms, ..., of conventional
model counting (MC) problems, each one resulting from a
change in the preceding one. As a result of such incremen-
tal change, the number of solutions of the problem may de-
crease (in which case it is considered a restriction) or in-
crease (i.e., a relaxation).

Solving a DynaMC problem consists of sequentially
computing the number of models for each of the MCs
My, M1, M, A naive approach is to successively ap-
ply an existing static model counting algorithm to each MC.
Compared with updating model counts from scratch, a more
efficient solution is to maintain the model counts for the sub-
problems of the previous MCs so that we only re-compute
the part affected by the insertion or deletion of constraints.
The hope is that the number of assignments that satisfy a
component in formula A;_; can be used to solve a new for-
mula M;, which has the same component.

Component (Good) Caching

The idea of recording good domain values was first applied
to tree-structured problems (Bayardo & Miranker 1996).
This algorithm keeps track of domain values that were pre-
viously used to completely instantiate an entire subtree of
the problem. By skipping over the variables in these sub-
trees, good recording avoids solving the same subproblems
multiple times. Bayardo and Miranker demonstrated that
good recording improves the runtime complexity of tree-
structured problems.

To avoid counting solutions of the same subproblems, Ba-
yardo proposed “good learning”. A “good” is a set of vari-
able assignments for which the total solution number of the

subproblem is greater than 0. Cachet (Sang et al. 2004)
shows that good recording (component caching) can dramat-
ically improve the performance of an MC solver for many
real world problems.

Figure 3: The primal graph of F, where F' =
(4737[’) (B’L7M) (Mv]yvO) (BvaM) (DLM7JY)
(C.E.F)(E,F,G) (E,G,D) (D,G) (J.G,H) (H,I,K)
(G,D,H) (D,H,K) (D,H)

Search tree and
decomposition tree

Figure 4: The search tree of variables D, G, M in F'.

A component is defined relative to the residual formula
(the reduced formula after unit propagation of the current
partial assignment). The component caching algorithm takes
the original CNF formula as the first component and keeps
creating new components and counting each component un-
til the number of satisfying assignments for each component
has been stored in the cache.

Dynamic Decomposition

To save the partial solutions for each run, we decompose
the initial SAT instance into subproblems recursively. Sinz
(2004) shows that long implication chains exist in many
real world instances. When solving such problems, most of
the variables on the implication chains are instantiated after
making a relatively small number of decisions, and the in-
ternal structure often changes dramatically in different parts
of the search tree. Thus, we expect that a dynamic decom-
position method can be used to effectively identify subprob-
lems. Bayardo (2000) first proposed the idea of identifying
connected components in the constraint graph of a CNF in-
stance during DPLL.

As an example of dynamic decomposition, Figure 3 gives
the primal constraint graph of a CNF formula F'. Instead
of using width-first-search as in Sang et al. (2005), we use
depth-first-search to identify connected components after
each variable’s instantiation. Figure 4 shows the search tree
of regular DPLL on F up to depth 3. Figure 5 and Figure
6 show the decomposition trees at leaf node 2 and 3 in Fig-
ure 4. The decompositions at leaf nodes are different due
to the partial assignments and related unit propagations. In
those diagrams, we can see that F' is decomposed dynami-
cally along each branch of the search tree. Compared with
static decomposition, dynamic decomposition can capture
more internal structure. Using DFS for component (good)
detection has the advantage that we have more options for
variable ordering heuristics inside each component.

We record the model count of every component and
their parent-child relation for each run. If F'is updated—
for example, a clause is removed from the original com-
ponent Cs—instead of recalculating every component, we
only need to recalculate those components which belong to
ancestors(Cg). So, except for C, we need to recalculate
Cs and C1. See Figure 5.

A/B,C,D,E F,G HIJKLMN,O

Figure 5: The decomposition tree of F' at leaf node 2 of the
search tree in Figure 4.

Ci

A,B,C,D,E F G H,IJKLMNO

Figure 6: The decomposition tree of F' at leaf node 3 of the
search tree in Figure 4.

At each decision-making point, we need to detect new
components in the top component of the branchable com-
ponent stack. If the new components are found in the cache,
then we can percolate up and update the total counting num-
ber. Otherwise, we keep analyzing the new component until

its model count is calculated and we save the counting in the
cache and component database for our next problem.

