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Abstract

Thanks to increases in computing power and the growing availability of large datasets,
neural networks have achieved state of the art results in many natural language process-
ing (NLP) and computer vision (CV) tasks. These models require a large number of
training examples that are balanced between classes, but in many application areas they
rely on training sets that are either small or imbalanced, or both. To address this, data
augmentation has become standard practice in CV. This research is motivated by the ob-
servation that, relative to CV, data augmentation is underused and understudied in NLP.
Three methods of data augmentation are implemented and tested: synonym replacement,
backtranslation, and contextual augmentation. Tests are conducted with two models: a
Recurrent Neural Network (RNN) and Bidirectional Encoder Representations from Trans-
formers (BERT). To develop learning curves and study the ability of augmentation methods
to rebalance datasets, each of three binary classification datasets are made artificially small
and made artificially imbalanced. The results show that these augmentation methods can
offer accuracy improvements of over 1% to models with a baseline accuracy as high as
92%. On the two largest datasets, the accuracy of BERT is usually improved by either
synonym replacement or backtranslation, while the accuracy of the RNN is usually im-
proved by all three augmentation techniques. The augmentation techniques tend to yield
the largest accuracy boost when the datasets are smallest or most imbalanced; the per-
formance benefits appear to converge to 0% as the dataset becomes larger. The optimal
augmentation distance, the extent to which augmented training examples tend to deviate
from their original form, decreases as datasets become more balanced. The results show
that data augmentation is a powerful method of improving performance when training on
datasets with fewer than 10,000 training examples. The accuracy increases that they offer
are reduced by recent advancements in transfer learning schemes, but they are certainly
not eliminated.
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Chapter 1

Introduction

In this chapter, I informally introduce and motivate the study of data augmentation in nat-
ural language processing (NLP). I also summarize the contributions and the organization
of the thesis.

1.1 Natural Language Processing and the Need for
Data Augmentation

NLP is a subfield of computer science that is focused on analyzing, modifying, or gener-
ating natural language. It contains several subfields, including information extraction and
speech processing and generation. This thesis focuses on text classification, a subfield of
information extraction. Text classification is an active area of research with a wide range
of uses in industry. Tweet sentiment analysis can be used to predict election outcomes [23].
Automated personal assistants such as Apple’s Siri will first classify a user’s request by the
application to which it relates [5]. Comment section moderators can use a constructiveness
classification model to filter out comments that do not contribute to the conversation in
a meaningful way. I will focus primarily on three tasks: the classification of sentiment,
subjectivity (as defined in Section 2.3.2), and constructiveness.

For much of their history, natural language classification models used a features-based
approach to modeling. Using feature engineering to convert text to numerical features,
practitioners could apply the computationally inexpensive models that remain popular in
tabular data analysis, such as logistic regression and support vector machines. However,
with a combination of increased computing power and numerous breakthroughs in deep



learning, neural-based models have become the state of the art in most NLP subfields.
Neural models not only learn the optimal feature weights, but also learn the optimal
features themselves. The ability of neural models to learn features is central to their
success in NLP and computer vision (CV).

Bag of Words (BoW), a common NLP feature engineering technique, treats text as
simply a collection of words, each with a count of the number of times in which they
appear. Clearly this approach ignores important information, namely the contezt in which
each word appears. FEach in their own ways (and with varying degrees of success), neural
models outperform BoW-based models by incorporating context into their computations.

Due to the bias-variance tradeoff, the advantages of neural models come with costs.
Neural models are able to learn features since they have a high degree of freedom, but this
implies high model variance and therefore susceptibility to overfitting. This tendency to
overfit is most successfully combated by increasing the size of the training set. However,
gathering labeled data tends to be costly and so other methods of limiting overfitting must
be relied upon.

Methods of combatting overfitting, specifically in the context of neural NLP and CV
models, are usually focused either on the training data, or on the model and its training
scheme. Common model and training-focused approaches to combatting overfitting in-
clude tuning the learning rate, adjusting the number of epochs, model regularization, and
replacing the model with a more biased, less variant model. Aside from gathering more
labeled data, data augmentation is the only data-focused method.

Transfer learning is an increasingly popular method of combatting overfitting that does
not fit neatly into either of the categories outlined in the previous paragraph. The idea
behind transfer learning is that a model can perform better on a target task if it is first
trained on a large dataset for a related problem. Bidirectional encoder representations
from transformers (BERT) is a popular model that is foundational in modern NLP, largely
because it lends itself to transfer learning.

Another frequent issue that must be dealt with in machine learning is that of imbal-
anced classification datasets. Training a machine learning model on an imbalanced dataset
tends to bias the model towards the majority class label. Imbalance can be addressed
by removing majority class examples or duplicating minority class examples, respectively
known as undersampling and oversampling. These two methods both artificially rebalance
the training set, but also introduce issues of their own. Undersampling discounts labeled
data and therefore ignores information that could be used to improve the model. Over-
sampling places an added emphasis on each training example that belongs to the minority
class, so it can lead to overfitting on the minority class training examples.



This thesis focuses on the effectiveness of data augmentation techniques for improving
text classification models, specifically those trained on small and medium sized training
sets. It examines the relationship between data augmentation effectiveness and training
set size. It also compares dataset rebalancing through data augmentation to rebalancing
with undersampling and oversampling.

This study is motivated by three observations. First, the smaller the training set, the
more susceptible a model is to overfitting, and therefore the more it can gain from data
augmentation. Second, compared to data augmentation in CV, data augmentation in NLP
is understudied and underused. Third, dataset rebalancing through data augmentation is
commonplace in machine learning with tabular data but is rarely used in NLP.

1.2 Contributions of the Thesis

This thesis has three central contributions. First, I introduce the concept of augmentation
distance in the context of three different data augmentation approaches, and I provide an
intuitive understanding of when certain distances are advantageous. Second, I compare
sampling-based dataset rebalancing to augmentation-based rebalancing. Third, I test the
effects of data augmentation on the fine-tuning of BERT.

1.3 Organization of the Thesis

e Chapter 2 lays the groundwork for the rest of the thesis by describing the relevant
NLP models and datasets, and common methods of dealing with imbalanced datasets.

e Chapter 3 provides an overview of data augmentation techniques for both CV and
NLP tasks.

e Chapter 4 explains how I will improve upon the methods introduced in Chapter 3,
and will study their effects in greater detail. It explains the various settings in which
each method will be tested.

e Chapter 5 shows where data augmentation was successful and where it failed to offer
any performance improvement.

e Chapter 6 concludes the thesis, offering a summary of the findings and possible
directions for future work.



Chapter 2

Background

In this chapter, I briefly review the necessary background in NLP and machine learning
more broadly.

2.1 Pre-Machine Learning Approaches to NLP

The following is a brief history of NLP. This history begins at the field’s inception in the
1940s and ends before the emergence of machine learning methods. This summary draws
heavily from the historical review of NLP presented by Jones in [14].

2.1.1 Rules-Based

NLP began in the 1940s and focused entirely on Machine Translation (MT). The pre-
dominant approach was to process word-by-word, mapping words from one language to
another by way of predefined dictionaries. Researchers developed procedures that resolved
ambiguous word meanings by incorporating local context into this dictionary lookup.

2.1.2 Logic-Based
Logic-based approaches to NLP attempted to represent language rules as mathematical

logics. Applications of this approach focused on the construction, manipulation, and com-
munication of world knowledge. For example, the BASEBALL question answering system,

4



published in 1961, uses stored baseball-related data and a question interpretation procedure
to answer questions such as “Where did each team play on July 777 [10].

2.1.3 Statistical Language Models

Statistical methods became popular in the 1990s, largely due to increases in processing
power and the quantity of text datasets. Rather than hard-coding syntactic rules in a
rules-based approach, these methods use massive datasets to infer grammatical rules and
probabilities. This wave also laid the foundation for the machine learning models used
today. For example, text extraction based on word frequencies is a precursor to feature
engineering via bag-of-words (BoW) and term frequency inverse document frequency (TF-

IDF).

2.2 Machine Learning NLP Models

The following is a series of brief explanations of various machine learning models used
in NLP. This is not an exhaustive list but it provides a rough overview of the history of
machine learning-based NLP models, and an explanation of how each model attempted to
improve upon those before it.

2.2.1 Hand-Crafted Features with Traditional Machine Learning
Models

Before advances in computing power made neural model training practical, the primary
method of NLP modeling was focused on feature-crafting. By transforming text to numer-
ical data, common tabular data models such as regression and support vector machines
could be used. During this time, advances in NLP were in the area of feature engineering.
The two most common feature engineering methods were BoW and TF-IDF. In BoW, each
training example is mapped to a vector of words counts. TF-IDF is BoW but with each
word count divided by a function of the word’s frequency in the entire dataset. These meth-
ods remain popular in many applications since they are usually fast and tend to require
less training data than neural models.
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(a) A unidirectional RNN.

(b) A bidirectional RNN.

Figure 2.1: The weights of the subnetworks A and A’ are constant across timesteps. Any
subset of the outputs, indicated by y and s, may be used for inference. Common choices are
the output at each timestep, y;, Vt, or only the final output(s), s;, s;. Figures published
in [25].



2.2.2 Recurrent Neural Network (RNN)

While standard Artificial Neural Networks (ANN) rely on a fixed input size, RNNs allow
for variable length input. They do so by accepting not only the input, but also the output
of the previous layer (see Figure 2.1). This allows RNNs to learn dependencies in the
temporal dimension.

The two most common ways to structure RNNs are unidirectional and bidirectional,
where the sequence is processed going forward in time, or once in each direction. Unidirec-
tional RNNs are common in tasks where an emphasis may be placed on the later inputs,
such as Language Modeling, an NLP task described in Section 2.4.3. Bidirectional RNNs
are better suited for sentiment classification, or other tasks where each timestep can be
assumed to have a roughly equal impact on the output. As can be seen in Figure 2.1,
bidirectional RNNs are the concatenation of two unidirectional RNNs.

Further development of NLP models sought to address the two major drawbacks of
RNNs: the vanishing gradient problem and the fact that they process input sequentially.
The vanishing gradient problem is when the loss function decays exponentially with respect
to time, so long-term dependencies are not captured by the model. The sequential process-
ing of inputs impedes their training and inference speed since neither can be parallelized.
Long short-term memory (LSTM) models improve upon RNNs by mitigating the former
of the two problems, and bidirectional encoder representations from transformers (BERT)
addresses both issues with its non-sequential structure.

2.2.3 Long Short-Term Memory (LSTM)

LSTMs, a type of RNN so common that they are often simply referred to as RNNs,
mitigate the vanishing gradient problem by introducing a memory cell, as shown in Figure
2.2, within each unit. The memory cells, formed by an input, output, and forget gate,
govern the information that is remembered and forgotten by the network at each timestep.
These gates learn to detect and remember the long-term dependencies that are relevant
to the problem at hand. Like general RNNs, LSTMs are usually either unidirectional or
bidirectional.
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(b) An LSTM cell.

Figure 2.2: A side by side comparison of RNN and LSTM cells. Pointwise operations and

neural network layers are represented by pink circles and yellow rectangles, respectively.
Figures published in [25].
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Figure 2.3: BERT pretraining architecture (left) and downstream task architecture (right)
introduced in [8]. The pretraining architecture takes two sentences as input in order to
adequately prepare the model for two-sentence-input tasks such as question answering; it
can be used for single sentence tasks such as topic classification by entering null tokens in
the place of sentence B. Figure published in [3].



