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Adaptive authentication enables smartphones and enterprise apps to decide when and how to authenticate
users based on contextual and behavioral factors. In practice, a system may employ multiple policies to adapt
its authentication mechanisms and access controls to various scenarios. However, existing approaches suffer
from contradictory or insecure adaptations, which may enable attackers to bypass the authentication sys-
tem. Besides, most existing approaches are inflexible and do not provide desirable access controls. We design
and build a multi-stage risk-aware adaptive authentication and access control framework (MRAAC), which
provides the following novel contributions: Multi-stage: MRAAC organizes adaptation policies in multiple
stages to handle different risk types and progressively adapts authentication mechanisms based on context,
resource sensitivity, and user authenticity. Appropriate access control: MRAAC provides libraries to en-
able sensitive apps to manage the availability of their in-app resources based on MRAAC’s risk awareness.
Extensible: While existing proposals are tailored to cater to a single use case, MRAAC supports a variety of
use cases with custom risk models. We exemplify these advantages of MRAAC by deploying it for three use
cases: an enhanced version of Android Smart Lock, guest-aware continuous authentication, and corporate
app for BYOD. We conduct experiments to quantify the CPU, memory, latency, and battery performance of
MRAAC. Our evaluation shows that MRAAC enables various stakeholders (device manufacturers, enterprise
and secure app developers) to provide complex adaptive authentication workflows on COTS Android with
low processing and battery overhead.
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1 INTRODUCTION

Authentication systems are continuously evolving to provide more usable and secure options
to the users. In addition to biometrics and multi-factor authentication, weak authenticators or
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contextual factors are increasingly being used to reduce unnecessary explicit authentication

(EA) while effectively defending against unauthorized access. In particular, adaptive authentication

systems employ contextual or behavioral factors to dynamically determine whether to authenticate
a user and which authentication mechanism(s) to adopt. For example, Android Smart Lock [24]
keeps a device unlocked as long as the device is at a trusted location, on body, or connected to
a trusted device. Several financial institutions and enterprises use contextual or behavioral fac-
tors [13, 50] to de-authenticate a suspicious user for security requirements. In academia, several
adaptive authentication systems have been proposed for mobile platforms [17, 19, 37, 40, 43] to ad-
dress when to and how to authenticate user based on locations, activities, behavioral biometrics,
and so on.

Existing adaptive authentication solutions have the following limitations that could lead to se-
vere problems and restrict their applications in various scenarios: First, most existing adaptive
authentication solutions adopt a simple single-stage adaptation structure that can be summarized
as multiple “if <condition> then <adaptation>” statements. This structure may introduce conflicts
and vulnerabilities. Different contextual factors may hold simultaneously and drive opposite adap-
tation outcomes. For example, Android Smart Lock has conflicting interoperation between con-
textual factors [31]: Leaving a trusted location is expected to trigger the automatic lock, whereas
a device’s connection to a trusted device may make it remain unlocked. Second, some adaptive
authentication schemes [17, 36, 37] use contextual factors to unlock a device, which may allow
an attacker to bypass EA mechanisms. For example, Smart Lock before Android 10 [20] allowed
trusted places or devices to unlock a locked device, which may be exploited by social insiders [36].
As of Android 10, Smart Lock can be used only to extend access to an unlocked device. Third,
most adaptive authentication systems are difficult to extend or reuse [3]. However, an app may
employ multiple authentication mechanisms and apply different adaptations for each. For exam-
ple, a corporate app for Bring-Your-Own-Devices (BYODs) may adapt implicit authentication

(IA) mechanisms to their data availability (e.g., activate gait-based IA only when a user is on foot)
and tune their sensitivity based on the current location (e.g., onsite or offsite). To the best of our
knowledge, there is no existing framework that supports various adaptations. We illustrate the
common limitations of existing adaptive authentication solutions with two motivating examples
in Section 3.

Our work is the first to explore the organization of adaptations of authentication and access
control in one adaptation model and enable the deployment of adaptive authentication to han-
dle various risks on COTS mobile devices. Upon addressing this research question, we imple-
ment a framework to enable adaptive authentication and access control for their systems and
apps. Whereas MRAAC may be applicable to environments other than mobile devices, the focus
of this article is on access control for mobile devices. The main challenges involve the following
aspects: (1) Authentication and access control adaptations are driven by various factors and affect
different components of an authentication system. Organizing them in one model is challenging.
(2) An adaptation model should be extensible: it should allow adding adaptation policies for a new
scenario with minimal conflicts with the existing policies. (3) An adaptive authentication system
should accommodate various context factors and authentication mechanisms. Adding, removing,
and modifying a component should not affect other components or the adaptation logic. (4) Inte-
gration of the adaptation framework in mobile apps and systems should introduce minimal change
to the existing code.

We present a multi-stage risk-aware adaptive authentication and access control

(MRAAC) framework (see Table 1 for comparison with existing frameworks) for mobile devices.
MRAAC targets three types of stakeholders: Developers of authentication systems for mobile op-
erating systems, security developers and administrators of mobile device management (MDM)
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Table 1. Comparison to Existing Adaptive Authentication Solutions
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“�” denotes a supported feature. Arias-Cabarcos et al. [3] classified adaptation outcomes
into structural (activation and de-activation of authentication mechanisms) and
parametric (parameter tuning of authentication mechanisms).

solutions, and developers of mobile apps with high security requirements. MRAAC organizes au-
thentication and access control adaptations in three levels (see Figure 1): The top level determines
when to explicitly authenticate a user; the second level handles the adaptations driven by changes
in the security context to choose an appropriate set of authenticators for the current risk type and
level; the third level focuses on the adaptation of individual authenticators to ensure usability. The
multi-level structure ensures that the system prioritizes security-related adaptations to prevent
unauthorized access. MRAAC adopts a graph-based organization where adaptation policies are
organized in multiple stages and take effect only at their affiliated stages to avoid possible con-
flicts with policies in other stages. The multi-stage design also enables the statefulness of MRAAC,
which allows the system to progressively adjust its behaviors based on the feedback of a previous
adaptation.

The contributions of our article are fourfold:

— An open-source,1 multi-stage framework for adaptive authentication and access control for
Android. Our approach supports the automatic generation of multi-stage adaptation models
and enables the design of complex and stateful adaptation schemes based on contextual
factors, resource sensitivity, and authentication results.

— Two libraries for developers of authentication systems and sensitive apps to enable adaptive
authentication and granular in-app access control with low development overhead.

— Three use cases (an enhanced version of Android Smart Lock, guest-aware continuous au-
thentication, and corporate app for BYOD) to demonstrate how to design multi-stage adap-
tation models for different use cases.

— An evaluation of MRAAC based on two implemented MRAAC-enabled apps. The per-
formance evaluation results show that MRAAC introduces low overhead and battery
consumption. A use case simulation on the public HMOG dataset [47] shows that the

1https://github.com/cryspuwaterloo/jiayi_thesis_code/tree/main/mraac
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Fig. 1. Three levels of adaptive authentication and the multi-stage adaption model: (1) Top level determines

whether a user should be authenticated by IA or EA and whether a user is allowed to access the device.

(2) Security level manages the adaptations driven by security context changes. Stage transitions indicate the

risk changes from the perspectives of authentication level, sensitivity level, and risk types. (3) Usability level

manages the adaptations driven by usability context changes. Each stage hosts a set of policies to determine

authentication mechanisms and their parameters.

multi-stage design can balance the false rejection rate and detection latency of continuous
authentication.

2 RELATED WORK

In this section, we review existing adaptive authentication studies and compare our framework to
them.
Adaptive authentication. Arias-Cabarcos et al. [3] define that an adaptive authentication sys-
tem can dynamically adjust its behavior, including structural adaptations (i.e., what authentication
mechanism(s) to activate) and parametric adaptations (i.e., how to tune a specific authentication
mechanism), in response to the operating environment. Existing studies mainly focus on address-
ing how to model the context changes that trigger the adaptations [17, 37, 39, 40, 43, 48] and
how to adapt authentication and access control mechanisms to satisfy the security and usability
requirements of the current context [18, 37, 43, 48].

We focus on studies that provide a high-level architecture for adaptive authentication, which
allows mobile app developers or device users to customize adaptation schemes. Table 1 lists the
studies that satisfy the criteria and compares these studies with our adaptive authentication and
access control framework, MRAAC. TreasurePhone [45] proposed “spheres” to manage access con-
trol rules based on location and user activity. It determined the visibility or availability of a certain
file or app based on the current context, whereas MRAAC provides developers with a client library
to enable in-app access control. Hayashi et al. [17] proposed CASA, a probabilistic framework
for dynamically determining whether to explicitly authenticate a user and how to select an ex-
plicit authentication mechanism based on the user’s location data. ConXsense [37] combined both

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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locations and nearby Bluetooth devices to calculate the familiarity of the current context and de-
cide whether to lock the device. However, it only considered three location tags (i.e., public, work,
and private) and two safety levels (i.e., safe and unsafe), which lacks extensibility. PRISM [40] pro-
posed a context modeling approach that used HARD-BN [41] to automatically extract patterns
from location, user activities, and so on. It can automatically generate policies to determine if
an EA mechanism is required to unlock a device. Besides, it also allows users to manually make
policies. Progressive authentication [43] employed behavioral biometrics as a contextual factor
to estimate the user authenticity level. However, it did not involve the adaptation of behavioral
biometrics-based IA mechanisms. Wojtowicz and Joachimiak [49] built a generic model for con-
textual factors that affect the performance of biometrics-based authentication mechanisms. Their
main focus was on the adaptation of explicit authentication mechanisms. CORMORANT [19] is a
multi-modal authentication framework that incorporates contextual factors into the fused score of
several biometrics-based EA and IA mechanisms. It supports both structural and parametric adap-
tations of IA mechanisms and fuses multiple modalities by dynamically adjusting their weights
based on contextual factors. Compared to CORMORANT, MRAAC supports a multi-stage adapta-
tion structure to handle various risk types and includes access controls into the loop of adaptive
authentication.