Basic Update Operations

Once we have the model count of the original problem, a
relaxation will create more models, while a restriction will
decrease the model count. In the following, we will dis-
cuss the possible updates of a CNF. There are several ba-
sic operations that could be used to update the problem se-
quence. Each of the possible modifications of a Bayesian
network—add a node, delete a node, add an edge, delete an
edge, change a CPT entry, and reverse an edge—can be ex-
pressed by a combination of these basic update operations
on the CNF formula.

Removing existing clauses or removing existing literals
from clauses. The basic modification of a CNF is to re-
move a literal from a clause. As a special case, the removal
of a clause in a CNF will include removal of all literals in
that clause and the variables of the removed clause are still
in other clauses. If, for example, all the variables of a clause
are in a component, the removal of a literal in that clause
will lead to changes in the primal constraint graph. Since
the structure of this component’s children in the decomposi-
tion tree may also be changed, we not only need to recount
the model number of this component, but this component’s
childrens’ component model numbers should be updated as
well. Considering the disconnectivity among its child com-
ponents, only those components that have connection with
the removed variable need to be recounted.

For purposes of explanation, assume that we follow the
same variable ordering in each run and we remove only one
literal from an existing clause. We can make the following
observations. Here, a “clean” component is a component
which does not include any literal of the updated clause.

Observation I: If, in the updated clause, the removed lit-
eral and other literals have not been instantiated, then all the
clean components created so far in the search tree will have
the same structure and the same model count as the previous
run. Consider the example in Figure 5. Both Cs and Cj are
identified after variable D is instantiated. If the literal —B
is removed from (—A, —B, —L) in Cj, the structure of Cs
remains the same. If there is any structural change in Cy, it
must be caused either by the existing unit propagation chain
connecting the updated clause and C; or by the instantiation
of variable D. Since D is not in the updated clause and Co
and Cj are disconnected in the search tree, C5 is “stable”.

Observation 2: When any literal in the updated clause has
been instantiated, the clean components which have been
identified are stable. For example, if we delete literal D from
(B,—D, M). After —D becomes instantiated, both C5 (see
Figure 5) and C5 (see Figure 6) are clean components. If
C5 or ('3 are unstable due to the removal of — D, there must
be at least one path, which does not include D, between Cy
(or C3) and the other literals (B, M) in the updated clause.
However, if such a path exists, C; and C3 will not be dis-
connected from C'5 after —D becomes instantiated.

Adding literals of existing variables to existing clauses.
Adding a literal of an existing variable to a clause increases
the number of models of the original problem. Since the new
literals may connect components in the different branches of
the decomposition tree, the related parts of the decomposi-
tion tree need to be updated. We get a similar conclusion
as removing a literal. Here, the clean component does not
include any of the original literals of the updated clause and
the literals which share the same clause with the new literal.

Observation 3: In the search tree of an updated CNF, if
the new literal and other literals which share the same clause
with the new literal have not been instantiated, then all the
clean components created so far in the search tree will have
the same structure and the same number of models as the
previous run.

Observation 4: 1f either the new literal or any related lit-
eral has been instantiated, all the existing clean components
are stable.

Problem expansion: Adding literals of new variables.
Adding new variables creates more satisfiable solutions. As
discussed above, all clean components are stable.

Experimental Results

Our DynaMC program is built on Cachet, which is currently
the fastest model counting solver. The difference between
DynaMC and Cachet is that new components learned in each
instance are saved in a database. The valid portion of the
database is imported into the new instance before the begin-
ning of each run. Also, we implemented a DynaMC com-
piler based on JavaBayes. A consistent variable number-
ing system can be maintained among compiled CNFs. In
this way, adding or deleting variables or links in the origi-
nal Bayesian network only generates local changes in each
compiled CNF. The experiments were run on a Linux desk-
top with a 2.6GHz P4 processor and 1GB of memory, except
for Experiment 2 which used a 3.0GHz P4 processor with
3GB of memory.

We compared DynaMC against Cachet. In our experi-
ments, both programs compute the weight of the formula,
although “computing all marginals is only about 10%-40%
slower” (Sang, Beame, & Kautz 2005). We tested our ap-
proach over several kinds of networks: real networks taken
from the repository of the Hebrew University!, deterministic
QMR networks, and artificially generated grid networks?.