2.2.4 Bidirectional Encoder Representations from Transformers
(BERT)

Convolutional neural networks (CNNs), a type of model that is ubiquitous in CV, are
non-sequential and therefore can easily be parallelized and maintain a logarithmic distance
between inputs. Note that logarithmic distance between inputs is preferable to linear or
exponential distance since text often contains long-term dependencies. Transformer models
allow these two desirable features of CNNs to be used in NLP. They consist of encoders
and decoders, but the decoder unit is not relevant to this thesis and will not be discussed
in detail.

Transformer encoders consist of CNNs and attention mechanisms. Recognizing that
word meanings can vary greatly depending on their context, attention mechanisms place
each input word in the context of the surrounding words. Rather than simply feeding each
word’s embedding into the CNNs, the input is a weighted sum of each word’s embedding
and that of its surrounding words. Transformers were shown to achieve impressive results
in [35].

Building on the success of Transformers, BERT achieves state of the art results on a
number of NLP tasks by combining multiple Transformer blocks [3]. It has two variants,
Base and Large, with 12 and 24 Transformer blocks, respectively.

The advent of BERT has been referred to as the “ImageNet Moment” for NLP. Like
ImageNet, BERT lends itself to transfer learning (see Section 2.5.2) wherein knowledge
of one problem is leveraged to help learn another. BERT is pretrained on the Masked
Language Modeling problem, where the model learns to recover the original version of a
corrupted! text. This pretraining task is self-supervised, and so BERT is trained on the
massive unlabeled Wikipedia and BookCorpus [50] corpora, totaling over 3 billion words.
It is now common practice to use transfer learning with a pretrained BERT model for a
wide range of NLP tasks.

2.3 NLP Tasks and Datasets

The following tasks and corresponding datasets are common in NLP. This is by no means
an exhaustive list, but it provides the necessary background for the tasks that are studied

!The text corruption process begins by randomly selecting 15% of the words. Of these 15%, 80% are
replaced by a MASK token, 10% by a random word, and 10% by the original word. The loss function
depends only on the probabilities that BERT assigns to various words at the randomly selected 15% of
the text.



in this thesis and in the related work. The effectiveness of a data augmentation technique
can be empirically shown by improving a model’s performance on these tasks.

2.3.1 Sentiment Classification

Consisting of 10,662 sentences from the Rotten Tomatoes movie review website, the Stan-
ford Sentiment Treebank (SST') [32] is a sentiment classification corpus. Its original form is
SST-5, where each example has a sentiment label in {-2, -1, 0, 1, 2}. The sign and magni-
tude of the label represent the polarity and intensity of sentiment, respectively. Its binary
form, SST-2, contains only the polarity by excluding examples with label 0 and labeling
only by the sign of the original label. To my knowledge the highest achieved accuracy on
the SST-2 test set is 97.4%, achieved in [30].

2.3.2 Subjectivity Classification

The Subj [26] dataset contains 10,000 sentences taken from movie review websites, balanced
and labeled as objective or subjective. Objective sentences give facts about the movie being
reviewed; subjective sentences give the writer’s opinion about the movie. For example, “in
the year 2009, a new drug known as blood heat is developed.” and “the script is a tired
one, with few moments of joy rising above the stale material.” are respectively an objective
and a subjective sentence in the dataset. To my knowledge the highest reported 10-fold

cross validation accuracy on the dataset is 95.5%, accomplished by the authors of [10].

2.3.3 Constructiveness Classification

The Simon Fraser University Opinion and Comments Corpus (SFU) [17] is a collection of
663,173 comments from the Globe and Mail. Of the 663,173 comments, 1043 were anno-
tated along two axes: toxicity and constructiveness. Toxicity is made an ordinal variable
with 4 possible values, and constructiveness is a binary variable. This thesis will focus on
the constructiveness label. The purpose of the constructive label is to define comments
that encourage a thoughtful dialogue about the article’s subject matter. A comment is
considered constructive if it creates a dialogue, makes a well-defined point, offers solutions
to problems or answers to questions posed by the article or by other commenters, or shares
relevant personal experience.

10



2.4 NLP Concepts

This section discusses several tools and ideas in NLP that are relevant to this thesis. Text
preprocessing and embeddings are more prevalent in NLP than are language modeling,
POS tagging, and WordNet. However, all five of these ideas and tools are important to
this thesis.

2.4.1 Text Preprocessing

Proper preprocessing is essential to any NLP problem. Preprocessing techniques are chosen
specifically for the problem and the model being used. All preprocessing involves striking
a balance between keeping information and making the text more understandable from
the model’s point of view. For example, lowercasing all letters reduces the data space
by nearly half (thus reducing the necessary amount of training data), but ungrammatical
capitalization is widely recognized as a sign of anger or distress.

A common step in text preprocessing is dividing a text into a series of tokens, where
each token is itself a series of contiguous characters. Usually the division (i.e., tokenization)
is such that tokens are separated by spaces or between a space and punctuation, but
sometimes single words are divided into multiple tokens.

2.4.2 Embeddings

Commonly used as the first layer in NLP models, word embeddings are mappings from
words to vectors. They tend to assign similar vectors to words that have similar meanings
or often appear together. Frameworks vary, but in general word embeddings are generated
by self-supervised training on large corpora. Word2Vec is a common word embedding
framework and will be used throughout this thesis. It captures relationships between words
that humans can immediately recognize. A famous such relationship is Vgueen — Vwoman =
Vking — Uman, Where Uyorq is the Word2Vec embedding of word. This can be interpreted as
“queen is to woman as king is to man”.

Word2Vec and most other word-level embeddings are defined only on a predefined
vocabulary of words. When using these embeddings, out-of-vocabulary (OOV) words are
either dropped entirely or replaced with a designated OOV token.

11



2.4.3 Language Model (LM)

Language models are NLP models that learn certain probabilities associated with their
corresponding training set. The simplest and most common language modeling problem
is next-word prediction, where a model learns the probability distribution over the next
word, given the k words that precede it.

The language model used to pretrain BERT is the masked language model (MLM),
where rather than predicting the next word, it predicts the word or words that have
been masked out. Using language modeling as the transfer learning source task has had
remarkable success, likely because it forces the model to learn syntax and semantics. It
is a self-supervised problem and therefore does not require labeled training data. Its
performance as a pretraining problem for transfer learning is better than autoencoding
and translation [141, 37], the two other common source tasks.

2.4.4 POS Tagging

A part of speech (POS) is a class of word distinguished by the function it serves in a
sentence [1]. Examples include adjectives, adverbs, nouns, and verbs.

POS prediction, commonly referred to as POS tagging, is an active field of study. While
models can be compared by their performance on certain benchmark datasets, which model
is state of the art is up for debate. However, the best performing POS tagging models are
neural models trained via supervised learning.

2.4.5 WordNet

Princeton’s WordNet [22] is a longstanding project wherein expert linguists maintain a
structured network of English words. The fundamental components of WordNet are un-
ordered sets of words that are interchangeable in a certain context, referred to as synsets.
WordNet includes only the four major word classes: nouns, adjectives, verbs, and adverbs.
Synsets are connected through various semantic relations, such as subordinate and super-
ordinate. For instance, synset A is subordinate to synset B if all members of A is a B. I
refer to the union of WordNet-generated synsets as the set of candidates.

If replacing the current word significantly changes the meaning of the sentence, I say
that the candidate is inaccurate. Users can condition on a word’s POS tag when querying
WordNet, which often decreases the number of inaccurate candidates. For example, by

12



restricting a WordNet query to nouns when finding replacements for “order” in the sentence
he obeyed the order, the verb synonyms of “order”, such as “arrange” are eliminated from
the candidates. Unfortunately POS tags are the only way in which the context of word can
be used to inform the query, so there is still a chance of inaccurate candidates. Borrowing
from the previous example, “club” is inaccurate but would be a candidate since “club” and
“order” are nouns that are synonyms in at least one sense (an association of people).

2.5 Machine Learning Concepts

This section describes imbalanced datasets and transfer learning. The former being a
commonly occurring issue and the second an increasingly popular technique, both are
central to this thesis.

2.5.1 Imbalanced Datasets

A binary classification dataset is imbalanced if its classes have a significantly different
number of examples. If it is not imbalanced then it is balanced. Imbalance could be
defined using a threshold: one could say that a dataset is imbalanced if its minority class
contains less than 40% of the examples. Rather than adhering to such a strict definition,
this thesis will treat imbalance as a matter of degree.

Training on imbalanced datasets can lead to issues in machine learning since the model
will be biased towards classifying datapoints as the majority class. For example, if a
binary health classification model’s training data consists of 95% healthy and 5% sick
examples, classifying all examples as healthy would give a training accuracy of 95% and
could minimize the training loss function.

This section deals with binary classification tasks, but the entire discussion can be
extended to multiclass tasks.

Sampling-Based Methods
The two most straightforward methods of restoring class balance for text and image data

are removing majority class examples and duplicating minority class examples, respectively
known as undersampling and oversampling.
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Class weighting artificially balances the training set by incorporating weights into the
training loss function that inflate the cost of misclassifying each minority class example.
The weights are an arbitrary constant (often chosen to be the size of the majority class)
divided by their respective class’s size. Adding weight £ to minority class examples is
equivalent to using k copies of each minority class example, so class weighting could be
seen as an efficient implementation of oversampling. To simplify the discussion, I use the
term oversampling to refer to both class weighting and to itself.

Undersampling and oversampling both have drawbacks. In undersampling, the model
is deprived of the opportunity to learn from data on hand. Oversampling can lead to
overfitting the minority dataset by attaching a relatively high importance to each minority
example.

SMOTE

A popular method when dealing with imbalanced numerical data is Synthetic Minority
Over-Sampling Technique (SMOTE) [1]. SMOTE iterates through the minority class’s
datapoints, randomly selects one of its k same-class nearest neighbors, and generates a
synthetic point at a random point on the line between the point and the selected neighbor.
Its implementation details can vary depending on the practitioner’s desired effect, but it
is usually repeated until the dataset is balanced.

An augmentation method is safe if it maintains the validity of the labels of the data-
points to which it is applied. Like instance crossover (arguably SMOTE’s NLP equivalent),
SMOTE is not necessarily safe. For example, when training SVMs the synthetic points
may lie within the opposite class’ true decision boundary, and therefore be mislabeled.
See Figure 2.4 for an example of how SMOTE can create problematic data, especially
when the training data is noisy. It nonetheless generally performs well: SMOTE has be-
come standard practice and is implemented in scikit-learn [27], a popular machine learning
library.

SMOTE is not directly applicable to NLP since it is used on numerical data rather
than text data. However, it is comparable to two NLP augmentation methods introduced
in Section 3.2: instance crossover and contextual augmentation. Like SMOTE, instance
crossover generates synthetic training examples by randomly selecting and combining two
training examples. Contextual augmentation also fuses the information contained in mul-
tiple examples, but rather than combining only two examples it combines a single example
with information from the entire training set (by way of a model that has been trained on
the training set).

14



X Minority Sample
e Majority Sample
X Decision Boundary
Generated Sample

Figure 2.4: An example of SMOTE. The presence of a single mislabeled or noisy point
(see centermost minority sample point) greatly increases the probability of problematic
data being created. However, in this case and in most cases, a significant majority of the
synthetic data is likely to be safe. Figure published in [18].

2.5.2 Transfer Learning

Transfer learning is a method of using knowledge of one problem to assist in learning
another. Usually a model is first trained on a large dataset (the “source task”), and this
“pretrained” model is further trained on the desired problem (the “target task”). Transfer
learning has become ubiquitous in CV since nearly all CV tasks require knowledge of the
same low-level and mid-level images features. Concretely, regardless of whether the task is
the recognition of humans or the recognition of vehicles, the model must learn edges and
shapes, and therefore knowledge of edges and shapes can be transferred from one task to
the other.

