Tor is a network designed for low-latency anonymous communications. Tor clients form circuits through relays that are listed in a public directory, and then relay their encrypted traffic through these circuits. This indirection makes it difficult for a local adversary to determine with whom a particular Tor user is communicating. In response, some local adversaries restrict access to Tor by blocking each of the publicly listed relays. To deal with such an adversary, Tor uses bridges, which are unlisted relays that can be used as alternative entry points into the Tor network. Unfortunately, issues with s bridge implementation make it easy to discover large numbers of bridges. An adversary that hoards this information may use it to determine when each bridge is online over time. If a bridge operator also browses with Tor on the same machine, this information may be sufficient to deanonymize him. We present BridgeSPA as a method to mitigate this issue. A client using BridgeSPA relies on innocuous single packet authorization (SPA) to present a time-limited key to a bridge. Before this authorization takes place, the bridge will not reveal whether it is online. We have implemented BridgeSPA as a working proof-of-concept, which is available under an open-source licence.