The intention of the experiments overall is to show
that our method works well with scaling (Experiment 1),
Bayesian network structure changes (Experiments 2 & 3),
and Bayesian network parameter changes (Experiment 4).
In Experiment 1, we made changes to the encoded weighted
model counting problem. In Experiments 2-4, we made
changes to the actual Bayesian networks. In all our exper-
iments, the reported run-times assume that the component
cache is memory-resident.

"http://compbio.cs.huji.ac.il/Repository/networks.html
*http://www.cs.washington.edu/homes/kautz/Cachet/

Grid 10x10 2/1000 global updated and local updated

— — — - Implication # Local —-—--Implication # Global

....... Runtime Local Runtime Global

Cachet/DynMC

10% 20% 30% 40% 50% 60% 70% 80% 90%
Deterministic Node Ratio

Figure 7: The ratio (Cachet/DynaMC) of runtime and impli-
cation number on 10 x 10 grid problems. 10 instances are
tested on different percentage of deterministic nodes. We
globally and locally delete 2/1000 literals on each instance.

Experiment 1

In this experiment, we studied the effect of the number of
changed literals and their relative positions (whether the
changes occurred globally or locally) in compiled grid prob-
lems. Our approach to generating global modifications was
to randomly select a clause from the original CNF and ran-
domly add/delete a literal. To generate local modifications,
we created a series of CNFs, Mgy, My,...,M,. In M;
(0 < i < n), only the clauses which share at least one vari-
able with the modified clauses in M,;_; are selected. In order
to compare DynaMC and traditional MC, we collected the
ratio of median runtime and the ratio of number of unit prop-
agations (implications). The fraction of the nodes that are
assigned deterministic conditional probability tables (CPTs)
is a parameter, the deterministic ratio. The CPTs for such
nodes are randomly filled in with O or 1; in the remaining
nodes, the CPTs are randomly filled with values chosen uni-
formly in the interval (0, 1) (Sang, Beame, & Kautz 2005).

Figure 7 and 8 show the results obtained for 0.2% and 1%
literal deletion of a 10 x 10 grid network compiled into a
DynaMC problem. As discussed earlier, the larger the por-
tion that is shared between successive problems, the more
components we can save for achieving speed-ups. Now, as
can be seen, the distribution of changes also plays an impor-
tant role. DynaMC works much better when local changes
are performed. Intuitively, we need to recompute more
model counts for independent subproblems if modifications
are distributed evenly in more components. At the low end
of the deterministic ratio, the constraint graphs of compiled
CNFs have very high width and density. So there is a low
possibility of finding disconnected components while exe-
cuting DPLL. The problems at the high end of determinis-
tic ratio are relatively easy, so they can be solved without
checking the component database.

In Figure 9, we mixed both insert literal and delete lit-
eral operations: the ten modifications included five inser-