Using pretrained word embeddings could be considered a form of transfer learning. Pre-
trained embeddings are low-level feature that are shared between tasks, the NLP equivalent
of edges in CV. Recent advancements in NLLP, most notably BERT, have shown that this
connection between transfer learning in NLP and in CV extends to mid-level features.
Just as all image classification tasks require knowledge of shapes, all NLP tasks require
knowledge of linguistic representations, syntax, and semantics.

The authors of [11] define a language modeling problem on the Wikitext-103 corpus
[20], on which they (1) train an LSTM-based model, then (2) train the model on a language
modeling problem for their target dataset, and finally (3) train on the classification problem
in the dataset. The call the use of these three steps Universal Language Model Fine-
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Figure 2.5: The results from [! 1], on datasets IMDb, TREC-6, and AG (from left to right).
Figure published in [11]. “From scratch” corresponds to training without transfer learning;
“ULMFiT, supervised” corresponds to pretraining on a language modeling problem for the
given classification dataset; “ULMFiT, semi-supervised” corresponds to pretraining first
on a language modeling problem for the Wikitext-103 corpus [20], then on a language
modeling problem for the given classification dataset.

tuning (ULMFiT). A comparison of this approach with all steps, without step (1), and
without steps (1) and (2) is shown in Figure 2.5. Their results show that pretraining offers
large accuracy improvements with small training sets, and that the accuracy improvement
decreases as the number of training examples increases. On the AG News dataset the
non-pretrained model requires more than ten times the training data to achieve the same
validation accuracy as a pretrained model.

The model architecture, specifically the input and output layers, often are required to
be adjusted between training on the source and the target task. If, for example, the source
task is a language modeling problem and the target is a binary classification problem, then
the dimensionality of the output layer must be adjusted. In such cases the output layer’s
weights are randomly reinitialized.

After making the necessary changes to the model architecture, practitioners must decide
whether or not to make the non-output pretrained weights trainable. If weights are frozen
then the pretrained model acts as a feature extractor for the final layer. Freezing the
weights has the benefit of preventing catastrophic forgetting, wherein all knowledge of
the source task is overwritten by knowledge of the target task, but significantly restricts
the model’s ability to learn the target task. Finding an appropriate compromise between
lowering the training loss of the target task and avoiding catastrophic forgetting is a central
issue in transfer learning.

HuggingFace Transformers [39] is a popular library that implements BERT and other
advanced NLP models. In its implementation, when BERT is transferred to sequence
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classification, a dense layer is concatenated to the final layer and the entire model is
retrained.

2.6 Summary

In this chapter, I described the necessary background in NLP and machine learning.

In the next chapter, I present related work in data augmentation for both NLP and a
closely related field, CV.
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Chapter 3

Related Work

In this chapter, I review previous work on data augmentation in both CV and NLP. I
briefly discuss the analogues that certain CV augmentation methods have in NLP. In
order to further connect past work in augmentation to the analysis in this thesis, I make
note of each method’s example-level augmentation distance (ELAD), should one exist.

The ELAD is the distance that each augmented example deviates from its original form.
The concept of ELAD is original to this thesis, although other work may discuss a similar
notion either directly or indirectly. See Section 4.1 for a more detailed explanation of this
term and its relevance to this thesis.

Like in NLP, neural models have become the state of the art for most CV tasks. There
are many parallels between the two fields. Both previously relied on engineering context-
ignorant features for input to traditional machine learning models. Both benefit from
neural models’ ability to automatically learn good features for a given problem or dataset.
However, while data augmentation is ubiquitous in CV, it has yet to become standard
practice in NLP. The highly variant neural models common to both fields can benefit from
augmentation, but useful augmentation techniques in NLP are less obvious than in CV.

Many CV tasks (specifically the tasks’ labels) are invariant with respect to variance
in viewpoint, lighting, and scale [31]. Therefore augmentation by rotation, cropping, or
mirroring can increase model robustness. These simple geometric transformations have no
clear analogue to NLP. Applying mirroring, for example, to NLP would result in incoherent
sentences since language is sensitive to word order.
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3.1 Data Augmentation in CV

This section explores common augmentation techniques in CV. It is not an exhaustive list,
and more time is spent on the techniques that have analogues in NLP.

Although there have been findings [12, 33] to the contrary, it is generally accepted that
a CV augmentation method must be safe (i.e., label-preserving) in order to be effective.
Ability to preserve labels will depend on the nature of the label, so an augmentation tech-
nique’s performance will vary across tasks. Mirroring along its vertical axis, for example,
would be detrimental to recognizing certain handwritten digits.

3.1.1 Geometric Transformations and Noise Injection

Effective without being computationally expensive or requiring external information, mir-
roring, rotation, cropping, translation, and noise injection are standard practice in a wide
range of CV applications. Though it is specified indirectly (by way of a parameter), the
latter three of the listed methods all have an inherent ELAD while the others do not. For
example, the magnitude and coverage of the noise that is injected into an image represents
the ELAD of that particular technique.

3.1.2 Image Mixing

Counterintuitively, mixing portions of multiple images has had promising results. Inoue
[12] found that SamplePairing, averaging two randomly selected images and assigning the
composite image a random choice of the two images’ labels, was able to reduce the error
rate on the CIFAR-10 dataset from 8.22% to 6.93%. Inoue also showed that SamplePairing
reduced the error rate from 43.1% to 31.0% when training on 10% of the CIFAR-10 dataset.
These two results show that SamplePairing offers a large performance boost when the
training set is small, and as the training set increases in size this boost diminishes but
remains pronounced. Surprisingly, constraining image pairing by only selecting those with
the same label led to worse results. The nonlinear methods of mixing images shown in
Figure 3.1 were explored in [33]. VH-Mixup, the best performing method, reduced the
error rate on CIFAR-10 from 5.4% to 3.8%.

It has been suggested that these methods help the model learn lines and other low-
level elements [31]. The effectiveness of these techniques should be compared to transfer
learning, which also helps models learn low-level elements.
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Image mixing does not have a discernible ELAD. Instance crossover, the NLP equivalent
of concatenation-based image mixing, is discussed in Section 3.2.4.

3.1.3 Random Erasing and Random Replacement

Random erasing, introduced in [17], is analogous to dropout, but in the data space rather
than the model space. The same approach in NLP, namely the random dropping or masking
of words, is found to have modest positive results in [35].

Although it is left unstudied, the authors of [21] suggest combining random erasing
with image inpainting. Generative Adversarial Networks (GANs) have achieved state of
the art results on image inpainting, the task of predicting missing portions of images. This
approach would be analogous to contextual augmentation, a method discussed in Section
3.2.3.

The ELAD of both of these methods is the proportion of the image that is erased. Both
of these methods are unsafe for a wide variety of tasks. For example randomly erasing or
replacing a person in an image would contradict the label in a human localization task.

3.1.4 Artificial Data

GANSs have also exhibited excellent performance in artificial data generation, in terms of
both results and computational speed. Shorten and Khoshgoftarr [31] note that GANs are
the most promising generative modeling technique for use in data augmentation. Tradi-
tionally GANs use multilayer perceptron networks as both the generator and the discrimi-
nator. The generator creates the images, and the discriminator distinguishes between real
and artificial images. The GAN framework, defined by the presence of a generator and
discriminator, can take a variety of different forms.

Progressively Growing GANs can raise the resolution of various input images by gen-
erating new pixels that conform to the input image and the training set. This approach
has shown promising results on facial images [15].

Deep Convolutional Generative Adversarial Networks (DCGANs) use CNNs for both
the generator and the discriminator [29]. Since the state of the art models in CV are CNN-
based, it is unsurprising that DCGANs have excellent results when it comes to generating
high resolution images.
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Figure 3.1: Illustrations of the nonlinear image mixing methods explored in [33]. At testing,
VH-Mixup achieved the best performance. Figure published in [33].
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Since an artificially generated training example is not derived directly from an original
training example (it is instead derived from the training set as a whole), the concept of
ELAD does not apply to this method.

3.1.5 Style and Class Transfer

Style transfer via neural networks, an approach first introduced in [9], generated significant
excitement around deep learning. Numerous improvements to [9] have been published, most
notably Fast Style Transfer [13]. A much less computationally expensive algorithm, Fast
Style Transfer has allowed style transfer to become more widely used in practice.

CycleGANs can be used to transfer images from one class to another. For example, the
authors of [18] are able to convert images of zebras into images of horses and vice versa,
all while maintaining the image background. This is achieved by using one generator for
each direction, and a discriminator with its usual function. These are used in [19] to
artificially balance the Facial Expression Recognition Database by translating images from
larger classes to minority classes. This is analogous to SMOTE [4], but with images rather
than numerical data. This technique led to a 5%-10% accuracy improvement of the models
tested in [19)].

The ELAD of this technique is difficult to identify in the abstract. The ELAD would
depend on the details of how the style or class transfer is conducted.

3.1.6 Test-Time Augmentation

Test-Time augmentation, performed during testing rather than training, involves passing
not only the original example into a model, but also passing one or more augmented versions
of that example. The model outputs for each version of the training example are fused in
some way, often through a voting scheme. As illustrated in Figure 3.2, it leads to accuracy
improvements on a skin lesion detection dataset [28]. Augmentation at train and test
time performs better than only at train time or no augmentation at all. For small dataset
sizes, training augmentation yields worse performance than no augmentation, yet training
and testing augmentation outperforms both of these schemes. Both of these findings are
counterintuitive: it is generally accepted that training augmentation is most helpful on
smaller datasets. Further, it is unclear why testing augmentation is helpful in cases when
training augmentation is harmful.
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Figure 3.2: Experimental results on the skin lesion dataset in [28] where augmentation
is done by random crop, affine transformation, flips along x or y axis, and brightness
changes, in that order. Because the augmentation method, and therefore the training set,
is stochastic the performance of the model is averaged across six training sets. The mean
of each of the six runs are indicated by points, with shading to represent the standard
deviation. Figure published in [25].

The main drawback of this technique is the added computation time at testing. While
the inputs could be processed in parallel before combining the results, this still requires
more computational resources.

3.2 Data Augmentation in NLP

In this section I review previous work on data augmentation for NLP. I describe the work
that other researchers have done on this problem and show where these previous approaches
are inadequate (and briefly how my approach removes these limitations).

Like the discussion in the previous section, I state what I consider to be the ELAD
of each technique. While the ELADs in the CV augmentation methods are well-defined,
the ELADs of the NLP augmentation methods tend to be more subjective and debatable.
For example, the ELAD of backtranslation could depend either on some measure of dis-
tance between the pivot and the original language or on the sampling temperature of the
translation models, or both.

3.2.1 Synonym Replacement

Synonym replacement is likely the most obvious augmentation technique for NLP. It does
not have a clear analogue in CV augmentation techniques; while text is naturally broken
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down as a series of words, the only universal segmentation of images is at the pixel level.
Unlike words, individual pixels of an image contain very little information. In the literature,
synonyms are determined in either of two ways: by a predefined thesaurus or by a word
embedding similarity measure.

The ELAD of synonym replacement can be divided into two subdistances: the number
of words to be replaced in each example, and the distance between the original word and
its replacement synonym. The latter depends on the method of determining the synonyms.

