Handbook of Constraint Programming

Edited by F. Rossi, P. van Beek and T. Walsh

Elsevier
Contents

Foreword v
Editors vii
Contributors ix

I Foundations 1

1 Introduction 3
Francesca Rossi, Peter van Beek, Toby Walsh
1.1 Purpose of the Handbook . 4
1.2 Structure and Content . 4
1.3 Future Research . 10

2 Constraint Satisfaction: An Emerging Paradigm 13
Eugene C. Freuder and Alan K. Mackworth
2.1 The Early Days . 13
2.2 The Constraint Satisfaction Problem: Representation and Reasoning . . 16
2.3 Conclusions . 23

3 Constraint Propagation 29
Christian Bessiere
3.1 Background . 30
3.2 Formal Viewpoint . 33
3.3 Arc Consistency . 37
3.4 Higher Order Consistencies . 50
3.5 Domain-Based Consistencies Stronger than AC57
3.6 Domain-Based Consistencies Weaker than AC62
3.7 Constraint Propagation as Iteration of Reduction Rules68
3.8 Specific Constraints . 70

4 Backtracking Search Algorithms 85
Peter van Beek
4.1 Preliminaries . 86
4.2 Branching Strategies . 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Constraint Propagation</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Nogood Recording</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Non-Chronological Backtracking</td>
<td>102</td>
</tr>
<tr>
<td>4.6</td>
<td>Heuristics for Backtracking Algorithms</td>
<td>105</td>
</tr>
<tr>
<td>4.7</td>
<td>Randomization and Restart Strategies</td>
<td>111</td>
</tr>
<tr>
<td>4.8</td>
<td>Best-First Search</td>
<td>116</td>
</tr>
<tr>
<td>4.9</td>
<td>Optimization</td>
<td>117</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparing Backtracking Algorithms</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>Local Search Methods</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Holger H. Hoos and Edward Tsang</td>
<td>136</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>136</td>
</tr>
<tr>
<td>5.2</td>
<td>Randomised Iterative Improvement Algorithms</td>
<td>142</td>
</tr>
<tr>
<td>5.3</td>
<td>Tabu Search and Related Algorithms</td>
<td>144</td>
</tr>
<tr>
<td>5.4</td>
<td>Penalty-Based Local Search Algorithms</td>
<td>148</td>
</tr>
<tr>
<td>5.5</td>
<td>Other Approaches</td>
<td>154</td>
</tr>
<tr>
<td>5.6</td>
<td>Local Search for Constraint Optimisation Problems</td>
<td>155</td>
</tr>
<tr>
<td>5.7</td>
<td>Frameworks and Toolkits for Local Search</td>
<td>157</td>
</tr>
<tr>
<td>5.8</td>
<td>Conclusions and Outlook</td>
<td>158</td>
</tr>
<tr>
<td>6</td>
<td>Global Constraints</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>Willem-Jan van Hoeve and Irit Katriel</td>
<td>170</td>
</tr>
<tr>
<td>6.1</td>
<td>Notation and Preliminaries</td>
<td>170</td>
</tr>
<tr>
<td>6.2</td>
<td>Examples of Global Constraints</td>
<td>176</td>
</tr>
<tr>
<td>6.3</td>
<td>Complete Filtering Algorithms</td>
<td>182</td>
</tr>
<tr>
<td>6.4</td>
<td>Optimization Constraints</td>
<td>189</td>
</tr>
<tr>
<td>6.5</td>
<td>Partial Filtering Algorithms</td>
<td>193</td>
</tr>
<tr>
<td>6.6</td>
<td>Global Variables</td>
<td>200</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusion</td>
<td>203</td>
</tr>
<tr>
<td>7</td>
<td>Tractable Structures for Constraint Satisfaction Problems</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Rina Dechter</td>
<td>210</td>
</tr>
<tr>
<td>7.1</td>
<td>Background</td>
<td>210</td>
</tr>
<tr>
<td>7.2</td>
<td>Structure-Based Tractability in Inference</td>
<td>213</td>
</tr>
<tr>
<td>7.3</td>
<td>Trading Time and Space by Hybrids of Search and Inference</td>
<td>231</td>
</tr>
<tr>
<td>7.4</td>
<td>Structure-Based Tractability in Search</td>
<td>239</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary and Bibliographical Notes</td>
<td>241</td>
</tr>
<tr>
<td>8</td>
<td>The Complexity of Constraint Languages</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>David Cohen and Peter Jeavons</td>
<td>246</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic Definitions</td>
<td>246</td>
</tr>
<tr>
<td>8.2</td>
<td>Examples of Constraint Languages</td>
<td>247</td>
</tr>
<tr>
<td>8.3</td>
<td>Developing an Algebraic Theory</td>
<td>251</td>
</tr>
<tr>
<td>8.4</td>
<td>Applications of the Algebraic Theory</td>
<td>258</td>
</tr>
<tr>
<td>8.5</td>
<td>Constraint Languages Over an Infinite Set</td>
<td>263</td>
</tr>
<tr>
<td>8.6</td>
<td>Multi-Sorted Constraint Languages</td>
<td>264</td>
</tr>
<tr>
<td>8.7</td>
<td>Alternative Approaches</td>
<td>269</td>
</tr>
</tbody>
</table>
9 Soft Constraints