The context models proposed by these studies can be converted to context providers in our
framework, which summarize the current context based on various sensor data (see Section 8).
Compared to these studies, our focus is on proposing a new multi-stage structure for adaptive
authentication. The multi-stage design of our work organizes different adaptation policies based on
the risk type and uncertainty of the user’s identity. Furthermore, it allows progressive adaptation
that incorporates authentication results of previous adaptations.
Continuous Authentication. Our framework uses IA mechanisms to continuously verify the
user’s identity without their attention, which is continuous authentication (CA). IA leverages
users’ distinct device usage [7, 15, 38] or behavioral patterns [5, 12, 26, 47, 52] to distinguish a
user from others in a non-intrusive way. Another relevant technique is zero-effort authentica-
tion [34, 46], which determines whether to authenticate or de-authenticate a user based on addi-
tional devices (e.g., smartwatches, bracelets) while requiring no extra effort by the user. As the
consequence of a behavioral mismatch with the owner, the current user can be blocked from ac-
cessing the device and asked for re-authentication [27]. CA can be viewed as an adaptation of
determining when to authenticate a user: Detecting anomalies in the user’s behaviors results in
the activation of an EA mechanism. In Section 6, we demonstrate how to incorporate IA mecha-
nisms to achieve CA and enhance the security of Android Smart Lock.

The design and development of a dynamic CA system that can adapt itself to context changes
is still an open issue [14]. Some studies applied parametric adaptations to the IA/CA mechanisms
based on contextual factors to achieve better accuracy or reduce power consumption. Primo et
al. [39] adapted the gait authenticator to the device location and placement to improve the identifi-
cation accuracy. However, this adaptation is limited to a specific authentication mechanism, while
MRAAC aims to provide a generic solution to adapt various mechanisms. MultiLock [2] used facial
recognition for CA and computed a confidence score from the facial recognition results. However,
it only took the current app sensitivity as the factor to determine whether to lock a device. In com-
parison, MRAAC takes different risk types into account. As aforementioned, CORMORANT [19]
dynamically adjusted its IA mechanisms to provide CA with good time coverage. The adaptation is
based on a risk score calculated from location, time, and device usage. Our article demonstrates an
example of applying progressive adaptation for CA, including adjusting authenticators and result
aggregation at different stages. The evaluation shows that MRAAC can help balance false rejection
rate and detection latency.

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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3 MOTIVATION

This section presents two motivating examples to show the limitations of existing adaptive authen-
tication systems and then summarizes the requirements of a desired adaptive authentication and
access control framework.

3.1 Motivating Examples

Smart Lock. To reduce unnecessary EA, Android Smart Lock [24] leverages three contextual fac-
tors to determine whether to ask for EA when a user starts a new session: (1) On-body Detection

(BODY): whether the device is with a user in movements; (2) Trusted Places (PLACE): whether
the current location is trusted; (3) Trusted Devices (DEVICE): whether any trusted devices is con-
nected with the device. Smart Lock (before Android 10) uses the following five adaptation policies:

(1) If the device is not on body (BODY == false), then activate EA for a new session.
(2) If the current location is trusted (PLACE == true), then de-activate EA for a new session.
(3) If the current location is not trusted (PLACE == false), then activate EA for a new session.
(4) If any trusted device is connected (DEVICE == true), then de-activate EA for a new session.
(5) If no trusted device is connected (DEVICE == false), then activate EA for a new session.

Note that “activating EA” does not mean an immediate device locking, and the user can still use
the device for the current session.

We observe several limitations:
(P1.1) Policy conflicts. If the device is connected to a trusted device in an untrusted location, then

Policies 3 and 4 are satisfied simultaneously. However, the adaptation outcomes of the two policies
are contradictory. Additional mitigation mechanisms need to be applied to resolve the conflict. For
example, the system has to apply policy combination [42] or voting strategies [33] to prioritize one
outcome over another for situations where multiple conditions hold.

(P1.2) Misusing contextual factors for unlocking. The contextual factors in Policies 2 and 4 result
in the de-activation of EA. However, contextual factors do not provide as strong evidence as EA
mechanisms that the current user is legitimate. As a result, using contextual factors to unlock a
locked device makes it easier for an attacker to bypass authentication. Specifically, it introduces
a higher risk of social insider attacks [36] where an attacker is in the trusted environment set by
the owner and can unlock the device without having to pass EA. Therefore, Android 10 and later
changed the behavior of Smart Lock to only keeping an already unlocked phone unlocked, which
prevents an attacker from bypassing the EA of a locked device. However, social insiders can take
advantage of the phone being kept unlocked to access the device. For example, the owner sets the
workplace as trusted to keep the smartphone unlocked at work (after unlocking the phone with
EA when the owner arrives at work). A co-worker can wait for the owner’s temporary absence
from the phone (e.g., while getting coffee) and access the unlocked device during the extended
unlock interval.

(P1.3) Stateless. The above policies take effect regardless of the device state as long as their
conditions are satisfied. It is hard to implement complex adaptations such as the “low watermark”
adaptation [37]: If the three factors are all negative at the same time, then the device is considered
in the insecure state. EA should be required even if either Policy 2 or Policy 4 become satisfied.
The insecure state should end only after the user has passed EA.

Section 6 presents Smarter Lock to address the above problems and provides an IA-enabled
option to incorporate continuous authentication (CA) into Smarter Lock. To further show the
extensibility of our solution, we implement the guest-aware CA use case that adapts authentication
and access control to guest access, which is a special scenario derived from the social insiders.

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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BYOD. Itus [27] is a general IA framework for BYOD apps that supports various behavioral
biometrics-based IA mechanisms (e.g., Touchalytics [12], SilentSense [5]). Assume an enterprise
E-mail client app is using Itus to enable IA. It uses a location contextual factor to determine if the
device is within the company or not and extracts behavioral biometrics from body movements and
touch events. To coordinate them, the app adopts the following adaptations:

(1) If a mismatch in behavioral biometrics (i.e., a negative IA result) is detected, then lock the
device and activate EA.

(2) If the current location is not within the company (i.e., offsite), then activate IA.
(3) If the current location is within the company (i.e., onsite), then de-activate IA.

The adaptations supported by Itus mainly include two types: using IA mechanisms to determine
when to activate EA and using context factors to determine when to activate a certain IA mecha-
nism. However, they are insufficient from the following aspects:

(P2.1) Conditions. An adaptation can be driven by multiple reasons. As location implies the risk
level of the current context (i.e., Policies 2 and 3), data availability and resource sensitivity are
other possible conditions to determine whether to activate an IA mechanism. For example, if there
is no significant movement, then de-activate body movement–based IA and activate keystrokes or
touch events-based IA instead. Accessing sensitive resources requires stricter IA mechanisms to
prevent unauthorized access.

(P2.2) Adaptation outcomes. The outcomes of the above policies are all about activation and de-
activation. In practice, it is also feasible to tune the parameters of an authentication mechanism and
change access control policies. For example, IA mechanisms for the offsite scenario can switch to a
more sensitive configuration than the onsite scenario to defend against higher risk of unauthorized
access. The system can also block access to specific resources when a user’s identity is uncertain.

(P2.3) False rejection. According to Policy 1, a negative IA result immediately locks a device and
requires EA. False rejection will make an authentication system less usable. It is preferrable to
have an intermediate step before locking a device to mitigate false rejection while still securing
sensitive resources.

In Section 6.3, we present the BYOD use case that provides a comprehensive solution to enable
adaptive authentication and access control for a real E-mail client app.

3.2 Summary

The motivating examples have shown that adaptations can be driven by various factors and applied
to multiple authentication mechanisms. Multiple adaptations can co-exist in the same system to
handle a variety of scenarios. Unorganized adaptations can hardly fulfill the security and usability
requirements. As reviewed in Section 2, no existing studies have proposed an adaptation model
to organize various adaptations of authentication and access control. To address the above issues
and limitations, our adaptation model is expected to:

(1) Categorize adaptations based on their conditions and organize them in a multi-level struc-
ture to avoid possible conflicts rather than mitigate them (P1.1);

(2) Model risks from the perspectives of user authenticity, resource sensitivity, and threat to
describe the system states (P1.3) and cover various conditions that imply risk changes (P2.1);

(3) Regulate adaptations so attackers cannot exploit contextual factors to bypass the authenti-
cation system (P1.2);

(4) Enable progressive adaptations that adjust authentication and access control based on the
feedback of a previous adaptation (P2.2) instead of directly imposing EA to mitigate false
rejections (P2.3).