Using WordNet Synsets

Zhang and LeCun [15] generate synonyms using WordNet synsets (see Section 2.4.5). For
each training example, they draw both the number of words to be replaced and the index
of the replacement word from two independent geometric distributions with parameter 0.5.
The authors do not discuss how either parameter was selected, whether it be through a
systematic search or an arbitrary choice. Augmentation-related experiments are run on
four classification datasets using two different sized CNNs. These are character level CNNs,
so no embeddings are used. Across the four datasets the model without augmentation
achieves an accuracy as low as 70.45% and as high as 98.27%; augmentation increases the
accuracy in all cases by between 0.13% and 0.65%.

Wei and Zou [38] also generate synonyms using WordNet, and test the technique’s
effect on the performance of an RNN and CNN. They average their performance across
five datasets for fixed dataset sizes of 500, 200, and 5000. Augmentation via synonym
replacement offers a 2% performance gain when 500 training examples are used. This gain
diminishes as the training set becomes larger: it is limited to 0.5% for a training set size
of 5000.

Using Cosine Similarity

Synonym replacement using cosine similarity of Word2Vec embeddings (see Section 2.4.2)
is studied in [36]. The authors generate augmented data with the same parameters as [15],
where each word’s list of synonyms is given by the words with which it has cosine similarity
of no less than 0.25. Words with higher cosine similarities are assigned higher probabilities
of being selected. When the classification model accepts Word2Vec embeddings as input,
it is advantageous to use cosine similarity to determine synonyms since the synonym is
certain to be in the model’s vocabulary. The authors do not test the performance of the
models without augmentation, so the effectiveness of this technique cannot be determined.
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That being said, this approach can be expected to offer similar performance boosts to those
offered by WordNet synsets.

In this approach to synonym replacement, the distance between the original word and
its replacement is given by their cosine similarity.

3.2.2 Backtranslation

Backtranslation, wherein text is translated to another language (the “pivot”) and back to
the original language, has been used to improve translation and to evaluate paraphrasing
models. The concept of using it to augment text data is introduced and evaluated in [13].
The authors, using four state-of-the-art translation models trained on publicly available
datasets, use both French and German as pivot languages. The promising results of this
approach on the SQuAD dataset are shown in Table 3.1.

Training Set (Original:French:German) | EM | F1
(1:0:0) 73.6 | 82.7
(1:1:0) 745 | 83.2
(1:1:1) 748 | 83.4
(1:2:1) 74.3 | 83.1
(2:2:1) 74.9 | 83.6
(2:1:1) 75.0 | 83.6
(3:1:1) 75.1 | 83.8
(4:1:1) 75.0 | 83.6
(5:1:1) 74.9 | 83.5

Table 3.1: Exact match and F1 score of the model on the development set when trained
on the training set given by each ratio of original to augmented data. Note that a ratio of
(1:0:0) corresponds to zero data augmentation, and so each instance of data augmentation
improves performance under both metrics.

The authors of [11] perform backtranslation using a pair of English-French transla-
tion models, one for each direction. The translation models are trained on the WMT ’14
English-French corpus!, a massive benchmark dataset consisting of human-translated sen-
tence pairs. Both translation models and their checkpoints are made publicly available?.
They propose a semi-supervised framework, where the total loss function is the sum of

https://www.statmt.org/wmt14/translation-task.html
?https://github.com/google-research/uda
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two loss functions. The first is a standard supervised learning loss function, and the sec-
ond is “Unsupervised Consistency Loss”, a distance measure between the two outputs of
the model for an unlabeled example and the same example, backtranslated. The semi-
supervised framework itself is orthogonal to the purpose of this paper, but it should be
noted that the authors achieve state of the art results while relying on backtranslation.

While the authors of [13] always select the most likely translation, the authors of
[11] randomly sample from the list of possible translations. These lists are generated by
random sampling with a tunable temperature parameter. They suggest that the diversity
that this stochastic approach introduces is an important factor in the large performance
improvements achieved in their experiments.

The ELAD of backtranslation could be defined by some measure of the distance between
the original and the pivot language. When backtranslations are generated through random
sampling, the ELAD could instead be defined as a function of the sampling temperature
parameter.

3.2.3 Contextual Augmentation

Contextual augmentation, the NLP analogue to inpainting in CV (described in Section
3.1.3), uses word prediction models to replace randomly selected words. The word predic-
tion model can be trained on the same training set, on another, or both. The framework,
as presented in [16, 10], is similar to synonym replacement (see Section 3.2.1), where the
words to be replaced and the replacement words are both chosen by some probability dis-
tribution. In this case, however, the words are selected from the k& most likely words, as
determined by the word prediction model (see Section 2.4.3).

This approach also differs in that it does not offer synonyms, instead suggesting words
that have paradigmatic relations with the original word. Two words are said to have
paradigmatic relations if they can be substituted for one another while preserving the
grammatical correctness of the sentence in which they appear. Replacement with any word
that shares paradigmatic relations could drastically alter the meaning of the sentence, thus
rendering the augmentation technique unsafe. For example, “best” and “worst” share
paradigmatic relations, but the sentences “Hitchcock at his best” and “Hitchcock at his
worst” would not share the same label in a movie review sentiment classification dataset.
This problem is mitigated by a “label-conditional architecture”, wherein the label is built
into the input of the word prediction model during both training and inference. In this
architecture the training loss is minimized when the model suggests words that do not
contradict the label.
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The words suggested by a label-conditional model do not necessarily preserve the mean-
ing of the sentence, but compared to a label-independent model they have an increased
likelihood of preserving the label. For example, Figure 3.3 shows that “the actors are
fantastic” may be changed to “the mowies are fantastic”. They do not have the same
meaning, but both are positive reviews.

Like in synonym replacement, the ELAD of contextual augmentation can be divided
into two values: the number of words to be replaced in each example and the index of the
replacement word. The index is given by the output of the contextual augmentation model,
sorted by decreasing probability. Note that other definitions of the ELAD for contextual
augmentation are possible. For example, the ELAD could also be the number of words
being replaced and the inverse of each substitute word’s assigned probability.

The following two label-conditional Contextual Augmentation techniques have both
had promising results.

Using Bidirectional LSTM

A bidirectional LSTM is used for word prediction in [16]. This model is pretrained on
unlabeled WikiText-103 corpus [20], then the architecture is made to be label-conditional
and is trained on the task’s training set. The word prediction model outputs a probability
distribution over the candidate replacement words. They sample replacement words from
this probability distribution after transforming it with a temperature parameter 7, where
the distribution becomes uniform as 7 — 0 and the highest probability is always selected
as 7 — oo. The authors replace each word with probability ¢ (i.e., if a sample from a
Bernoulli distribution with parameter ¢ is true). Both the temperature 7 and Bernoulli
parameter ¢ are tuned via grid search.

Performance of a CNN and a bidirectional LSTM classifier with no augmentation,
label-independent augmentation, and label-dependent augmentation is tested on the SST-
2, SST-5, Subj, and three other benchmark datasets. Unsurprisingly, the performance
is improved by the label-independent augmentation and further improved by the label-
dependent augmentation. Averaged across the 6 datasets, the label-dependent augmenta-
tion raises the accuracy of the CNN from 77.53% to 78.83% and the accuracy of the RNN
from 77.43% to 77.83%.
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Figure 3.3: The label-conditional BERT architecture used for word prediction in [10].
The label is built into the input by replacing the segmentation embeddings with label
embeddings. Figure published in [10].

Using BERT

Pretrained BERT (see Section 2.2.4) is used for word prediction in [10]. Adhering to
the transfer learning paradigm, the model is fine-tuned on each task’s training set with
the architecture and input design shown in Figure 3.3. Note that this approach differs
from the bidirectional LSTM in that the label is built directly into the input, rather than
concatenated to a middle layer of the model.

3.2.4 Instance Crossover

Introduced in [19], instance crossover consists of splitting tokenized sequences into halves,
then randomly sampling one first and one second half whose labels agree, and concate-
nating. The authors use ensembles of linear classifiers to predict the sentiment of Spanish
language tweets. The classifiers use either Bag of Characters (BoC), Bag of Words (BoW),
or pretrained embeddings as features for the classifier. All of these features are inde-
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pendent of word order, and therefore are less sensitive to the obvious pitfall of instance
crossover: the high likelihood of incoherent training examples due to the discontinuity at
the concatenation boundary.

They focus their data augmentation analysis on a dataset with 1126 training exam-
ples with sentiment labeled as positive, neutral, negative, or none. Since the dataset is
imbalanced the classification metric is the macro-averaged Fl-score (M-F1) (the mean
per-class Fl-score). They tune the augmentation ratio (post-augmentation dataset size to
pre-augmentation dataset size) of instance crossover, and find that the accuracy improves
for all tested values (4, 8, 12, 16, 20). During ablation testing they find that the full system
achieves an accuracy and M-F1 of 64.37% and 52.77%, and that without instance crossover
the accuracy remains the same but the M-F1 degrades to 47.57%.

M-F'1 is more sensitive to minority classes, so these results may imply that instance
crossover offers strong accuracy boosts when using especially small training sets or training
sets with very few examples in one or more classes.

Note that this is the NLP equivalent of horizontal concatenation, one of the image
mixing CV augmentation techniques described in Section 3.1.2. Instance crossover likely
does not help (or could even harm) the performance of NLP neural models since they are
dependent upon word order, although the success of image mixing in CV may suggest
otherwise.

3.3 Summary

In this chapter, I described the previous work on data augmentation for NLP and CV
tasks. I showed that several CV augmentation methods have analogues in NLP. I dis-
cussed the limitations of the past studies and summarized the performance of the studied
augmentation methods.

In the next chapter, I present my solution and show how it addresses these limitations.
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Chapter 4

Study Methodology

In this chapter, I provide an explanation of the methods and techniques that I use to
analyze the performance of data augmentation in text classification tasks.

Each experiment will consist of an augmentation technique being used for an appli-
cation method, to assist a classification model’s performance on a dataset. For example,
backtranslation, used to rebalance an imbalanced dataset, will assist an RNN’s perfor-
mance on the Subj dataset. Note that when referring to a dataset in this manner I do not
necessarily mean the entire dataset. For example, when the application method is dataset
balancing, the dataset will be made imbalanced by excluding a portion of the data. Fach of
the four emphasized terms will be defined and explained in its own section of this chapter.

4.1 Augmentation Distances

Inherent to every augmentation technique is the distance that the augmented training set
deviates from the original training set. I divide this distance into two subdistances: the
ratio of augmented data to original data and the distance that each augmented example
deviates from its original form. I call the former the augmentation ratio and the latter the
example-level augmentation distance (ELAD). The ELAD of word-replacement techniques
such as synonym replacement and contextual augmentation can be further divided into
the number of words to replace and the ‘distance’ between the original and the replace-
ment words (according to some similarity measure given by the replacement word lookup
method).
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Recognizing that the power of data augmentation lies in the diversity that it intro-
duces the training set, I make both subdistances stochastic rather than deterministic. The
augmentation distance for each of the three techniques that will be tested is determined
by a parameter p, where p is a probability. This parameter governs a geometric distribu-
tion, and the augmentation distance increases as p decreases. This parameter governs two
subdistances: the ratio of original data to augmented data and the distance between each
augmented example and its original form.

4.2 Augmentation Techniques

The following three data augmentation techniques will be studied. In each case, the value
of p will be optimized via grid search on a validation set. In order to minimize the time
complexity of augmentation during training, I create the augmentation data before model
training.

4.2.1 POS-Informed Synonym Replacement

I propose POS-informed synonym replacement, an improvement upon the synonym re-
placement methods proposed in previous work. This method decreases the probability of
erroneous replacement by placing an additional constraint on each word’s synonyms.