Grid 10x10 1/100 global updated and local updated

— — — - Implication # Local — - —--Implication # Global

~~~~~~ Runtime Local Runtime Global

[}

o

Cachet/DynMC
w S

N

(=}

10% 20% 30% 40% 50% 60% 70% 80% 90%
Deterministic Node Ratio

Figure 8: The ratio (Cachet/DynaMC) of runtime and impli-
cation number on 10 x 10 grid problems. 10 instances are
tested on different percentage of deterministic nodes. We
globally and locally delete 1/100 literals on each instance.

tions and five deletions. We also fixed the deterministic ratio
as 75% and tested different problem sizes from 10 x 10 to
44 x 44. The experimental results show that DynaMC can
be solved more efficiently than a set of independent regular
MC problems.

Experiment 2

The grid networks in this experiment have 90% determin-
istic ratio. Our approach for generating modifications in
Bayesian networks is based on the fact that the updates are
usually concentrated on a limited region of the model. We
use the following procedure to create 2m modifications in
a sequence Seq. The procedure is similar to the procedure
used by Flores, Gamez, & Olesen (Flores, Gamez, & Olesen
2004) in their experiments on incremental join tree compila-
tion.

1. DeleteSeq = {}, AddSeq = {}

2. We randomly select a node V; from the network B. Then
we remove all the edges e; = {E | V,,; — V;} between
Vi and its parents V); from B and add modification
delete(e;) onto the end of DeleteSeq

3. Insert modification add(e;) into the front of AddSeq

4. All the remaining nodes linked to V; are included in a set
N;. The next node V;; is randomly selected from /V;.

5. Return to Step 2, until we run m loops
6. Seq = DeleteSeq CONCATENATE AddSeq

In Table 1, we tested 10 modifications for each problem
size(m = 5). Every modification includes 1-2 edges in grid
networks depending on the location of the random selected
node. The total runtime is the sum of runtime for solving
the 10 modified networks. DynaMC is 2 times faster than
Cachet in the best case.



Grid nxn 2/1000 75% DNR global and local updated

— — — - Implication # Local —-—--Implication # Global

------- Runtime Local Runtime Global

o

o
>

Q4

= EN 7 \

B - ~o 71 \
3 o Sol L

3 : \

=

§2

82

10 20 25 28 30 32 40 44

Grid size nxn

Figure 9: The ratio (Cachet/DynaMC) of runtime and im-
plication number on N x N grid problems. 10 instances are
tested on each problem size. We globally and locally insert
and delete 2/1000 literals on each instance.

Table 1: Total runtime of 10 modifications for each grid net-
work.

Table 2: Total runtime and implication number of 10 DQMR
instances for each network, where (e) indicates that an edge
from a disease to a symptom was randomly selected and re-
moved from the original DQMR network, and (n) indicates
removing a randomly selected symptom node.

Total Runtime Sec. Implication#
DQMR DynaMC | Cachet | DynaMC | Cachet
50+50 (e) 194 334 | 4.3 x10° | 8.0 x 10°
100+100 (e) 22 48 | 1.6 x 10% | 3.7 x 10°
50+50 (n) 34 63 | 8.2x10° | 1.3 x 10°
100+100 (n) 101 172 | 5.6 x 10% | 1.1 x 107

Table 3: Total runtime and implication number of a sequence
of 10 instances for real networks.

Total Runtime Sec. Implication#
BN DynaMC | Cachet | DynaMC | Cachet
Alarm 17 43 | 1.5 x 10° | 8.4 x 10°
Insurance 360 1082 | 1.2 x 10% | 3.9 x 108
Asia 0.01 0.01 169 840
Car-starts 0.02 0.02 370 1690
Water 94 465 | 2.7 x 107 | 1.4 x 108

Total Runtime Sec. | Improvement
Grid DynaMC | Cachet %

10 x 10 34 31 —8.8%
12 x 12 103 170 65.0%
14 x 14 182 228 25.3%
16 x 16 229 368 60.7%
18 x 18 292 597 104.5%
20 x 20 299 370 23.7%
21 x 21 488 616 26.2%
22 x 22 596 710 19.1%
24 x 24 1558 2067 32.7%

Experiment 3

DQMR is a simplified representation of the QMR-DT (Sang,
Beame, & Kautz 2005). Each DQMR problem is a two-
level multiply connected belief-network in which the top
layer consists of diseases and the bottom layer consists of
symptoms. If a disease may yield a symptom, there is an
edge from the disease to the symptom. We test networks
with 50 to 100 diseases and symptoms. The edges of the
bipartite graph are randomly chosen. Each symptom is
caused by three randomly chosen diseases. The problem
consists of computing the weight of the encoded formula
given a set of consistent observations of symptoms. In each
instance of 50+50 networks, 10% disease nodes are ran-
domly selected as observed. The observed nodes are 50%
in 100+100 networks. Table 2 shows that the modifications
on real Bayesian networks can be translated into DynaMC
and solved more efficiently.

Experiment 4

In this experiment we analyzed the effect of using DynaMC
when network determinism changed (see Table 3). We gen-

erated a sequence of 10 instance My, My, ..., Mg for each
network. M} (0 < k < 10) is generated by randomly select-
ing a node and making one entry of its CPT 1. The compo-
nent library imported into M, is generated in My, _;.

Due to the memory resource required by the large compo-