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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3.3 Threat Model

User authentication and access control defend against unauthorized access. We trust the device
owner or the primary user (for corporate-owned devices). Attackers are other people who are
physically near the device and can physically access it. Their goal is to access (sensitive) resources
on the device.

We classify attackers into two categories based on their relationship with the owner:
(1) Strangers are nearby attackers who have little or no knowledge of the device owner and the
adaptive authentication system (e.g., what context factors result in the activation of EA). A com-
mon scenario is the device owner leaving their device unattended and a stranger picking up the
device. (2) Social insiders are nearby attackers who are socially close to the owner. They may share
a trusted environment (based on a device owner’s trust perception) with the owner (e.g., a home)
and take advantage of contextual factors to bypass the authentication system. For example, so-
cial insiders can launch shower-time attacks [35] where they access an unlocked device during
the owner’s absence. A special type of social insiders are guest users who the owner temporar-
ily shares their device with. Guest users are allowed to access non-sensitive resources, but not
sensitive resources.

Since our goal is to provide a general adaptive authentication framework, attacks on specific
authentication mechanisms are not our focus. Thus, we assume attackers do not have credentials
for EA mechanisms and cannot compromise IA mechanisms (e.g., in a mimicry attack [29]).

Since we provide an Android implementation of the adaptive authentication and access control
framework (see Section 5), we make the following assumptions: We trust the device and its op-
erating system, and therefore, assume that attackers cannot modify the system (e.g., tamper the
sensor measurements) to deceive or bypass the authentication system. We assume that device own-
ers acquire apps or services that adopt our proposed framework from trusted sources. However,
given the framework allows communications with apps, it is possible for them to acquire sensitive
resources or send false information. We discuss such attacks in Section 5.2.2 and Section 8.

4 MODELING AND ADAPTATION

In this section, we give the definition of a multi-stage adaptation model and the model construction
process. Table 2 is the notation table for the multi-stage adaptation model.

4.1 Definition

Three levels of adaptive authentication. Figure 1 shows how we divide adaptive authentication
into three levels based on the adaptation reasons (i.e., what leads to changes in an authentication
system). The top level of adaptive authentication addresses when to authenticate or de-authenticate

a user, which is the fundamental adaptation logic of continuous authentication. Both EA and IA
assist an adaptive authentication system: EA provides mandatory identity verification when a user
logs into the system, and IA continuously verifies a user’s identity throughout a session and pro-
vides weak but transparent authentication for low-risk levels. Since IA rejections de-authenticate
a user and activate EA [12, 27], switching between EA and IA is an adaptation process based on
the user’s identity.

The other two levels address how to authenticate a user based on the security context and the
usability context, respectively. Changes in the security context imply changes to the risk of attacks
and determine the requirements of the authentication mechanisms to handle the risk. For example,
a higher risk (e.g., accessing sensitive resources) calls for a stricter set of IA mechanisms that
are more sensitive to imposters. In comparison, changes in the usability context are related to
the availability and performance of the authentication mechanisms, which helps determine the

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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Table 2. Notation Table

Name Notation Description

Risk types R = {r0, r1, . . . , rnR−1} Attack risks by contextual factors; nR

is the number of risk types; e.g., R =

{rHOME, rWORKPLACE} includes two risk
types based on user locations: HOME and
WORKPLACE

Authentication
levels

A = {a0,a1, . . . ,anA−1} Confidence of identifying a user as the
owner; nAis the number of authentication
levels; e.g., A = {a0,a1,a2} represents
three authentication levels: a0 unauthenti-
cated, a1 low-level, a2 high-level

Sensitivity levels C = {c0, c1, . . . , cnC−1} Describes sensitivity of a resource being
accessed; nC is the number of sensitiv-
ity levels; e.g., C = {c0, c1, c2} represents
three sensitivity levels: c0 no resource is
accessed, c1 non-sensitive resource is ac-
cessed, c2 sensitive resource is accessed

Authentication
results

Γ Results of authentication methods (e.g., IA
acceptance/rejection)

Authentication
transition

λr : A × Γ → A A function that indicates how authentica-
tion results change authentication levels

Access control
function

μr : A × C → {True,
False}

A function that indicates whether an au-
thentication level is sufficient to access a
resource at a given sensitivity level

Transition signals Φ Contextual factors and authentication re-
sults that cause risk changes

Risk transition κ : R × Φ → R A function that indicates how risk types
change upon transition signals

Input signals Σ All signals that cause security-level
adaptations

Stages S = {(r ,a, c)|r ∈ R,a ∈

A, c ∈ C}
All stages, consisting of the combination
of risk types, authentication levels, and
sensitivity levels

Initial stage s0 The starting stage of the unlocked state
Stage transition δ : S × Σ → S A function that determines the next stage

based on an input signal and the current
stage

Multi-stage model M = (Σ, S, s0,δ ) A finite-state machine that describes the
authentication and access control adapta-
tion process

(de-)activation and tuning of these mechanisms. For example, low ambient brightness may result
in choosing an authentication mechanism other than facial recognition. Thus, based on the scale
of impact from the adaptation outcome, we define the security-driven (or risk-driven) adaptation
as security-level adaptation and the usability-driven adaptation as usability-level adaptation.

ACM Trans. Priv. Sec., Vol. 27, No. 2, Article 17. Publication date: April 2024.
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Table 3. Two Examples of Authentication Transition Functions

Default Capped
auth. level IA+ IA– EA+ EA– IA+ IA– EA+ EA–

a0 – – a2 a0 – – a2 a0

a1 a2 a0 – – a1 a0 – –
a2 a2 a1 – – a2 a1 – –

Default: a negative IA result decreases the authentication level by one, while an
EA acceptance raises it to the maximum. Capped: a positive IA result cannot
raise the authentication level from a1 to a2. Since the device should be locked at
a0, IA is not activated, and therefore, IA signals (i.e., IA+ and IA-) are invalid at
a0. Similarly, EA signals (i.e., EA+ and EA-) are invalid at a1 and a2 when the
device is unlocked.

Risk. We describe the risk from three factors: the risk type of the scenario, the authentication

level of the user, and the sensitivity level of the accessed resource. Risk types are characterized by
contextual factors, such as locations and activities, and have distinct adaptation requirements. Au-
thentication levels indicate the confidence of identifying a user as the owner. A low authentication
level calls for stricter IA mechanisms or even EA. Adopting multiple authentication levels gives
flexibility when processing an IA rejection. For example, the first IA rejection may trigger further
verification and restrict access to sensitive resources, instead of a direct lockout, to mitigate the
impact of false rejections. Sensitivity levels and authentication levels determine whether a user
can access a resource. If the authentication level fails to match the sensitivity level of the target
resource, then the system rejects the access and asks for EA. Besides, an authentication system
should impose stricter authentication mechanisms for access to resources with higher sensitivity
levels.

4.2 Multi-stage Adaptation Model

Risk Model. We define the three risk factors as follows: the risk type setR = {r0, r1, . . . , rnR−1}, the
authentication level setA = {a0,a1, . . . ,anA−1}, and the sensitivity level setC = {c0, c1, . . . , cnC−1},
where nR , nA, and nC are the sizes of the three sets. The risk type is a categorical variable that
characterizes the variety of attack risks by contextual factors. An example is to define risk types
based on location: If the current location is home or workplace, then apply different adaptation
strategies for each of them. We reserve r0 as the complement of all defined risk types, which
represents the risk of general unauthorized attacks. Authentication levels and sensitivity levels can
be expressed as two ascending sequences where a0 < a1 < . . . < anA−1 and c0 < c1 < . . . < cnC−1.
We reserve a0 and c0 for the Locked state, representing the lowest authentication level and the
lowest sensitivity level, respectively.

For each risk type, we use two functions to describe the authentication and access control behav-
iors: (1) Authentication results lead to changes in authentication levels, and the mapping between
them is a function λr : A × Γ → A, where Γ is the authentication result set (e.g., IA acceptance/re-
jection). Table 3 shows two examples of authentication transition functions. (2) Mandatory access
control is a function μr : A × C → {True, False}, which determines if the user’s authentication
level is insufficient to access resources at a specific sensitivity level. If the function returns False,
then the user should be rejected and may need further authentication (usually EA) for a higher
authentication level. The default access control function is μr (ai , c j ) = 1i≥j .

To describe transitions among risk types, we use a function κ : R × Φ → R, where Φ is the set
of transition signals, including contextual factors and authentication results. For example, if the
location sensors detect that the device is not at a safe place, the system changes the risk type for
adaptation to public locations.
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Multi-stage model. The design of an adaptation model follows the three adaptation levels intro-
duced in Section 4.1. On the top adaptation level, the adaptation model is divided into the unlocked
and locked states of a binary access control model [18], where IA is activated in the unlocked state
and EA is activated in the locked state. For the security-level adaptation, the system dynamically
adjusts its behaviors in response to the input signals that change the current authentication level,
sensitivity level, and risk type. We use a finite-state machine (FSM)-based multi-stage model to
describe the adaptation process. Each stage (i.e., state) hosts a set of adaptation policies to apply
the usability-level adaptations.