Similar to [45], lists of candidate synonyms will be generated using WordNet. WordNet,
synsets are unordered but the same word can appear in multiple synsets, so I sort these
lists by number of appearances in synsets, in decreasing order with ties broken randomly.
The procedure that generates the list of candidate synonyms is given in Algorithm 1.

Despite its centrality to a word’s function within a given sentence, the implementations
of synonym replacement in the related work are both agnostic to POS. I will utilize Word-
Net’s POS-specific synsets by constraining the candidate list of synonyms by the word’s
POS, as inferred by a Natural Language Toolkit (NLTK) POS tagger [2]. T will use NLTK’s
default POS tagger, the Greedy Average Perceptron tagger. Consider the following sen-
tence: “What vowel do all Esperanto nouns end in ?”7. When finding POS independent
synonyms for “end”, WordNet returns one invalid and three valid suggestions: “goal”,
“finish”, “cease”, and “terminate”. However, the NLTK POS tagger recognizes that in
this case “end” is functioning as a verb. When this constraint is passed into the synonym
search function, “goal” is correctly eliminated from the list of synonyms.
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Algorithm 1: Synonym data creation algorithm. POS tags are determined by
the NLTK python library. Synonyms are determined by WordNet synsets.

1 function get_synonym_dict (D);
Input : D, a list of pairs: tokenized examples and their labels
Output: D', a list of triplets: the augmentation dictionaries and the original
example-label pairs
2 D' < empty list
3 for example, label pair in D do

4 d < empty dictionary

5 for token and its index in example do

6 if token is a word then

7 ‘ d[index] < list of synonyms of the word with agreeing POS tags
8 end

9 end

10 Append example, label, d to D’
11 end
12 return D’

4.2.2 Contextual Augmentation with BERT

Augmentation with BERT, as proposed in [10], will be implemented. First, the pretrained
BERT model is fine-tuned on the training set’s label-dependent masked language modeling
problem. Then the algorithm loops through every token of every example, and if the token
is a word it is masked out. For each such token, the ten words to which the fine-tuned
BERT assigns the highest probability are saved. This algorithm is given in greater detail
in Algorithm 2.

4.2.3 Backtranslation

Backtranslation is performed using the Fairseq WMT’19 English-German models [24].
Both models are randomly sampled with a temperature parameter. I do not tune this
parameter and instead use the same value as [11], a related study of backtranslation dis-
cussed in Section 3.2.2. 1 create and save 25 backtranslations for each training example
using the procedure outlined in Algorithm 3.

It is common for the same translation to appear multiple times, and I claim that the
ELAD is inversely proportional to the number of times a backtranslated example appears.
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Algorithm 2: Contextual augmentation data creation algorithm. “D’s Masked
Language Model problem” refers to the word-prediction problem on which BERT
is pretrained. BERT’s tokenizer often breaks words into root words, suffixes, and
prefixes. To maintain a high probability of the candidate tokens being consistent
with its surrounding tokens, I only mask out entire words, and only accept words
as candidate replacement tokens.

1 function get_context_dict (D, n, k);
Input : D, a list of pairs: tokenized examples and their labels
n, the number of fine-tuning epochs
k, the number of candidate replacement tokens to collect for each word
Output: D', a list of triplets: the augmentation dictionaries and the original
example-label pairs
2 Load the pretrained BERT model
3 Replace BERT segmentation embeddings with label embeddings
4 For n epochs train BERT on D’s masked language model problem
5 D'« empty list
6 for example, label pair in D do
7 d < empty dictionary

8 for token and its index in example do

9 if token is a word then

10 Pass the example, with the current token masked out, into BERT

11 d[index] < list of the k words (excluding prefixes and suffixes) to which

BERT assigns the highest probability of being the masked token,
ordered by decreasing probability

12 end

13 end

14 Append example, label, d to D’
15 end

16 return D’
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This forms an ELAD since backtranslated examples that are closer to the original example’s
meaning can be expected to be produced by the translation models more often. Varying
the temperature parameter of the translation models would likely be a more effective
and accurate ELAD, but generating backtranslated examples in advance of training yields
significant time savings.

Algorithm 3: Backtranslation data augmentation creation algorithm.

1 function get_translation_dict (D, T, k);
Input : D, a list of pairs: tokenized examples and their labels
T, the translation model sampling temperature
k, a square number, the number of replacement examples to create for
each example
Output: D', a list of triplets: the augmentation lists and the original
example-label pairs

2 Load pretrained English to German and German to English translation models
3 D' <+ empty list
a for example, label pair in D do
5 L, + Vk outputs of the English to German translation model with example as
input and sampling temperature T’
6 Lo < empty list
7 for German example in L, do
8 Lo < Lo+ list of vk outputs of the German to English translation model
with German example as input and sampling temperature T
9 end
10 Append example, label, Ly to D’

11 end
12 return D’

4.3 Classification Models

I will test the augmentation methods with an RNN and with BERT. The former being
randomly initialized and one of the most common NLP models and the latter being a
foundational model in modern NLP, testing with these will give a sense of how widely
these augmentation methods can be used.
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4.3.1 RNN

Despite the fact that RNN-based models are generally outperformed by BERT, they re-
main popular because they are smaller and less computationally expensive. I will use a
bidirectional LSTM initialized with randomly initialized weights, and pretrained Word2Vec
embeddings with a predefined out-of-vocabulary vector.

4.3.2 BERT

These methods will also be tested on BERT to see if they are able improve the performance
of the foundational model of modern NLP. An augmentation’s good performance on an
RNN does not necessary imply good performance on BERT, since there is a chance that
the performance boosts offered by these techniques are already “baked in” to a pretrained
BERT model. As discussed in Section 2.5.2, pretrained language models require less train-
ing data than randomly initialized models. Therefore it is possible that BERT will benefit
from augmentation significantly less than the RNN will, or even that the inherent noise of
the augmentation techniques will harm the model’s performance.

XLNet, Google Brain’s successor to BERT, outperformed BERT on a variety of NLP
tasks and datasets, as shown in its introductory paper [12]. T test these augmentation
methods using BERT instead of XLNet for two reasons. First, its smaller size will allow
more experiments with more random seeds to be conducted in the same amount of time.
Second, the effect that these augmentation techniques have on BERT can be assumed to
be strongly predictive of their effects on future NLP models. This is because BERT is
considered the foundational model for transfer learning in NLP.

In order to avoid catastrophic forgetting, I will use a low learning rate and only 3-
4 training epochs, as suggested in the BERT paper [8] and validated in [31]. To my
knowledge, this is the first time that any of the listed data augmentation techniques have
been used to train BERT.

4.4 Datasets

Experiments will use SST, Subj, and SFU, the classification datasets whose labels are
sentiment, subjectivity, and constructiveness, respectively. See Table 4.1 for a statistical
summary of these datasets, and Section 2.3 for a brief explanation of each of them.
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Testing on these benchmarks will be a strong indication of the efficacy of the various
proposed methods and how they are likely to behave in NLP more broadly.

Dataset lmean Ntrain Ndevelopment Ntest
SST 19 6,920 872 1,821
Subj | 24 | 10,000 ; -
SFU | 62 | 1,043 ; ;

Table 4.1: The mean number of words in each example, and the number of examples in
each of the datasets’ subsets.

4.5 Application Methods

This section explains the two ways in which augmentation will be applied. Together they
allow for a study of how the effects of augmentation change with respect to both the size
and the degree of imbalance in a dataset.

4.5.1 General Augmentation

Each augmentation method will be tested on varying percentages of each dataset. These
results will be used to construct learning curves that will show how the performance with
and without augmentation varies with respect to dataset size. One can also extrapolate
from a learning curve, and estimate the dataset size at which the performance boost be-
comes negligible, if such a point exists.

4.5.2 Augmentation for Dataset Balancing
All datasets are almost exactly balanced, so they will be made imbalanced by only in-

cluding a percentage of one label’s examples. Artificial rebalancing via each augmentation
technique will then be compared to oversampling and undersampling.

4.6 Augmentation Algorithms

While Algorithms 1, 2, and 3 generate the augmentation candidates, Algorithms 4 and 5
integrate those candidates into the data during model training. Both algorithms accept
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as input an original training example, its augmentation candidates, and a probability p.
Depending on the result of sampling from a probability distribution governed by p, either
the original example or an augmented example is returned. This section explains the two
algorithms and justifies certain differences between these procedures and those found in
the related work.

4.6.1 Synonym Replacement and Contextual Augmentation

Algorithm 4 is used for synonym replacement and contextual augmentation. This algorithm
draws both the number of words to be replaced and the index of each replacement word
from independent geometric distributions with parameter p.

This implementation of synonym replacement is in keeping with [15], a related work
summarized in Section 3.2.1.

This approach to contextual augmentation differs from the paper in which it is in-
troduced, which samples replacement words from the probability distribution output by
the model [10]. My approach uses the output probability distribution to order (but not
select) the replacement words. This is to avoid the memory costs of saving all candidate
replacement words and their probabilities. Alternatively, the k highest candidate replace-
ment words could be saved along with a transformed version of the original probability
distribution. However, I reason that the distortion of the probability distribution due to
this transformation would be too large to justify the extra memory costs. Further, my
approach of sampling from an ordered list via a geometric parameter allows a single pa-
rameter to be used to govern both the number of words to be replaced and the selection
of the replacement words.

4.6.2 Backtranslation

Algorithm 5 is used for augmentation via backtranslation. If the Bernoulli distribution
with parameter p returns True, then a backtranslated example is randomly selected (with
each example having an equally likely chance of being selected). This algorithm reflects
two ways in which backtranslation is different than the other two augmentation methods.
First, the augmentation lists contain entire examples rather than candidate replacement
words for specific indices. Second, the augmentation list is unordered.

This backtranslation procedure is the same as that of [11], which is described in Section
3.2.2.
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Algorithm 4: Token-level data augmentation algorithm.

1
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function augment (s, d, p);

Input : s, a dataset example, tokenized

d, a dictionary mapping example indices to an ordered list of candidate

replacement tokens
p, a geometric parameter
Output: s, the augmented example
n < sample from the geometric distribution governed by p
n < min(n,len(d))
s s
if n > 0 then
indices <— randomly sample n keys from d without replacement
for i in indices do
j < sample from the geometric distribution governed by p
J « min(j,len(d[i]))
s'[i] <= d[i][J]
end

end
return s’

Algorithm 5: Example-level data augmentation algorithm.

1
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function augment (s, L, p);

Input : s, a dataset example, tokenized
L, a list of candidate replacement examples
p, a Bernoulli parameter
Output: ', the augmented example
augment < sample from Bernoulli distribution with parameter p
if augment = True then
‘ s’ «— random choice from L
end
else
‘ s+ s
end
return s
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4.7 Summary

In this chapter, I described my proposed framework for conducting an analysis of data
augmentation in NLP.

In the next chapter, I provide more detail on my experimental procedure. I also show
my results, explaining where my methods succeeded and where they fell short.
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Chapter 5

Evaluation of Data Augmentation for
NLP

In this chapter, I evaluate three data augmentation techniques, following the methodology
described in the previous chapter. I show how successful these techniques are and attempt
to explain the variance in their performance. I discuss the results with a focus on the
questions described in Section 5.1.

5.1 Research Questions

As discussed in Chapter 1, data augmentation has proven results in CV, yet is relatively
underused in NLP. Both fields use models that require large and fairly balanced training
sets, but it is rare for both of these conditions to be present in practice.