Pedro Meseguer, Francesca Rossi, Thomas Schiex

- 9.1 Background: Classical Constraints .. 282
- 9.2 Specific Frameworks .. 283
- 9.3 Generic Frameworks .. 287
- 9.4 Relations among Soft Constraint Frameworks 291
- 9.5 Search ... 297
- 9.6 Inference ... 300
- 9.7 Combining Search and Inference ... 313
- 9.8 Using Soft Constraints .. 316
- 9.9 Promising Directions for Further Research 321

10 Symmetry in Constraint Programming

Ian P. Gent, Karen E. Petrie, Jean-François Puget

- 10.1 Symmetries and Group Theory .. 331
- 10.2 Definitions .. 337
- 10.3 Reformulation ... 340
- 10.4 Adding Constraints Before Search .. 343
- 10.5 Dynamic Symmetry Breaking Methods 350
- 10.6 Combinations of Symmetry Breaking Methods 352
- 10.7 Successful Applications ... 363
- 10.8 Symmetry Expression and Detection 364
- 10.9 Further Research Themes .. 366
- 10.10 Conclusions ... 368

11 Modelling

Barbara M. Smith

- 11.1 Preliminaries ... 378
- 11.2 Representing a Problem ... 379
- 11.3 Propagation and Search .. 379
- 11.4 Viewpoints .. 381
- 11.5 Expressing the Constraints .. 382
- 11.6 Auxiliary Variables .. 386
- 11.7 Implied Constraints .. 387
- 11.8 Reformulations of CSPs .. 391
- 11.9 Combining Viewpoints ... 394
- 11.10 Symmetry and Modelling .. 398
- 11.11 Optimization Problems ... 400
- 11.12 Supporting Modelling and Reformulation 401

II Extensions, Languages, and Applications

12 Constraint Logic Programming

Kim Marriott, Peter J. Stuckey, Mark Wallace
CONTENTS

12.1 History of CLP .. 411
12.2 Semantics of Constraint Logic Programs 413
12.3 CLP for Conceptual Modeling 425
12.4 CLP for Design Modeling 430
12.5 Search in CLP .. 437
12.6 Impact of CLP .. 442
12.7 Future of CLP and Interesting Research Questions 444

13 Constraints in Procedural and Concurrent Languages 453
Thom Frühwirth, Laurent Michel, and Christian Schulte
13.1 Procedural and Object-Oriented Languages 454
13.2 Concurrent Constraint Programming 465
13.3 Rule-Based Languages 473
13.4 Challenges and Opportunities 485
13.5 Conclusion .. 486

14 Finite Domain Constraint Programming Systems 495
Christian Schulte and Mats Carlsson
14.1 Architecture for Constraint Programming Systems 496
14.2 Implementing Constraint Propagation 506
14.3 Implementing Search 513
14.4 Systems Overview ... 517
14.5 Outlook ... 519