The multi-stage model M is a quadruple (Σ, S, s0,δ ): Σ is the set of all input signals for security-
level adaptation, S is the stage set: each stage s ∈ S is a combination of (r ,a, c) ∈ R×A×C; s0 is the
initial stage for the unlocked state, which is by default (r0,anA−1, c1) (i.e., general risk type, highest
authentication level, low sensitivity level); δ : S ×Σ → S is the transition function that determines
the next stage based on an input x ∈ Σ and the current stage s . We reserve the locked stage l for
EA (e.g., Android Keyguard). The stage transition from l to s0 is triggered by positive EA results
(denoted by e+): δ (l , e+) = s0, while negative EA results (denoted by e−) trigger a self-transition:
δ (l , e−) = l .

We define that any input signal x ∈ Σ may change only one of the three factors (r ,a, c) at a time.
An event that causes changes in the security context can be broken down into a series of input
signals in chronological order. For example, when the system detects a guest access event, it issues
an authentication signal to lower the authentication level and then produces a context signal to
change the risk type. If δ (s,x) is not defined, then the system processes it as an exception (i.e., x
is an invalid input at stage s) and moves to the locked stage.

The generation of a multi-stage adaptation model requires a risk model provided by developers
(see target audience in Section 5.1), which specifies the following information: the risk type set R,
the authentication level setA, the sensitivity setC , the authentication result set Γ, the context signal
set Φ, the risk transition functionκ, and the authentication and access control functions under each
risk: {λr }r ∈R and {μr }r ∈R , respectively. The automatic model generation process consists of the
following steps:

(1) Construct the input set Σ = Γ
⋃
C
⋃

Φ to include all valid inputs that change any of (r ,a, c).
Note: A sensitivity level c ∈ C , as an input, means “the user attempts to or is currently using
a resource of sensitivity level = c .”

(2) Obtain all valid combinations of three factors Ω ⊂ R × A × C where the authentication
level is sufficient for accessing resources of the sensitivity level under the risk type: Ω =⋃

r ∈R {(r ,a, c)|μr (a, c) = True,∀a ∈ A, c ∈ C}. The stage set is constructed as S = Ω
⋃
{l}.

(3) Set the initial stage s0 to (r0,anA−1, c1) and all outgoing transitions from the Locked stage l
(i.e., l to s0 and self-transition) in δ .

(4) Generate the stage transition function δ by traversing all stages s ∈ Ω and inputs x ∈ Σ:

δ (s,x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(r , λr (a,x), c) x ∈ Γ,
(r ,a,x) x ∈ C, μr (c,x) = True,

(κ(r ,x),a, c) x ∈ Φ, (κ(r ,x),a, c) ∈ Ω,
l otherwise.

The generated multi-stage model defines the security-level adaptation behaviors of the system.
Figure 1 (security-level) shows an example multi-stage adaptation model. The stage transition pro-
cess enables the system to dynamically capture the risk change and change its adaptation scheme
in response to the input signals. By traversing all valid combinations of the three risk factors and
all acceptable inputs, the completeness of the model is ensured to cover all possible situations. The
deterministic property of stage transition (i.e., given the current stage and the input, the outcome
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stage is deterministic) avoids possible ambiguity or conflicts. The stateful property provides the
flexibility of adopting different reactions to the same signal. For example, a negative IA result does
not always trigger de-authentication if the user is accessing a non-sensitive resource.

In Section 6, we present three use cases to show in detail how to design risk models and generate
the multi-stage adaptation models accordingly.

4.3 Adaptation Policies

In a multi-stage model, each stage hosts a list of adaptation policies that determine how to change
the authentication mechanisms and access controls at the usability level (see Figure 1). Adaptation
policies are also configured by developers. The adaptation policies are classified into two categories
based on how they are triggered: general adaptation policies and conditional adaptation policies.
(1) General adaptation policies take effect once a stage transition happens. They determine the de-
fault authenticators and access control rules of a stage. For authentication adaptation, the system
activates the authentication mechanisms listed in the general adaptation policies of the current
stage. It also deactivates the ones that are activated in the previous stage but not listed in the
current stage. For access control, the multi-stage adaptation model determines resource availabil-
ity based on sensitivity levels and authentication levels. The access control policies within each
stage can further adjust the availability of individual resources. (2) Conditional adaptation policies
are a set of “if-then” statements—once the conditions are satisfied, the corresponding adaptation
takes effect. They mainly handle the usability-level authentication adaptation process to deter-
mine when to activate and deactivate authentication mechanisms and how to tune the parameters
in response to the usability context (e.g., if no significant movement is detected, then deactivate gait

authenticator.)
The multi-stage adaptation model also supports the design of the adaptation policies. By compar-

ing the risk type, authentication level, and sensitivity level, one can determine if a stage is “riskier”
than its neighboring stages (i.e., stages connected to it by a transition edge). A stage at higher risk
should have no less strict/less secure authentication and no more available resources than a stage
at lower risk. Following the security metrics of biometric-based authentication mechanisms [23],
developers can compare the authentication mechanisms between two stages and determine if the
proposed adaptation policies are reasonable.

4.4 More Complex Access-control Models

Our access-control model grants a user access to a resource if the user’s authentication level is
sufficiently high (see Table 2). There are more complex access-control models, such as RBAC and
ABAC, where users are assigned to roles/attributes and where access control ensures that a user has
a particular active role/attribute. CA-ARBAC [1], DR BACA [44], and CAPEF [25] propose context-
aware RBAC and ABAC models for Android. However, access control in these papers focuses on
deciding whether an app, not a user, should be granted a permission to an Android resource, such
as the network. In turn, roles and attributes are assigned to apps, not to users. In MRAAC, access
control is about deciding whether a user should be granted access to a device (i.e., whether the
user should be allowed to unlock the device), to an app installed on the device, or to individual
components of an app. Therefore, these existing works and MRAAC are largely orthogonal.

Whereas it is possible to add support for RBAC and ABAC to MRAAC (i.e., the access control
function in Table 2 would depend on a user’s roles or attributes, not on the user’s authentication
level), we believe that the additional complexity does not warrant this effort given that a mobile
device is often used by only a small number of people. Moreover, attributes, such as contextual
factors, can be modeled as risk types in MRAAC (see Section 6.3 for a use case based on loca-
tion). MRAAC has the advantage that transitions between risk types are state-based and explicitly
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modeled. This avoids problems due to misuse of contextual factors, where an attacker simply by
changing a device’s context is granted additional access rights (see the Smart Lock example in
Section 3.1).

5 SYSTEM DESIGN

5.1 Target Audience

We design MRAAC to provide a general adaptation framework for authentication and access con-
trol on mobile devices and apps. Our audiences are: (1) security developers of OS vendors and
mobile authentication systems, (2) security developers and administrators of mobile device man-

agement (MDM) and enterprise mobility management (EMM) solutions, and (3) developers
of sensitive apps.

Authentication system developers can use MRAAC to manage the adaptation process to enhance
their systems and access control to sensitive resources. Similarly, MDM/EMM solutions require an
endpoint management agent or are integrated with the operating system (e.g., Android Enterprise)
to collect contextual information and enforce security policies. These security developers and ad-
ministrators are also responsible for making multi-stage adaptation models and designing security
policies for the system.

As a mobile authentication system provides authentication APIs (e.g., Android’s BiometricMan-
ager) for apps, MRAAC also enables risk awareness for in-app adaptation. We propose a “client-
server” structure for MRAAC: the server is a centralized service that performs risk evaluation and
provides system-wide adaptive authentication and app-level access control, and the clients are apps
that receive signals from the server to enable risk awareness and adjust the availability of in-app
resources accordingly. Since the server handles most operations, clients can obtain the digested
risk information without accessing sensitive permissions or performing expensive computations.
Developers of sensitive apps can focus on specific high-risk stages (e.g., non-owner access) and
in-app resources that are not controlled by the system (e.g., terminating an app session or inval-
idating app tokens). In this case, they do not need full knowledge of the multi-stage adaptation
models running on the target device.

Nevertheless, individual, sensitive apps may require custom adaptive authentication and access
control even if a device does not provide a system-wide MRAAC service. For example, corporate
apps for BYODs require dedicated adaptive authentication systems to manage user access based
on location and network. However, we cannot expect the presence of a system-wide MRAAC
service on user-managed devices. For this deployment scenario, MRAAC needs to be integrated
entirely (i.e., both its client and server part) into these sensitive apps (called host apps) to enable
risk awareness and adaptation management.

Users typically cannot modify adaptation models or security policies on their devices. However,
they can have the flexibility of model configuration, such as choosing a preferred explicit authen-
tication method to unlock their devices.

5.2 Architecture

Figure 2 shows the architecture of MRAAC in the client-server design, which consists of a system-
wide service (“MRAAC Service”) and a client library (“MRAAC Client”). Note that the server is
deployed locally on mobile devices as an Android service. For the individual apps deployment
scenario, we propose the MRAAC Integration library to include the components of both MRAAC
Service and MRAAC Client.