The data augmentation methods that will be studied are not original to this thesis (see
Section 3.2). However, by addressing the three questions described in this section, I will
develop a deeper understanding of how these methods can play a role in addressing issues
that frequently arise in NLP. I will also develop an understanding of why these methods
do or do not work in certain settings.

The first question is whether NLP data augmentation techniques can reliably yield
increases in models’ accuracy. Relatedly, I will investigate the relationship between dataset
size and the impact of data augmentation.

Next I compare sampling methods to data augmentation in their ability to rebalance
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imbalanced training sets. This tests whether the data augmentation techniques can out-
perform either undersampling or oversampling, or both.

Third, I identify the relationship between the optimal augmentation distance (defined
in Section 4.1) and two characteristics of a dataset: its size and its degree of imbalance.

5.2 Experimental Setup

In this section I explain and justify the experimental methodology. I explain how consistent
the experimental setups are across all datasets, classification models, and augmentation
methods. I explain and justify the exceptions to this consistency, most of which are either
to accommodate BERT’s large size and resultant increased training time or the memory
requirements of BERT contextual augmentation.

5.2.1 Model Hyperparameter Tuning

Since the augmentation methods are the focus of this study, I tune only the learning rate
and the number of training epochs. The other RNN parameters are set to those used in
the related work; the other BERT parameters are set to the values suggested in the BERT
paper [5].

I find the optimal learning rate for each of the six dataset /classification model combina-
tions. This learning rate is found by training on the entire training set with no augmenta-
tion, measuring performance by the average of 30 trials’ validation set accuracy. Note that
I assume that the optimal learning rate does not change when augmentation is introduced
or as the dataset is made artificially smaller or imbalanced.

RNN

The optimal number of epochs for the RNN and the optimal augmentation parameters are
found simultaneously. See Figure 5.1a for an example of the graphs used to select these two
parameters when the RNN is the classification model. The augmentation parameter p is
selected first (as described in Section 5.2.2) followed by its corresponding optimal number
of epochs. Once p is selected, the number of epochs that yields the highest accuracy and
is fairly robust (i.e., not a spike at a single epoch) is chosen.
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I conducted preliminary tests with 500 training epochs and p = 0.5 for each augmen-
tation method on the Subj dataset (the largest of the three datasets). In each case the
highest achieved accuracy occurred in the first 100 training epochs. This does not defini-
tively imply that the optimal number of epochs will be less than or equal to 100 for every
experiment in this thesis, but I reason that they indicate that any accuracy increases from
further training will be insignificant. Considering this finding and the large number of
experiments in this thesis, I limited the number of epochs to 100 for the sake of time.

BERT

Like in the case of the RNN, I find that a larger learning rate is beneficial when training
BERT on the SFU dataset. The BERT paper [3] suggests limiting the number of training
epochs to 3 or 4 in order to avoid catastrophic forgetting (as described in Section 2.5.2). 1
search over those two values and find that 3 epochs are optimal for the SFU dataset, and
4 is optimal for SST and Subj. See Figure 5.1b for an example of the graphs that are used
to select the augmentation parameter p when BERT is the classification model.

For BERT training [ implemented a learning rate scheduler that is linear with warmup.
This was chosen after tests showed that the corresponding model outperforms one trained
with a constant learning rate. Considering the pattern in Figure 5.1b wherein the accuracy
is almost always monotonically increasing with respect to the number of training epochs,
I also tested a greater number of epochs and found that the optimal number in each case
was in fact either 3 or 4. Because the learning rate depends on both the current epoch
and the maximum number of epochs, the maximum number of epochs should be chosen
prior to augmentation parameter tuning. (This is unlike the RNN wherein the number
of epochs and the augmentation parameter can be selected simultaneously.) I therefore
fix the maximum number of epochs to the values given in the previous paragraph before
tuning p.

5.2.2 Augmentation Distance and Augmentation Parameter Tun-
ing

I conduct a grid search over a range of possible values for p, the geometric parameter that
governs augmentation distance. When the RNN is the classification model I search over
0.1,0.2,...,0.9. When BERT is the classification model I make the search roughly half as
granular, searching only the odd decimal valued numbers in this list. This adjustment is
made in order to accommodate BERT’s larger size and resultant increased training time.
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As can be seen in Figure 5.1, even after averaging across 30 trials there is still consid-
erable randomness in the RNN training, due to the stochastic nature of both the augmen-
tation techniques and mini-batch gradient descent. The augmentation parameter that has
a high accuracy over a relatively large number of epochs is selected. For example, in the
shown graph p = 0.3 is chosen since its high accuracy is fairly consistent with respect to the
number of training epochs, despite the fact that it never reaches the validation accuracy
achieved at one point by p = 0.1.

5.2.3 Dataset Rebalancing

I compare each augmentation technique’s ability to artificially rebalance datasets to over-
sampling and undersampling. For each percentage of a label’s examples that are kept, I
sample that percentage x separate times, once for each label. Thus there are 2x different
training sets, and the results of each of the 2z corresponding models are averaged. In
the case of synonym replacement and backtranslation x = 30 and with contextual aug-

mentation x = 10. This increases the results’ robustness with respect to the data that is
withheld.

5.2.4 General Augmentation

I compare performance with each augmentation technique to performance without augmen-
tation. I conduct these tests on various percentages of the datasets. This allows learning
curves to be created, in order to show how the effectiveness of data augmentation changes
as datasets become larger. Each percentage is sampled = separate times, with x = 30 for
synonym replacement and backtranslation, and x = 10 for contextual augmentation.

5.2.5 Time-Saving Adjustments to the Analysis

Several adjustments in the experimental procedure are made. These are meant to ac-
commodate certain differences in augmentation techniques, and classification models and
datasets.

Classification Model-Specific Adjustments

Because BERT is significantly larger than the RNN and therefore takes longer to train, I
vary percentages by 20% rather than 10% in both rebalancing and general augmentation.
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Figure 5.1: Examples of the graphs used to find the optimal number of training epochs
and augmentation parameter p. Both images show experiments with Subj imbalanced
to the point of only 20% of one label’s examples remaining, with augmentation through
backtranslation. The highest achieved accuracy of each parameter setting is marked by a

circle.
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Dataset-Specific Adjustments

Zero-padding and truncation are used to ensure that all examples in each dataset are of
equal length. The examples in the SFU dataset are generally longer than those in the SST
and Subj datasets (see Table 4.1). With this in mind, all SFU examples are made to be
128 tokens long and all SST and Subj examples are made to be 25 tokens long. The time
costs associated with greater input lengths for SFU are acceptable since that dataset is
less than a fifth the size of the other two datasets (as measured by number of training
examples).

Because SFU has only 1043 examples, the effects of adjusting the dataset size by 10%
are far less pronounced on the SFU dataset than on the others. Therefore in both dataset
rebalancing and general augmentation I vary percentages by 20%, rather than 10%.

Augmentation-Specific Adjustments

Contextual augmentation with BERT has greater time and space complexity than back-
translation and synonym replacement. The augmentation model and dataset must be
trained specifically for every setting: each combination of dataset, level of imbalance or
percentage of dataset remaining, and crossvalidation fold or random seed. This is because
the contextual augmentation model must be trained on the entire training set before it
is used to infer replacement words. This is not the case for the other two augmentation
methods. Backtranslation of any given example depends only on the example and the
chosen translation models; candidate synonym creation depends only on the example and
on WordNet. To accommodate the increased time and space complexity of contextual aug-
mentation, experimental results with this technique are averaged across 10, rather than
30, trials.

5.2.6 Validation and Testing Procedure

Parameter tuning is conducted on SST’s established development set; final testing is con-
ducted on SST’s test set. Subj and SFU do not have any official train/development /test
splits, so 10-fold cross validation is used both to tune the parameters and to report the
test accuracy.
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5.3 Experimental Results

This section describes how the dataset size and degree of imbalance affect two values: the
accuracy boost offered by augmentation and the optimal augmentation distance.

5.3.1 Augmentation Performance

This subsection show how augmentation accuracy boosts (or lack thereof) change with re-
spect to dataset size and degree of imbalance. Each of the four combinations of application
methods and the classification models is discussed separately.

Dataset Balancing, Classification with RNN

Figure 5.2 shows the results of dataset balancing when the RNN is the classification model.
All three augmentation techniques generally outperform undersampling and oversampling
with both SST and Subj. There are two exceptions to this: when the minority percentage
is 80% or higher and when synonym replacement’s performance is roughly equal to that
of undersampling. The near convergence of all five approaches is likely because their
performance differences are muted by the fact that the rebalancing approach simply affects
a smaller percentage of the data. When the minority percentage is 90% only 5% of the
total data is either ignored (undersampling), duplicated (oversampling), or augmented,;
when the minority percentage is 20% the rebalancing technique governs 40% of the total
data.

On Subj, contextual augmentation and backtranslation both outperform undersampling
and oversampling by nearly 1% when the minority percentage is 50% or less. This accuracy
improvement is especially notable considering the accuracy is roughly 90% since it is more
difficult to increase the accuracy of highly accurate models.

In order to clearly show the results on the largest of the three datasets, the results of
classifying Subj are also given in Table 5.1.

General Augmentation, Classification with RNN

In Figure 5.3 I see that all three augmentation techniques boost performance on the Subj
dataset when more than 10% of the dataset is used. Synonym replacement’s accuracy im-
provements are modest, while backtranslation and contextual augmentation offer accuracy
improvements of nearly 1.0%.
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Imb Pct SR BT CA Over Under
10 88.42 +1.32 | 89.41 + 1.25 | 89.28 4+ 1.11 | 87.94 £+ 1.47 | 88.50 4+ 1.68
20 89.68 £ 1.34 | 90.83 = 1.11 | 90.96 £ 1.02 | 89.25 4 1.41 | 89.78 4+ 1.02
30 90.41 £1.28 | 91.56 = 1.14 | 91.35 £ 0.97 | 90.08 4 1.32 | 90.45 4+ 0.96
40 91.46 +£0.90 | 91.86 = 0.82 | 91.79 + 1.16 | 90.84 & 1.03 | 90.92 + 1.09
50 91.74 &+ 1.05 | 91.89 £ 0.81 | 92.00 £+ 0.91 | 91.33 £ 1.32 | 91.41 4+ 0.90
60 92.01 +£0.96 | 91.98 & 0.81 | 92.14 + 0.76 | 91.76 & 1.03 | 91.69 + 0.84
70 92.17 £ 0.83 | 92.17 £ 0.85 | 92.23 £ 0.88 | 92.08 £ 0.89 | 91.87 £ 0.92
80 92.32 £ 0.87 | 92.41 £+ 0.83 | 92.12 4+ 0.82 | 92.26 4+ 0.95 | 92.05 + 0.94
90 92.54 + 0.72 | 92.18 £ 1.08 | 91.98 + 1.03 | 92.38 £ 0.87 | 92.25 + 0.85

Table 5.1: Ten-fold cross validation accuracy of dataset rebalancing on the Subj dataset
when the RNN is the classification model. All values are percentages. Imb Pct: percentage
of minority label examples remaining in the training set, SR: synonym replacement, BT:
backtranslation, CA: contextual augmentation, Over: oversampling, Under: undersam-

pling.

Backtranslation on SST consistently yields accuracy increases of roughly 1.5%. Back-
translation harms the performance in the majority of tested percentages of SFU, although
all experiments on SF'U have a much larger standard deviation.

In order to clearly show the results on the largest of the three datasets, the results of
classifying Subj are also given in Table 5.2.

