The average computer user is no longer restricted to one device. They may have several devices and expect their applications to work on all of them. A challenge arises when these applications need the cryptographic private key of the devices' owner. Here the device owner typically has to manage keys manually with a "keychain" app, which leads to private keys being transferred insecurely between devices -- or even to other people. Even with intuitive synchronization mechanisms, theft and malware still pose a major risk to keys. Phones and watches are frequently removed or set down, and a single compromised device leads to the loss of the owner's private key, a catastrophic failure that can be quite difficult to recover from. We introduce Shatter, an open-source framework that runs on desktops, Android, and Android Wear, and performs key distribution on a user's behalf. Shatter uses threshold cryptography to turn the security weakness of having multiple devices into a strength. Apps that delegate cryptographic operations to Shatter have their keys compromised only when a threshold number of devices are compromised by the same attacker. We demonstrate how our framework operates with two popular Android apps (protecting identity keys for a messaging app, and encryption keys for a note-taking app) in a backwards-compatible manner: only Shatter users need to move to a Shatter-aware version of the app. Shatter has minimal impact on app performance, with signatures and decryption being calculated in 0.5s and security proofs in 14s.