5.2.1 MRAAC Service. MRAAC Service provides context detection and adapts authentication
mechanisms and access control. It consists of four modules, and each module contains a service
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Fig. 2. System design of the MRAAC framework.

handling the communication with other modules: Adaptation module is the core of MRAAC.
It provides the multi-stage model builder to help developers generate adaptation models and de-
sign adaptation schemes. As introduced in Section 4.2, a multi-stage adaptation model defines all
stages and transitions. With the model, the adaptation service can manage the adaptation pro-
cess: It listens to authentication results, sensitivity changes, and contextual signals from the other
modules. According to the stage transition table, the adaptation service performs stage transi-
tions and enforces adaptation policies based on the current stage and the received signal. It sends
the adaptation outcome as a control signal to the other modules for changing their behaviors. In
addition, the adaptation module provides an interface to handle communications with MRAAC
client apps.
Context module hosts a list of context detectors to collect and process data from various sen-
sors and generate contextual factors used in adaptation conditions. Each context detector works
independently as a service, and a context provider is bound to it to convert its results into context
signals. The context service manages a list of context providers and forwards context signals to
the adaptation service. During the initialization, the context service activates all context detectors
via the control interface provided by the corresponding providers.
Authentication module manages and adapts all authentication mechanisms. Similar to the con-
text module, each authenticator runs as a service and binds to an authentication provider. The
authentication service aggregates results from authenticators and sends authentication signals to
the adaptation module. Besides, it receives adaptation signals from the adaptation service to (de-
)activate or adjust the target authenticators or tune its aggregation method. Note that EA mecha-
nisms provided by the operating system (e.g., Android Keyguard) also require an authentication
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provider as an interface for activation and receiving authentication results. In addition, a client app
may have its own authenticators (see Section 5.2.2). We can also instantiate providers for client
authenticators to receive their scores and involve them in the adaptation loop.
Access control module determines the current sensitivity level and manages access control poli-
cies. The access control service tracks the current resource and notifies the adaptation service of
sensitivity changes. The resource sensitivity manager maps resources to sensitivity levels for each
stage. The enforcement of access control policies is performed by the adaptation service and the
external access control enforcement point: (1) the adaptation service determines whether to move
to the locked stage after receiving the sensitivity change; (2) the access control service receives the
adaptation scheme of the current stage from the adaptation service, and then the policy translator
translates each access control rule into the policy format accepted by the external access control
enforcement point (e.g., FlaskDroid [8], ASF [4]).

5.2.2 MRAAC Client. Given that an app may contain resources at different sensitivity levels,
it is more flexible to control access to in-app resources than to fully block access to the app [18].
Instead of offloading context detection to apps, a better approach is to enable apps to receive
contextual cues from the adaptive authentication system through a library. Client apps are the
apps that depend on MRAAC Service to obtain the stage information for the adaptation of in-app
authentication and access control. MRAAC provides a client library for client apps, which consists
of the following components:
Client service manages communications with MRAAC Service and parses the stage information.
The service is activated at the startup of the app and automatically sets up the connections to
MRAAC Service and pulls the current stage information. While the client app is running, the ser-
vice keeps listening to broadcasts regarding stage changes from MRAAC Service. Besides, if the
app adopts the IA mechanisms provided by the library, then the client service can forward authen-
tication results to MRAAC Service via Android IPC. Sending authentication results is a security-
sensitive operation, since malicious apps may send false results to deceive the system. MRAAC
only allows forwarding authentication results when the identity of the client app is verified or the
client app is signed with the same key as the service.
SecureActivity is a generic Android application component that client apps are supposed to ex-
tend to easily receive the stage change signal. The client library provides optional IA APIs based
on the generic IA framework Itus [27] to enable IA within the app scope. It also provides UI con-
trol APIs to support in-app access control. App developers can delegate the control of specified UI
elements to the SecureActivity so it can automatically adjust the availability and visibility of UI
elements based on the current stage.

5.2.3 MRAAC Integration. We provide the MRAAC Integration library to enable standalone
adaptive authentication and access control for individual apps. It enables third-party apps to inte-
grate the full MRAAC Service and SecureActivity to provide a complete adaptation workflow
within the host app. The locked stage means that the user needs to pass EA to continue using the
app. The authentication process of the associated online service of the host app can be involved
in the adaptation loop. For example, assuming that the host app is associated with an OAuth2 ser-
vice [16], the locked stage for the host app can trigger the revocation of the authentication token.
As a result, the host app logs the user out to secure the user’s personal information. For the access
control module, the host app needs to provide the currently accessed resource (e.g., view, file) to
the service. Besides, in-app access control replaces the external access control enforcement point
of MRAAC Service.
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5.3 Development Workflow

This section lists the development workflow of using MRAAC to enable adaptive authentication
and access control for MDM/EMM solutions and individual apps.

The first step is to generate the multi-stage adaptation model, which determines the high-level
adaptation behaviors of the system. Security developers and administrators need to specify au-
thentication levels, sensitivity levels, and risk types based on the security requirements of their
projects. This information can be extracted from existing security policies (note: conversion from
security policies and adaptation model elements is out of the scope of this article), while MRAAC
also provides pre-defined settings. Then, they define the authentication and access control func-
tions for each risk type in table form (see Table 3). MultiStageModelBuilder of MRAAC pro-
vides several common functions to reduce development efforts. They also need to provide all
possible context signals (related to the risk type transitions) and the risk transition functions,
which can be also migrated from existing security policies. Once the above information is pre-
pared, MultiStageModelBuilder constructs the multi-stage model based on a configuration file
(see Figure 2). Figures 4 and 6 show two example configuration files.

The second step is to set up the four main modules of MRAAC Service. MRAAC ships with a
number of common authenticators (e.g., touch, gait) and context detectors (e.g., locations, activi-
ties) so developers can choose from them and rapidly build their adaptive authentication system.
Given that developers may have their own implementation of authenticators and context detectors,
MRAAC provides two abstract classes BaseAuthenticator and BaseContextDetector to define
the essential methods required for communication and controlling their customized components.
Then, developers need to register all selected authenticators and context detectors in the authenti-
cation service and context service via addAuthenticator() and addContextProvider(), respec-
tively. For the access control service, developers need to override the acquireCurrentResource()
method to provide the current resource and direct the output of the policy translator to their access
control enforcement point. For the adaption module, the developer only needs to load the model
generated in the first step without touching other parts.

The third step is to make adaptation schemes and enable MRAAC Service. According to
Section 4.3, each Scheme object involves two kinds of adaptation policies: (1) defaultAdaptation
takes effect at each stage transition, and (2) conditionalAdaptation takes effect when the condi-
tion is satisfied. Developers need to make adaptation schemes for each stage, and it is possible to
set the same scheme for several stages. After scheme making, developers register all the services
in the Android manifest file and start them at app/system startup.
Development workflow for client apps. Developers only need to make their base activities
extend the SecureActivity and override onStageChanged() to implement their adaptation so-
lution. The activity provides the getCurrentStage() method for developers to actively acquire
the current stage information. App developers can change the visibility of view objects and block
access to sensitive methods (e.g., methods related to file operations) to protect user data privacy
and security. App developers can delegate the UI control to the client library by registering target
view objects for automatic control. Since the MRAAC Integration library includes the components
of the client library, host app developers can enable in-app control in the same way.

6 USE CASES

This section presents three use cases for MRAAC: Smarter Lock, guest-aware CA, and corporate
app for BYOD. We adopt the following naming convention for stages: Except for the locked stage
denoted by L, a stage name consists of three characters representing risk type, authentication level,
and sensitivity level, respectively. For example, Stage A21 means that a user whose authentication
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level is two is accessing the resource at sensitivity level one under the risk type A. We use the
following common settings for the risk models of the three use cases: the authentication transition
functions follow the default scheme in Table 3, and we adopt the default access control function
(i.e., geq): To access a resource of ci , the authentication level aj should satisfy j ≥ i .

6.1 Smarter Lock

We first present Smarter Lock to show how to use MRAAC to improve Android Smart Lock while
addressing the issues and limitations mentioned in Section 3.1. The basic idea of Smart Lock (An-
droid 10 and later) is that once a device is unlocked with EA, the device is kept unlocked as long
as it is in a trusted environment. Namely, if any of BODY, PLACE, and DEVICE (see Section 3.1)
is positive, then the device remains unlocked. However, if all three factors are negative at any mo-
ment, then the device will activate EA for the next session. Negative factors will not lead to an
immediate device lock if the device is currently unlocked.

We present this use case in two steps. In the first step, the adaptation model adopts only the
contextual factors used by Smart Lock (i.e., BODY, PLACE, and DEVICE) to address when to end
the unlocked state of a device and activate EA.