nent library we skipped networks which could not be solved
by both Cachet and DynaMC. It has been noted that for
Bayesian networks which have variables with large cardi-
nalities, very large CPTs, or a small amount of determinism,
the general encoding method does not work well (Chavira &
Darwiche 2005). Those encoded CNFs are simply too large
to be quickly decomposed and quickly use up all available
memory. In the same paper, Chavira and Darwiche propose
a more efficient encoding.

For a few test instances, our method was slower than Ca-
chet due to the overhead of querying the cache. In those
“failed” cases, we found that the components imported from
previous runs were extremely small. Usually, the average
size of imported components in those cases was less than
10 literals. In many successful instances, the average literal
number of imported components is more than 100. When
the component database is full of small components, the
overhead of checking each new generated component in-
creases. Even if the correct component is found, only a few
variables can be skipped in the search tree. If we limit the
size components to import only “big” components, we can
improve the performance of most “fail” instances. In prac-
tice, we expect the imported components to have at least
20-50 literals. However, we did not set a component limit
in any of the experiments reported above. Another possible
solution for the problem of overhead is to design a more ac-
curate hash function to increase the hitting rate, so that when



we search every new component in our database our query
can return quickly.

Conclusions

There is obvious need for improving the performance of a
model counting problem as incremental local change hap-
pens. Because of the errors in model construction and
changes in the dynamics of the domains, we cannot ignore
the new information. By maintaining the partial solutions
of similar instances, we can achieve great speedups over
current model counting algorithms. Cachet is currently the
fastest model counting solver available. In grid and DQMR
problems, Cachet dominates both join tree and previous state
of the art conditioning algorithms. As compared with Ca-
chet, we obtained significant improvements in runtime for
most networks. Both the Grid and DQMR Bayesian net-
works have high density and tree-width. Those features
challenge traditional Bayesian inference.

References

Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. DPLL with
caching: A new algorithm for #SAT and Bayesian infer-
ence. Electronic Colloquium on Computational Complex-
ity 10(3).

Bayardo, R. J., and Miranker, D. P. 1996. A complex-
ity analysis of space-bounded learning algorithms for the
constraint satisfaction problem. In AAAI-96, 298-304.
Bayardo, R. J., and Pehoushek, J. D. 2000. Counting mod-
els using connected components. In AAAI-00, 157-162.
Buntine, W. L. 1991. Theory refinement of Bayesian net-
works. In UAI-91, 52—-60.

Chavira, M., and Darwiche, A. 2005. Compiling Bayesian
networks with local structure. In IJCAI-2005.

Darwiche, A. 1998. Dynamic jointrees. In UAI-98, 97—
104.

Darwiche, A. 2002. A logical approach to factoring belief
networks. In KR-02, 409—-420.

Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. J. ACM 50(3):280-305.

Dechter, R., and Dechter, A. 1988. Belief maintenance in
dynamic constraint networks. In AAAI-88, 37-42.

Flores, M. J.; Gamez, J. A.; and Olesen, K. G. 2003. In-
cremental compilation of Bayesian networks. In UAI-03,
233-240.

Flores, M. J.; Gamez, J. A.; and Olesen, K. G. 2004. In-
cremental compilation of Bayesian networks in practice.
In Proceedings of the Fourth International Conference On
Intelligent Systems Design and Applications (ISDA 2004),
843-848.

Friedman, N., and Goldszmidt, M. 1997. Sequential update
of Bayesian network structure. In UAI-97, 165-174.
Hoos, H. H., and O’Neill, K. 2000. Stochastic local
search methods for dynamic SAT-an initial investigation.
In AAAI-2000 Workshop Leveraging Probability and Un-
certainty in Computation, 22-26.

Jin, H., and Somenzi, F. 2005. An incremental algorithm
to check satisfiability for bounded model checking. Electr.
Notes Theor. Comput. Sci. 119:51-65.

Lam, W., and Bacchus, F. 1994. Using new data to refine
a Bayesian network. In UAI-94, 383-390.

Littman, M. L. 1999. Initial experiments in stochastic sat-
isfiability. In AAAI-99, 667-672.

Sang, T.; Beame, P.; and Kautz, H. 2005. Solving Bayesian
networks by weighted model counting. In AAAI-05, 1-10.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H.; and Pitassi, T.
2004. Combining component caching and clause learning
for effective model counting. In SAT-04.

Schiex, T., and Verfaillie, G. 1994. Nogood recording for
static and dynamic constraint satisfaction problems. Inter-
national Journal on Artificial Intelligence Tools 3:1-15.
Sinz, C. 2004. Visualizing the internal structure of SAT
instances. In SAT-04.