15 Operations Research Methods in Constraint Programming 527
John N. Hooker
15.1 Schemes for Incorporating OR into CP 527
15.2 Plan of the Chapter .. 528
15.3 Linear Programming 530
15.4 Mixed Integer/Linear Modeling 534
15.5 Cutting Planes ... 536
15.6 Relaxation of Global Constraints 539
15.7 Relaxation of Piecewise Linear and Disjunctive Constraints 545
15.8 Lagrangean Relaxation 547
15.9 Dynamic Programming 550
15.10 Branch-and-Price Methods 554
15.11 Benders Decomposition 556
15.12 Toward Integration of CP and OR 560

16 Continuous and Interval Constraints 571
Frédéric Benhamou and Laurent Granvilliers
16.1 From Discrete to Continuous Constraints 574
16.2 The Branch-and-Reduce Framework 575
16.3 Consistency Techniques 577
16.4 Numerical Operators 583
16.5 Hybrid Techniques .. 587
16.6 First Order Constraints 590
16.7 Applications and Software packages

17 Constraints over Structured Domains

17.1 History and Applications

17.2 Constraints over Regular and Constructed Sets

17.3 Constraints over Finite Set Intervals

17.4 Influential Extensions to Subset Bound Solvers

17.5 Constraints over Maps, Relations and Graphs

17.6 Constraints over Lattices and Hierarchical Trees

17.7 Implementation Aspects

17.8 Applications

17.9 Further Topics

18 Randomness and Structure

18.1 Random Constraint Satisfaction

18.2 Random Satisfiability

18.3 Random Problems with Structure

18.4 Runtime Variability

18.5 History

18.6 Conclusions

19 Temporal CSPs

19.1 Preliminaries

19.2 Constraint-Based Formalisms for Reasoning About Time

19.3 Efficient Algorithms for Temporal CSPs

19.4 First-Order Temporal Constraint Languages

19.5 The Scheme of Indefinite Constraint Databases

19.6 Conclusions

20 Distributed Constraint Programming

20.1 Definitions

20.2 Distributed Search

20.3 Improvements and Variants

20.4 Distributed Local Search

20.5 Open Constraint Programming

20.6 Further Issues

20.7 Conclusions
CONTENTS

21 Uncertainty and Change 731
Kenneth N. Brown and Ian Miguel
21.1 Background and Definitions . 732
21.2 Example: Course Scheduling . 732
21.3 Uncertain Problems . 733
21.4 Problems that Change . 738
21.5 Pseudo-dynamic Formalisms . 752
21.6 Challenges and Future Trends . 753
21.7 Summary . 755

22 Constraint-Based Scheduling and Planning 761
Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten
22.1 Constraint Programming Models for Scheduling 763
22.2 Constraint Programming Models for Planning 771
22.3 Constraint Propagation for Resource Constraints 778
22.4 Constraint Propagation on Optimization Criteria 785
22.5 Heuristic Search . 789
22.6 Conclusions . 794

23 Vehicle Routing 801
Philip Kilby and Paul Shaw
23.1 The Vehicle Routing Problem . 802
23.2 Operations Research Approaches . 804
23.3 Constraint Programming Approaches 809
23.4 Constraint Programming in Search . 819
23.5 Using Constraint Programming as a Subproblem Solver 823
23.6 CP-VRP in the Real World . 825
23.7 Conclusions . 828

24 Configuration 837
Ulrich Junker
24.1 What Is Configuration? . 838
24.2 Configuration Knowledge . 844
24.3 Constraint Models for Configuration . 853
24.4 Problem Solving for Configuration . 863
24.5 Conclusion . 868

25 Constraint Applications in Networks 875
Helmut Simonis
25.1 Electricity Networks . 876
25.2 Water (Oil) Networks . 878
25.3 Data Networks . 879
25.4 Conclusion . 898
26 Bioinformatics and Constraints
Rolf Backofen and David Gilbert

26.1 What Biologists Want from Bioinformatics .. 906
26.2 The Central Dogma ... 907
26.3 A Classification of Problem Areas .. 908
26.4 Sequence Related Problems .. 908
26.5 Structure Related Problems ... 922
26.6 Function Related Problems ... 935
26.7 Microarrays ... 937

Index .. 945