In the second step, we show the extensibility of MRAAC by handling social insiders that are not
covered by Smart Lock (including Android 10 and later). Social insiders may take advantage of the
unlocked state extended by contextual factors to access the device as introduced in Section 3.1. As
a countermeasure, we enable behavioral biometrics-based IA to proactively defend against social
insiders. In particular, IA is used to immediately lock out an attacker upon behavioral mismatches.
Risk model. We adopt a minimal risk model for Smarter Lock with two authentication lev-
els: a0 (unauthenticated) and a1 (authenticated); two sensitivity levels: c0 (no resource being
accessed) and c1 (resource being accessed); and two risk types: Trusted (device in a trusted environ-
ment) and Untrusted (device in an untrusted environment). We use a high-level context provider
TrustedContextProvider (TC) to aggregate the results of the three contextual factors. It also
adopts a timer (TIMEOUT) to track if the duration of being in a trusted environment exceeds a
predefined value. The timeout interval is configurable by the device owner. The resulting aggrega-
tion can be expressed as the following logic expression:

TC = (BODY ∨ PLACE ∨ DEVICE) ∧ ¬TIMEOUT.

TrustedContextProvider outputs two signals: TRUSTED and UNTRUSTED for transition between
the two risk types. When UNTRUSTED is issued, the risk type changes from Trusted to Untrusted.
However, TRUSTED cannot change the current risk type from Untrusted to Trusted, since Smarter
Lock adopts the low watermark strategy. Another signal is SCREEN_ACTION, which indicates if any
screen action is performed (i.e., screen on or screen off). This signal implies a user starts or stops
using the device, and the system needs to determine whether to activate EA. For Android, it relies
on a system event context provider that listens to ACTION_SCREEN_ON and ACTION_SCREEN_OFF.
Multi-stage model. Based on the risk model, we obtain a three-stage adaptation model as shown
in Figure 3.

According to the model (without IA), the device remains unlocked if it stays in a trusted en-
vironment, i.e., T 11. When TrustedContextProvider issues an UNTRUSTED signal (i.e., untrusted
environment or the time limit exceeded), the current stage changes to U 11 (T 11 → U 11), where
the user needs to pass EA for the next session. After that, the device cannot move back to T 11
even if it receives the TRUSTED signal (i.e., low watermark). To add or remove a contextual factor
for trusted environments, a developer needs to only change TrustedContextProvider without
changing the topology of the multi-stage model, which helps reduce possible conflicts.
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Fig. 3. Multi-stage adaptation model for Smarter Lock. Stages: T : Trusted, U : Untrusted, L: Locked. Note:

Signals 3© 4© are available only when IA is adopted.

Adaptation. Since only EA is available in the first step, the adaptation is about whether to activate
EA. To avoid misusing contextual factors for unlocking, MRAAC makes EA acceptance the only
signal that can let the system leave the locked stage (i.e., L → T 11). It also shows that the stateful-
ness of MRAAC makes it simple to track the state of the system and make adaptations based on
both the current stage and the input signal.
Incorporating IA. Smarter Lock can employ behavioral biometrics-based IA mechanisms in
Stages T 11 and U 11 to continuously defend against unauthorized access from social insiders. We
enable the IA mechanisms and add adaptation policies to activate them atT 11 andU 11. If there is a
negative IA result, then the system will immediately lock the device and activate EA (i.e.,T 11 → L
and U 11 → L). Incorporating IA can help defend against knowledgeable social insiders: Even if
they know the device remains unlocked in a trusted environment and find a chance to access the
unlocked device, IA mechanisms can still block them. However, false IA rejections will immedi-
ately block a legitimate user, which may affect usability. The next use case illustrates how we use
MRAAC to mitigate false rejections.

6.2 Guest-aware CA

Enabling IA to continuously authenticate a user can proactively defend against unauthorized ac-
cess. However, the first use case shows the necessity of adapting IA mechanisms to mitigate false
IA results. Also, it is possible for a guest user to temporarily access the device, who should not
be blocked by IA. Thus, in this use case, we use MRAAC to implement a guest-aware CA sys-
tem covering the following four aspects: (1) using the current resource sensitivity to dynamically
adjust the parameters to balance false rejection and false acceptance rates; (2) incorporating ac-
cess restrictions as a reaction to biometric mismatch; (3) activating authenticators only when the
corresponding biometric traits are available; and (4) not blocking a guest user upon biometric mis-
matches while restricting a guest’s access to sensitive resources.
Risk model. Figure 4(a) shows the configuration file of the risk model. Compared to the Smarter
Lock use case, we add authentication level a2 and sensitivity level c2 and use the following common
settings: resources are classified into non-sensitive (c1) and sensitive (c2), and the two authentica-
tion levels a1 and a2 represent weakly and strongly authenticated users, respectively. Guest-aware
CA is supposed to handle the general risk type (i.e., general unauthorized access attacks) and the
guest risk type (i.e., authorized access from a guest user). A GuestContextProvider detects spe-
cific actions that indicate a user change (e.g., Android’s Screen Pinning [21]) or a device handover
gesture [9] and issues the GUEST signal to enter the guest risk type. We note that guest access also
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Fig. 4. Model generation for Guest-aware CA.A: general,B: guest. Stages with different colors adopt different

adaptation schemes.

implies a change in authentication level, since the user changes to a non-owner. Thus, the guest
context provider needs to issue an authentication signal DE_GUEST ahead of the context-related
GUEST signal, which de-authenticates the user from a2 to a1 for guest access. In addition to the de-
fault scheme in Table 3, we add two DE_GUEST related transitions to the authentication transition
function authTran of the general risk type. As for the authTran function of the guest risk type,
the authentication level is fixed to a1 in response to all the signals except for IA_ACC. Because an
IA acceptance implies that the user changes back to the owner, we use it as the context signal for
exiting from the guest risk type to the general risk type.
Multi-stage model. In Figure 4(b), the MultiStageModelBuilder builds a five-stage model based
on the risk model: From the model, we can observe several adaptation flows: (1) Sensitive resource
access: Only a strongly authenticated user is allowed to access sensitive resources (A21 → A22),
and the system blocks a weakly authenticated user or a guest (A11 → L, B11 → L). In addition, IA
rejection or switching to a guest will trigger EA during the access (A22 → L). (2) IA rejection: to
mitigate false IA rejection,A11 acts as a buffer for further verifying the user’s identity (A21 → A11)
and only restricting access to sensitive resources instead of a direct lockout. If IA in A11 accepts
the user, then the system automatically addresses the previous false reject (A11 → A21). (3) Guest
access: guest access context produces two signals DE_GUEST and GUEST and results in two-hop
adaptation flows: A21 → A11 → B11 and A11 → A11 → B11. The system downgrades the
authentication level in the first hop to prevent a guest from accessing sensitive resources (i.e.,
A22 → L). In the second hop, the system adapts to the guest risk type. When the guest finishes
using the device, the current user changes back to the owner, which is captured by a positive IA
result (B11 → A11).
Adaptation. As MRAAC generates the multi-stage model, it provides a list of valid stages and
allows developers to further specify adaptation policies for the usability-level adaptation in each
stage. Assume that gait and touch authenticators are available. Given the low power consumption
of touch-based IA [27], we activate it for all stages except for L. The default adaptation policy is
expressed as a tuple (TOUCH_IA, start, default), which means activating the touch authen-
ticator with the default parameters. For the guest stage, we still need the touch authenticator to
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Fig. 5. Demo: MRAAC Client Camera Roll.

track the user’s identity to determine when to exit from the guest stage. For higher-risk stages (i.e.,
A11 and A22), we additionally adopt the gait authenticator, which is activated when the user is on
foot. We set up an OnFootContextProvider (based on the Google Activity Recognition API) to
provide the context signal ON_FOOT. The conditional adaptation policy is ON_FOOT → (GAIT_IA,
start, default). We adopt a sliding window strategy [12, 32, 51] for result aggregation: If m out
of n instances are accepted as the owner’s, then the authenticator will accept the current user as
the owner. An example policy is (AUTH_AGG, tune, "--reset --m=3 --n=5"), which means
resetting the sliding window and set m = 3,n = 5. As for access control adaptation, the device
user can customize an allowlist or a blocklist for the guest stage to determine what can or cannot
be accessed by a guest user.
Demonstrative example. MRAAC Service is supposed to be a system-wide service that enables
guest-aware CA for the device authentication systems. We add all authenticators and context de-
tectors and load the risk model and the adaptation schemes to initialize MRAAC Service. To show
how it works with third-party apps with MRAAC Client, we modified an open-source photo gallery
app, Camera Roll [30] (see Figure 5). Our goal is to hide the file operation buttons, delete and edit

at the guest risk type. Most changes were made to the app’s activity classes. ItemActivity pro-
vides a single photo view with file operation buttons. Client app developers only need to import
the MRAAC Client library and make activities inherit from SecureActivity. Internally, it auto-
matically starts Client Service to connect to MRAAC Service, sends IA results, and receives the
stage updates. In ItemActivity, we overrode onStageChanged() and set the visibility of target
buttons to View.GONE at the guest risk type. In the onCreate method of the main activity, we
added acquireRiskType() to pull the current risk type for initialization.