Dataset Balancing, Classification with BERT

As can be seen in Figure 5.4, all methods of dataset balancing appear to converge as
the dataset becomes more balanced. Backtranslation has the best performance of the
techniques. Its accuracy tends to be equal to or greater than undersampling. Synonym
replacement and contextual augmentation harm performance with few exceptions. Back-
translation’s accuracy boosts of nearly 1% in the case of Subj are important considering
that the accuracy is already quite high at around 95%.

General Augmentation, Classification with BERT

Figure 5.5 appears to show that each augmentation technique is as likely to harm perfor-
mance as it is to help. Synonym replacement is the best performing, as it consistently
provides accuracy improvements of roughly 0.2%.
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Figure 5.2: Effect of dataset rebalancing techniques on the classification accuracy of the
RNN for various levels of imbalance for the SST, Subj, and SFU datasets. Take, for
example, when the percentage of minority label examples left in the training set is 40%.
In this case a new training set is made by randomly sampling 40% of one label’s examples
and retaining all of the other label’s examples. Each point represents the average of 60
trials (30 for each of the two labels), except the contextual augmentation points, which are
averaged across 20 trials (10 for each of the two labels). The shaded area around each line
is the standard deviation of the corresponding trials.
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Pct SR BT CA No

10 | 87.83 £ 2.18 | 87.95 £ 2.12 | 86.79 £+ 4.27 | 88.37 £ 1.16
20 | 89.81 £0.80 | 89.65 + 1.23 | 90.42 £ 0.98 | 89.60 + 1.17
30 | 90.27 £ 1.18 | 90.78 £ 1.03 | 91.15 £ 1.08 | 90.38 £ 0.99
40 | 91.05 £ 0.84 | 91.23 £ 1.05 | 91.23 £ 0.96 | 90.77 £ 1.13
50 | 91.53 £1.06 | 91.63 £ 1.08 | 91.57 £ 0.87 | 91.21 + 1.07
60 | 91.90 £ 0.88 | 92.09 £ 0.83 | 91.95 £ 0.84 | 91.49 £ 1.18
70 | 91.91 £ 0.83 | 92.23 £+ 0.96 | 92.45 £ 0.67 | 91.89 £ 1.04
80 | 92.39 £0.84 | 92.37 £ 0.89 | 92.38 £ 0.97 | 92.16 £ 0.93
90 | 92.46 £ 0.83 | 92.60 = 0.96 | 92.40 £ 0.69 | 92.21 = 1.00
100 | 92.65 £ 0.82 | 92.76 £ 0.77 | 92.48 £ 1.03 | 92.38 £ 0.85

Table 5.2: Ten-fold cross validation accuracy of general augmentation on the Subj dataset
when the RNN is the classification model. All values are percentages. Pct: percentage of
training examples used, SR: synonym replacement, BT: backtranslation, CA: contextual
augmentation, No: no augmentation.

5.3.2 Optimal Augmentation Distance

As discussed in Section 4.1, the optimal p values can be used to understand how the optimal
augmentation distance changes with respect to the dataset size and degree of imbalance.
The RNN is trained for up to 100 epochs while BERT is trained only for three or four.
Therefore the impact of varying the augmentation parameter p will be noticeably more
consistent and indicative of a general pattern when the RNN is the classification model.
For this reason I analyze the optimal p values only for experiments where the text is

classified by the RNN.

Augmentation parameters for different augmentation techniques should not be com-
pared with one another: one cannot say that p = 0.5 represents the same distance from the
original data regardless of the augmentation method. However, I can study and compare
the trends in the optimal augmentation distance across the different techniques. Observa-
tions involving the optimal augmentation distances should be qualified by the fact that, as
discussed in Section 5.2.2, augmentation parameter tuning used subjective human decision
making rather than a strict rules-based approach.

Figures 5.6 and 5.7 show how the optimal distance changes with respect to two variables
of interest: degree of imbalance and dataset size.
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Figure 5.3: Learning curves showing the effect of the augmentation techniques on the
classification accuracy of the RNN on the SST, Subj, and SFU datasets. For example, when
the percentage of training set is 40%, a new training set is made by randomly sampling
40% of each label’s examples. Each point represents the average of 30 trials, except the
contextual augmentation points, which are averaged across 10 trials. The shaded area
around each line is the standard deviation of the corresponding trials.

Dataset Balancing

In Figure 5.6 it can be seen that the optimal augmentation distance tends to become larger
as the datasets become more imbalanced. This pattern is especially clear in experiments
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Figure 5.4: Effect of dataset rebalancing techniques on the classification accuracy of BERT
for various levels of imbalance for the SST, Subj, and SFU datasets. Take, for example,
when the percentage of minority label examples left in the training set is 40%. In this
case a new training set is made by randomly sampling 40% of one label’s examples and
retaining all of the other label’s examples. Each point represents the average of 20 trials
(10 for each of the two labels). The shaded area around each line is the standard deviation

of the corresponding trials.

with Subj: the optimal parameter is monotonically nondecreasing as the dataset becomes
more balanced.
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Figure 5.5: Learning curves showing the effect of the augmentation techniques on the
classification accuracy of BERT on the SST, Subj, and SFU datasets. For example, when
the percentage of training set is 40%, a new training set is made by randomly sampling
40% of each label’s examples. Each point represents the average of 10 trials. The shaded
area around each line is the standard deviation of the corresponding trials.

General Augmentation

In the case of general augmentation, there does not appear to be a trend in the optimal
augmentation distance that holds across datasets and augmentation methods. There is a
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Figure 5.6: The optimal augmentation parameter as a function of degree of imbalance when
the RNN is the classification model. Lower augmentation parameter values correspond to
a greater distance from the original data.

trend in the case of backtranslation with SFU (Figure 5.7¢), but the trend is in the opposite
direction with backtranslation on SST (Figure 5.7a).
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Figure 5.7: The optimal augmentation parameter as a function of percent of data used when
the RNN is the classification model. Lower augmentation parameter values correspond to
a greater distance from the original data.

5.4 Discussion

In this section I highlight several interesting or important findings contained in the exper-
imental results. I discuss possible explanations for various patterns in the results. I also
discuss ethical issues that may arise from the use of data augmentation in NLP.
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5.4.1 Augmentation for Classification with RNN

All three augmentation methods almost always increase the accuracy of the RNN on the
SST and Subj datasets (see Figure 5.2). The performance boost offered by augmentation
is especially pronounced when dataset rebalancing: the accuracy with backtranslation and
contextual augmentation is up to 1% higher than both undersampling and oversampling.
As shown in Figure 5.3, the performance boosts in general augmentation tended to be
smaller. However, the results of backtranslation on the SST dataset indicates that general
augmentation with the RNN has the potential to offer important accuracy increases.

5.4.2 Augmentation for Classification with BERT

While each of the augmentation techniques had fairly consistent positive performance when
used on the RNN classification model, the results for BERT classification are more modest.
At most points on the horizontal axes of Figures 5.4 and 5.5 there is an augmentation tech-
nique that will boost performance. However, depending on time and resource constraints
the performance boosts may be too small to justify the time that it takes to tune the
parameters of each of the three techniques.

This relatively low performance could be caused by two attributes of BERT. First, it
is already a highly accurate model, and it is generally more difficult to provide accuracy
boosts to high accuracy models. Further, comparing Figures 5.3 and 5.5 shows that BERT
consistently achieves a roughly 3% greater accuracy than the RNN in each setting. Second,
in order to avoid catastrophic forgetting (as described in Section 2.5.2) the authors of BERT
recommend limiting the number of training epochs to 3 or 4 [¢]. This means that each
training example, in either its original or augmented form, is observed on the order of
10 times (the exact number varies — for instance each minority label training example
is observed 10 times per epoch when rebalancing with 10% imbalance). Since the RNN
is trained for between 25 and 100 epochs, the number of observations of each training
examples is an order of magnitude larger. Clearly the effects of augmentation are more
muted when the examples are viewed fewer times.

I ran several experiments with a larger number of epochs and a lower learning rate. In
this case training with each of the augmentation methods outperformed training without
augmentation. However, all of these models were outperformed by BERT trained with
no augmentation for 4 epochs. This indicates that the performance gains offered by aug-
mentation over a large number of epochs are counteracted by the performance costs that
result from catastrophic forgetting. These results also indicate that if it is possible to avoid
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catastrophic forgetting while increasing the number of epochs, then BERT may benefit sig-
nificantly more from augmentation. This idea will be explored in greater detail in Section
6.2.

5.4.3 Synonym Replacement

Synonym replacement’s performance varies the most of the three augmentation techniques.
In general augmentation with BERT classification it yields 0.3% accuracy increases at all
percentages, and in many cases its accuracy roughly equals that of no augmentation.

Synonym replacement is the least expensive of the three augmentation techniques. The
POS tagging and WordNet lookup can be performed at training time, but I perform these
tasks prior to training and save the candidate synonyms to memory. This approach made
training a single epoch approximately twice as fast, yielding considerable time savings. The
memory cost of this approach varies depending on the dataset, but in these experiments
each of the three augmented datasets use no more than one order of magnitude more
memory than the original dataset. If these memory costs are too large for a given task,
then candidate synonym generation can be conducted during training.

5.4.4 Backtranslation

Backtranslation appears to offer the most consistent accuracy boosts of the three tech-
niques. It did so with minimal parameter tuning. The augmentation parameter p governed
the ratio of augmented to original data, and which of the 25 backtranslated examples were
chosen. It did not, however, govern the creation of the backtranslated examples. As dis-
cussed in Section 4.2.3, the sampling temperature parameter was set to the same value
used in [11]. That backtranslation performs consistently well without tuning this param-
eter speaks to the power of the technique. Tuning this parameter is likely to yield even
better results.

5.4.5 Contextual Augmentation

Contextual augmentation tends to perform best on the largest dataset (Subj) and worst
on the smallest (SFU). This is likely because contextual augmentation uses a model that
is fit to the training set prior to its use for augmentation. The model will produce more
intelligent augmentation candidates as the training set becomes larger. This introduces a
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dilemma: the augmentation method will create better training examples on larger training
sets, but larger training sets generally have a reduced need for data augmentation. Figure
5.3b exemplifies this: contextual augmentation performs poorly for a very small training
set (10%), well for a moderately sized training set (20% — 70%), and nearly equals the
performance with no augmentation for a large training set (70% — 100%) However, my
exploration of this dilemma is limited by the size of the training sets. Without testing
on datasets that are an order of magnitude larger (hundreds of thousands of examples), I
cannot be entirely confident in my conclusion that contextual augmentation’s performance
converges to that of no augmentation.

Contextual augmentation’s limitations were revealed even in my own methodology.
Unlike synonym replacement and backtranslation which rely on a predefined database or
pretrained model, this method requires model training and inference. Just as I chose to av-
erage contextual augmentation results across 10 (rather than 30) trials, other practitioners
will likely have to make time-accuracy tradeoffs when implementing this technique.

5.4.6 Augmentation for Rebalancing

The average accuracy increases achieved by augmentation were greater in dataset rebalanc-
ing than in general augmentation. This is likely because imbalanced datasets (specifically
their minority class examples) have a greater need for training set diversity. As discussed in
Section 2.5.1, undersampling ignores relevant information contained in the available labeled
data while oversampling tends to overfit to the minority class. Done well, rebalancing by
augmentation allows all majority label examples to be retained while limiting overfitting
to the minority class.