6.3 Corporate App for BYOD

Companies adopt BYOD policies to authorize employees to use their own devices for work pur-
poses. Employees need to use a corporate app to access corporate resources. It is essential to deploy
an app-wide authentication solution to secure sensitive data. In addition to EA for login, corporate
apps and services also need continuous authentication to determine when to de-authenticate a user
upon suspect unauthorized access during a session. Besides, as discussed in Section 3.1, existing IA
frameworks are insufficient when it comes to a complicated adaptation model: The authentication
solution should adopt different strategies according to whether a user is accessing the app onsite
or offsite. If the user is accessing the app within the company, which is considered secure, then
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Fig. 6. Model generation for BYOD corporate app. C : offsite, D: onsite. Stages with different colors adopt

different adaptation schemes.

it is unnecessary to adopt more stringent IA mechanisms; otherwise, if the user is offsite, then
stricter IA is required, and more restrictions are imposed on access to corporate resources. For this
use case, we use the MRAAC Integration library to enable self-contained MRAAC services and
demonstrate it with FairEmail, a popular open-source e-mail client [6].
Risk model. Figure 6(a) shows the risk model for the BYOD use case. We adopt the same settings
for authentication levels and sensitivity levels as the guest-aware CA use case and introduce two
risk types: offsite (C) and onsite (D). We adopt the capped authentication transition function (see
Table 3) for the offsite risk type—a positive IA result cannot raise a low authentication level to the
maximum. It ensures that a weakly authenticated user must be explicitly authenticated to access
sensitive resources. At the same time, the user can still access non-sensitive resources in the app.
We adopt a location-based context provider OnsiteContextProvider to determine if the device is
in the company or not. It generates two context signals, ONSITE and OFFSITE, to switch between
the two risk types.
Multi-stage model. Figure 6(a) shows the multi-stage model generated from the above risk model.
We can see that most stage transitions are identical between the two risk types except that it is
impossible to move fromC11 back toC21 because of the capped authentication function. The other
parts are similar to the general risk type of the guest-aware CA use case.
Adaptation. Authentication adaptation involves two aspects: (1) Activation. Given that the onsite
context is secure, we only need to activate the touch-based authenticator. As the offsite context
implies a higher risk of unauthorized access and a user’s mobility, we additionally activate the gait-
based authenticator using the same conditional adaptation policy in the Guest-aware CA use case.
(2) Aggregation. Since the sliding window strategy helps balance the false rejection rate and false
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Fig. 7. Demo: MRAAC Integrated FairEmail.

acceptance rate, we adopt a larger window for the onsite risk type to reduce false rejections and a
smaller window for the offsite risk type for a low false acceptance rate. Moreover, we can further
adapt the aggregation strategy to each stage within a risk type. The access control adaptation
scheme for the offsite risk type is mainly about adjusting the sensitivity level of specified resources
based on the current stage. For example, it is considered non-sensitive to use a corporate e-mail
address to send e-mails in the company. However, it becomes sensitive for the offsite scenario
because of possible imposter attacks. Thus, we can raise its sensitivity level to c2 to require a high
authentication level.
MRAAC Integrated FairEmail [6]. We implemented the BYOD use case on FairEmail using the
MRAAC Integration library. As introduced in Section 5.3, we created the four main services to in-
herit from the base services. In the adaptation service, we loaded the configuration file of the risk
model and set up adaptation schemes for all stages. All the context providers and the authentica-
tors (together with the aggregation method) should be registered in the context and authentication
services, respectively. The access control service requires a resource sensitivity map for each stage
so the service can update the sensitivity accordingly. Similar to the MRAAC Client library, we ex-
tended the base activity from SecureActivity to enable MRAAC. The difference is that we added
reportResourceName() to the callbacks related to resource changes so the access control service
can receive the current resource. Developers can also report the current file, document, or data
and assign a sensitivity level. For example, the e-mail app can report the details (e.g., tag, sender)
of the current message. Then, e-mails from specific senders can be assigned with a higher sensi-
tivity level. With the above process, we integrate MRAAC into the FairEmail app. Figure 7 shows
how we enabled in-app access control of FairEmail. As described in the access control adaptation
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scheme, we adjusted the sensitivity level of the compose activity as high for the offsite scenario.
As shown in the figure, a weakly authenticated user can view the inbox list. However, if the user
wants to compose a new e-mail, they need to provide their fingerprint to proceed.

7 EVALUATION

7.1 Evaluation Setup

Devices. To show the compatibility of MRAAC, we used three different Android smartphones for
performance evaluation to cover a variety of hardware and software: 1) Google Pixel (2016, CPU:
2*2.15GHz + 2 *1.6GHz, RAM: 4GB, Android 9.0), 2) Samsung S8 (2017, CPU: 4*2.3GHz + 4*1.7GHz,
RAM: 4GB, Android 7.0), 3) Google Pixel 3 (2018, CPU: 4*2.5GHz + 4*1.6GHz, RAM: 4GB, Android
12). We also tested MRAAC successfully on the latest Android version to date (Android 14) using
the Google Pixel 7 Pro emulator.
Performance metrics. For general performance evaluation, we measured the CPU time of critical
operations and the memory overhead in terms of heap size. We also measured the inter-service
communication latency to evaluate how fast the adaptation service can react to a signal. In addition,
we evaluated the battery consumption of MRAAC.
Configurations. Our evaluation covered the use cases in Section 6. We evaluated the performance
of the MRAAC Service integrated into the FairEmail app and evaluated the MRAAC Client using
the demo Camera Roll app. Authenticators: We used touch- and gait-based IA mechanisms, since
they rely on common sensors (i.e., touchscreen, accelerometer, gyroscope) available on most smart-
phones and are related to common activities (i.e., swiping, walking). The touch-based IA adopts
the Touchalytics [12] algorithm and conducts classification over each touch event. The gait-based
IA adopts a deep neural network–based model [52] and conducts authentication every five seconds
(the sampling rate of the motion sensors is 50 Hz). For result aggregation, we aligned the results
from two authenticators in chronological order and applied a sliding window for decision-making.
Context detectors: We adopted a threshold-based OnFootService to tell if the user is walking. It
issues a context signal every 15 seconds. The ON_FOOT_ENTER signal activates the gait-based IA
while ON_FOOT_EXIT triggers the de-activation. We deployed a location context provider for the
BYOD use case to detect if the user is onsite. The location update frequency was once per 15 sec-
onds. For the Guest-aware CA use case, we manually triggered the GUEST signal to measure the
client-server communication latency.

7.2 Development Overhead

To show that MRAAC provides a rapid development of adaptive authentication, we measured
the development overhead of MRAAC Service and Client in terms of lines of code (LOC) for the
modified FairEmail and Camera Roll apps. All code changes are in Java. For FairEmail, we count the
LOC of four main services of MRAAC Service: (1) Adaptation service: 25, (2) Authentication service:
51, (3) Access control service: 33, (4) Context service: 32. We added 22 lines in the base activity
of FairEmail to control the four services and enable in-app access control. To bind an existing
authenticator or context detector to MRAAC, developers need to implement an authentication
provider or context provider. The LOC of the provider for the gait authenticator is 24, and the
LOC of the provider for the onsite context detector is 30. For Camera Roll, which only enables
the MRAAC Client, there are only 15 lines added to receive the risk changes and adapt the UI
components.

7.3 Performance Evaluation Results

CPU overhead. The critical operations of MRAAC are related to the adaptation process. Thus,
we instrumented the adaptation service to measure the CPU time of the following aspects and
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Table 4. Mean Latency (Standard Dev. in Parentheses) of Inter-service and Inter-process Communication

inter-service inter-process
devices authentication (ms) context (ms) adaptation (ms) pull (ms) broadcast (ms) IA update (ms)
Pixel 1.15 (0.51) 1.23 (0.53) 10.20 (8.74) 2.17 (1.02) 9.74 (5.09) 2.18 (0.88)

S8 0.71 (0.62) 0.40 (0.12) 5.04 (1.45) 1.61 (0.64) 7.32 (3.65) 1.69 (0.75)
Pixel 3 0.50 (0.15) 0.56 (0.14) 2.70 (0.66) 0.58 (0.09) 4.30 (0.73) 1.53 (0.25)

repeat 10 times to calculate the average: (1) Model construction overhead. The adaptation service
first needs to build the multi-stage model from the configuration file for initialization, which is a
one-time operation. The results show that the average CPU time was about 35.0 ms (std: 0.3 ms) for
Google Pixel 3, while Google Pixel needed 111.9 ms (std: 6.4 ms). (2) Low-level adaptation overhead.
We measured the CPU time of the adaptation service processing a low-level adaptation, which was
using the ON_FOOT_ENTER signal to activate the gait authenticator. Most cases were below 1 ms for
Google Pixel 3 and Samsung S8. Even for Google Pixel, the adaptation overhead was only 1.6 ms
(std: 0.1 ms), which is negligible. (3) Stage transition overhead. We tested with the stage transition
C21 → D21 triggered by the ONSITE context signal in the BYOD use case, which involves enforcing
three default adaptation policies (i.e., low-level adaptation): de-activating the gait authenticator,
activating the touch authenticator, and adjusting the sliding window for aggregation. The results
show that the CPU time of a stage transition was about 3.3 ms (std: 0.1 ms) for Google Pixel 3
and about 8.6 ms (std: 0.8 ms) for Google Pixel. Given that all stage transitions were pre-computed
during model construction, it took low CPU overhead to perform stage transitions. Based on the
low-level adaptation overhead, we can see that the enforcement of default adaptation policies took
the most overhead in the stage transition.
Memory overhead. We used the Android Profiler to measure the heap size of these services.
Note that we excluded the extra memory overhead from each authenticator, given that developers
can choose different sets of authenticators and may produce very different results. Specifically,
machine learning models and buffered sensor data may take a significant amount of memory space.
The results show that MRAAC Service introduced 22 kB memory overhead and MRAAC Client
introduced only 2 kB memory overhead. For comparison, the motion data buffer (250 samples
with six double variables for each sample) used by the gait authenticator was 12 kB.
Latency analysis. Compared to single-stage schemes, MRAAC requires additional operations to
handle multi-stage adaptation, which results in an increase in latency. Besides, authenticators and
context detectors, as services, need to communicate with the authentication service or the context
service to reach the adaptation service. Thus, we conducted latency analysis over each step of
MRAAC to measure their impact on the time overhead.