The key to limiting overfitting is having a diverse training set, which in theory can
be produced by properly tuned augmentation. This goal of maintaining minority class
diversity can explain the patterns observed in Figure 5.6. I posit that the optimal level of
diversity in the minority set is constant with respect to level of imbalance. It follows that
as the minority set decreases in size, each individual example in the minority set must be
relied upon to generate more diverse augmentations. This greater contribution of diversity
per training example is realized by way of the augmentation distance. When augmentation
distance is larger (p is smaller), each training example contributes a greater diversity of
augmented examples. This would explain the clear trends observed in Figure 5.6, where
greater augmentation distances are optimal for greater degrees of imbalance.

The above analysis explains why a large augmentation distance is helpful when the
level of imbalance is high, but does not explain why the optimal augmentation distance
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decreases (i.e., why the large augmentation distance does not remain helpful) as the training
set becomes more balanced. To understand this phenomenon I propose the concept of
augmentation accuracy. The augmentation accuracy is based on a comparison between a
training example before and after its been transformed by an augmentation method. If
the post-augmentation training example is more likely to be seen in the test set, I say that
the augmentation method has a high augmentation accuracy. If the post-augmentation
training example is less likely to be seen in the test set, I say that the augmentation
method has a low augmentation accuracy. Note that an augmentation method can be safe
(i.e., label-preserving) while having a low augmentation accuracy. For example, suppose
an augmentation method introduces label-compatible Old English language into a training
example. The transformed example is safe, but the augmentation has low augmentation
accuracy since Old English is unlikely to be seen in the test set. Since a machine learning
model’s performance depends on the similarity of its training and testing set, a consistently
low augmentation accuracy would be detrimental to an augmentation method’s success.

I suggest that the ELAD of most augmentation methods (including all of the three
studied in this thesis) is inversely correlated with their augmentation accuracy. With
respect to contextual augmentation, for example, this assumption implies that there is a
correlation between the probability that is assigned to a candidate replacement word by
BERT and the likelihood of that word, in that context, appearing in the test set. This
implication seems reasonable given that the contextual augmentation model is pretrained
on a massive dataset, where it learns to predict common words based on their context.
Similar arguments can be made with respect to the augmentation accuracy of the other
two augmentation methods studied in this thesis. This introduces a tradeoff that varies
with respect to the level of imbalance. When the level of imbalance is more extreme, the
lesser augmentation accuracy is justified by the need for a greater augmentation distance.
As the dataset becomes more balanced, the same low augmentation accuracy would not
be justified since the augmentation distance becomes less necessary.

5.4.7 General Augmentation

As discussed in the previous subsection, the accuracy improvement provided by increasing
the minority set diversity via augmentation is compounded by the corresponding ability
to retain the majority class examples (i.e., avoid undersampling). General augmentation,
however, serves only the former function.

The dynamic in dataset rebalancing wherein the optimal augmentation distance be-
comes smaller as the dataset becomes more balanced does not appear to have an analogue

o8



in general augmentation. Figure 5.7 shows no clear relationship between optimal augmen-
tation parameter and percentage of dataset used.

As the training set becomes larger, the accuracy with augmentation does not appear
to converge to the accuracy without augmentation. Take for example the largest dataset,
Subj. The accuracy with backtranslation, the best performing method when the classi-
fication model is the RNN, remains roughly 0.5% greater than that of no augmentation,
for all training set percentages greater than 20%. The same can be said with respect to
synonym replacement when BERT is the classification model. This finding is somewhat
counterintuitive: it would be reasonable to expect the augmentation methods have less to
offer since the training set likely becomes more diverse as it becomes larger. Again, this
analysis is limited by the size of the training sets; the augmentation methods’ accuracy
improvements may be closer to 0 for a training set that is an order of magnitude larger.

5.4.8 Comparison to CV Augmentation

The accuracy boosts offered by the augmentation techniques in this thesis are noticeably
less impressive than those offered by augmentation in CV. For example, the authors of
[7] use augmentation to increase the accuracy of ImageNet from 83.1% to 83.5%. This
accuracy boost is considerable not only because the 83.1% was the previous state of the
art, but also because ImageNet contains hundreds of classes.

I believe that augmentation is less effective in NLP than it is in CV for reasons are
inherent to the respective fields (i.e., the disparity cannot be entirely resolved by more
sophisticated NLP augmentation techniques). I suggest that this is for two reasons: (1)
the space of possible images that have practically identical content is larger than the space
of possible texts that have practically identical content, and (2) this space of images is
more easily explored through predefined transformations than is the space of texts.

To illustrate (1), note that many image classification labels are invariant with respect to
lighting, occlusion, scale, and horizontal orientation. Text classification labels are usually
invariant with respect to the exact word choice and sentence structure, but the number of
words that convey the same meaning and the number of ways in which a sentence can be
structured are both fairly limited.

To illustrate (2), note that an image in human recognition dataset will have the same
label regardless of whether a human in the image is facing left or right, and a model can
learn this invariance through a predefined transformation, namely horizontal mirroring.
Alternatively, the texts “I greatly enjoyed this movie” and “this movie is one that I greatly
enjoyed” are in some sense mirror images of one another that would share the same label

29



in a text classification task. However, reliably transforming the first text to the second or
vice versa is a delicate process that likely requires human input.

5.4.9 Ethical Considerations

Biased training sets and biased models are an unfortunately common occurrence in machine
learning. For example, the authors of [3] found that gender recognition models often
perform worse when classifying darker and more feminine faces.

In theory this bias be overcome by introducing more representative examples into the
training set. However, since data augmentation will by definition transform the training
set to which it is applied, its potential to introduce biases into the data should be closely
scrutinized.

Take, for example, contextual augmentation with BERT. The augmentation model has
been trained on Wikipedia articles and BookCorpus [50], both of which tend to contain
formal writing, often thoroughly edited. It therefore can be expected to generate less
accurate augmentations for less formal English. It is also more likely to suggest words
that appeared in its own pretraining set, namely more formal words. This likely explains
contextual augmentation’s poor performance on the SFU dataset. Newspaper comment
sections often contain informal English, and this mismatch between the writing on which
the augmentation model is pretrained and the writing to which it is applied likely harms
performance. Any language is constantly changing and used in many different ways; BERT
augmentation’s pretraining set will introduce a bias towards a specific type of writing. In
some cases this bias may simply be one that harms performance, but in other cases it could
become an ethical issue.

5.5 Summary

In this chapter, I evaluated three NLP data augmentation methods in a variety of settings.
I developed an understanding of how augmentation affects classification accuracy, and how
the effects change when the size or imbalance of a dataset varies. I conducted a similar
analysis with respect to the optimal augmentation distance.

In the next chapter, I summarize the conclusions of the thesis and describe possible
directions for future work.
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize the contributions of the thesis and give several possible direc-
tions for future work.

6.1 Conclusion

This work has shown that synonym replacement, backtranslation, and contextual aug-
mentation can all offer important accuracy increases to already highly accurate models.
Backtranslation has the most consistent and strongest performance; synonym replacement
is the least expensive (as measured by either time or memory, depending on the imple-
mentation); and contextual augmentation tends to have the worst performance and be the
most computationally expensive.

With the exception of the smallest dataset, the accuracy of BERT is usually improved
by at least one of the augmentation methods; on the same two datasets the accuracy of
the RNN is almost always improved by all three augmentation methods. This suggests
that the increase in training set diversity offered by data augmentation is less necessary for
models that have been pretrained on massive datasets. Still, the results show that properly
tuned augmentation can noticeably increase the accuracy of BERT.

When the training set is balanced, there does not appear to be a strong relationship
between the training set size and the impact of data augmentation on model accuracy.
Experiments with significantly larger training sets may be necessary in order to determine
whether such a pattern exists.
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Undersampling tends to outperform oversampling, likely because it avoids overfitting to
the minority class. However, undersampling has an obvious downside: it ignores relevant
information (i.e., labeled data). The diversity that augmentation methods can introduce
into the minority class means that minority class overfitting can be mitigated without
ignoring labeled data. Therefore the accuracy boost offered by increasing the training
set diversity is compounded by the retaining of all majority class examples. As a result,
each of the three augmentation methods are usually a powerful alternative to both of the
sampling-based techniques of dataset rebalancing. In fact, for the RNN on the two largest
datasets, each augmentation technique almost always outperforms both undersampling and
oversampling.

The optimal distance from which each augmented example varies from its original form
becomes smaller as imbalanced datasets become more balanced. I suggest that this is
because of a tradeoff between dataset diversity (as determined by augmentation distance)
and augmentation accuracy. The rewards of adding diverse training examples to a minority
class are more pronounced, so much so that they justify the corresponding decrease in
augmentation accuracy. As the dataset becomes more balanced, the rewards are reduced
and therefore the optimal augmentation distance decreases. When a dataset is balanced,
however, its size does not appear to be correlated with the optimal augmentation distance.

6.2 Future Work

As discussed in Section 5.4.2; while increasing the number of BERT training epochs allows
for more data augmentation, these benefits are counteracted by catastrophic forgetting.
Finding a way to increase the number of training epochs without catastrophic forgetting
would allow the benefits of augmentation with BERT training to be more fully realized.
The authors of [0] developed such a method: they pretrain ULMFit, an LSTM-based
model, on an LM pretraining problem and incorporate the pretraining problem into the
fine-tuning of the model. They train the model to minimize the joint loss, a weighted
sum of the classification loss and the LM loss. The weight of the LM loss is exponentially
decaying, which limits the impact of the early training steps of the randomly initialized
classification layer on the pretrained model. After light tuning of the exponential decay
parameter, their method outperforms standard transfer learning with the same model on
all tested datasets. Future work could involve extending this approach to BERT training.
It would likely also limit BERT’s catastrophic forgetting, in which case it would allow more
training epochs and therefore more data augmentation to be used.

Discussed in Section 3.2.4, instance crossover has shown positive results for small
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datasets. This study was limited to augmentation for models that are ignorant of word
order. This method was not tested since I expect it to be outperformed by the three
methods tested in this thesis. However, the fact that image mixing, instance crossover’s
CV analogue, had the promising results outlined in Section 3.1.2, combined with these
methods’ incredibly low time complexity suggests that it is an area worth exploring in
greater detail. Future work could test whether or not this method is helpful for RNNs and
BERT, or any other models that are sensitive to context and word order.

I have shown that BERT can benefit from training with the three augmentation tech-
niques. Future work could run similar evaluations of data augmentation techniques as new
models are introduced and found to achieve state of the art results on various tasks. For
example, XLNet [12] has surpassed the performance of BERT on a range of NLP tasks.
Testing these augmentation methods’ impact on the accuracy of XLNet and its successors
would be a natural direction for future work.

This thesis focused on augmentation for text classification models, but future work
could study its impact on a wider variety of NLP tasks. The positive results in text
classification would suggest that these methods will be helpful in other NLP tasks, but
task-specific considerations must be made. To take question answering as an example, it
may be that the question string is so sensitive to noise that augmentation would lead to
deteriorations in performance.

As discussed in Section 3.1.6, test time augmentation has had promising results in CV.
Future work could study this approach’s effectiveness when applied to NLP classification
tasks.

This thesis used a single parameter to govern both the augmentation ratio and the
ELAD. Future work could separate the two values, and perform parameter tuning on
both. The time costs would be considerably larger than those of this study, but it would
allow the relationship between the level of imbalance and both the optimal ELAD and the
optimal augmentation ratio to be studied.

The patterns observed in the figures in Chapter 5 are illuminating, but they are limited
by the size of the training sets used in this thesis. It would be helpful to see how the trends
(or lack thereof) change when the datasets are an order of magnitude larger.
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