MRAAC adopts an event bus for all signal exchanges among internal services. We measured the
following inter-service latency types and repeated each experiment 100 times: (1) authentication
latency: the elapsed time from when an authenticator sends an authentication score to when the
adaptation service receives the signal. (2) context latency: the elapsed time from when a context
detector sends a context signal to when the adaptation service receives the signal. (3) adaptation
latency: the total elapsed time from when a context detector generates a context signal to when
the target authenticator receives the adaptation signal (i.e., context detector → context service
→ adaptation service → authentication service → authenticator). Table 4 shows that both the
authentication latency and the context latency were only around 1 ms for all three phone mod-
els. For newer phones like Google Pixel 3, they were always below 1 ms. The adaptation latency
was longer, since it involved more hops and adaptation policy processing. Nevertheless, even for
Google Pixel, the average adaptation latency was around 10 ms, which means the authenticator
can adapt to the context change within a negligible time interval.
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In the client-server structure, an MRAAC Client app communicates with MRAAC Service via
the Android IPC mechanism to obtain the risk information and send the client IA results. Thus,
we also measured the following inter-process latency types: (1) pull: MRAAC Client obtains the
current risk information from MRAAC Service via Android Binder. (2) broadcast: MRAAC Service
broadcasts the stage updates to all MRAAC Client apps. (3) IA update: MRAAC Client sends its
client IA results to MRAAC Service via Android Binder. Table 4 shows that the pull operation and
the IA update had very short latency given that they both rely on Android Binder. The broadcast
latency was acceptable given that in 95% of the experiments, the client app received the stage
update from MRAAC Service within 20 ms on the Google Pixel phone.

The latency analysis results have shown that MRAAC necessitates extra processing time for
multi-stage adaptation. However, when we factor in the reporting rate of contextual and behavioral
events at the granularity of seconds, the time overhead of the multi-stage adaptation is negligible.
Battery consumption. We used the Battery Historian [22] to measure the battery consumption
of the adaptation process of MRAAC Service on Google Pixel 3. We made the context detectors
and the gait authenticator run at a fixed rate. We tested the following two settings and measured
one-hour battery consumption five times for each setting: (1) Enabling adaptation. MRAAC was
forced to perform one high-level adaptation (i.e., processing the ON_SITE and OFF_SITE signals)
and one low-level adaptation (i.e., processing the ON_FOOT_ENTER and the ON_FOOT_EXIT signals)
every 15 seconds (i.e., the maximum adaptation frequency). However, the gait authenticator was
set to ignore the adaptation outcome and keep running. (2) Disabling adaptation. MRAAC did not
process any adaptations. From the result, the average hourly consumption of the first setting was
2.95% and the second setting was 2.92%. It shows that the adaptation process introduced very low
battery consumption to the device.

7.4 Use Case Simulation

We conducted a simulation based on the BYOD use case to show how MRAAC helps defend against
unauthorized access with fewer false rejections. We used real-world sensor data to generate sim-
ulation traces and fed them into the MRAAC-integrated FairEmail app running on Google Pixel 3
in real-time so we could simulate unauthorized access and daily device usage events and log the
adaptations, stage transitions, and authentication results of MRAAC. As introduced in Section 6.2,
the multi-stage design enables us to implement an adaptive sliding window that adopts different
(m,n) pairs based on the current stage. For simulation settings, we chose the majority vote as the
final decision (m = �n/2	) and selected three different n’s: 5, 9, 11. A larger n targets a lower false
rejection rate at the cost of longer reaction time and a higher false acceptance rate, which is suit-
able for lower-risk stages. Thus, for onsite stages, we set n = 11 for D21 and n = 9 for D11,D22;
for offsite stages, we set n = 9 forC21 and n = 5 forC11,C22 (note: given the high risk ofC11 and
C22, we chose a small n to ensure low reaction time.) In addition to the adaptive sliding window,
we adopted the touch authenticator for all stages except the locked stage and adopted the gait
authenticator only at C11, C21, and C22.

For the simulation task, we randomly selected 10 users from the HMOG dataset [47], which
includes motion sensor data and touch data of reading activities on a smartphone while walking
or sitting. For each user, we used six sessions of data to train the authenticator models and used
another two sessions (one “walking + reading” and one “sitting + reading”) for simulation. We
replaced raw sensor data with the HMOG data and matched the timestamp to real-world time.
Since the HMOG dataset did not provide location data and app access data, we randomly generated
location switch events (switching between onsite and offsite) and app switch events (switching
between sensitive and non-sensitive resources). The interval between two switch events followed
exponential distributions. We set the average intervals as one and two minutes for location switch
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events and app switch events, respectively. We chose short intervals to trigger more adaptations
to test the robustness of MRAAC.
Attack detection experiments. In the first set of experiments, we chose one user as the device
owner and all the other users as attackers and repeated it for all users. We ensured the attackers’
data was not used in the negative training data of the owner user. An attacker is supposed to access
sensitive resources under the offsite context. We measured how long the adaptive authentication
system took to lock out the attacker. We study two locking duration types: (1) th is the duration
between the attacker picking up the device and the device locking out the attacker. (2) tt is the
duration between the attacker performing the first touch event and the device locking out the
attacker. We study tt separately, since the attacker might not operate on the device immediately
after picking up the device. Among 90 attack events, MRAAC failed to detect only one attack when
both the gait-based and touch-based authenticators falsely accepted the attacker. The average th
was 33.2 s (95th percentile = 60.6 s). The average tt was 11.0 s (95th percentile = 36.0 s), which
implies that attackers did not have much time to launch an active attack before being blocked.
Other biometrics-based IA mechanisms may be able to detect an attack even faster. Importantly,
MRAAC is oblivious to the type of mechanism being used. Of course, without the use of an IA
mechanism, the attack would not get detected at all. In summary, with MRAAC managing the
authentication adaptation and performing multi-modal authentication, the authentication system
can efficiently detect unauthorized access.
Usability experiments. A larger window increases the latency to detect an intruder but it reduces
potential false positives. However, it is challenging to determine one single optimal window size for
all circumstances. To address this problem, MRAAC’s adaptive sliding window adapts the window
size to the current context. It aims to reduce unnecessary authentication and mitigate false IA
rejection, both of which can disrupt users and initiate EA.

In our second set of experiments, we compared MRAAC’s adaptive sliding window approach
with two constant-size sliding window schemes. To maintain a fair and consistent comparison,
we used the maximum and minimum window values from the adaptive strategy to determine the
sizes of our two baseline schemes: namely, the (3,5)-sliding window and the (6,11)-sliding window.
During the experiments, we ran the complete trace of each user (the length of each trace was 10–15
minutes). We assume the user immediately passes EA and continues using the device if the system
triggers EA. MRAAC performed 361 stage transitions for all 10 users without any undefined tran-
sitions. EA was triggered 15 times in total: 12 cases occurred at the access to sensitive resources
and 11 cases occurred at the offsite stage (8 common cases when both conditions hold). Besides, no
EA was triggered for 4 out of the 10 users. Figure 8 compares the raw authentication results of the
gait and touch authenticators as well as two baseline methods to the aggregated results using the
adaptive sliding window strategy enabled by MRAAC. The result shows that individual authen-
ticators were prone to make false rejections due to their low model accuracy. Note that the gait
authenticator produced fewer false rejection decisions because the user was not always walking.
A larger window size (n = 11) can help reduce the false rejections of individual authenticators.
However, MRAAC made the fewest false rejections among all methods for 9 out of 10 users. Only
for user 998757, MRAAC activated EA once while the (6, 11)-sliding window did not activate any
EA. It was triggered when MRAAC was adopting a small window size at a high-risk stage. We
also note that the performance of MRAAC was bounded by the performance of individual authen-
ticators. Nevertheless, we can see significant performance improvement by the multi-stage design
of MRAAC. Then, we measured the activation times of the gait-based authenticators. Due to the
adaptation mechanism, the gait authenticator was only active for 33.7 minutes out of 122 min-
utes for all experiments. The above simulation results have shown that MRAAC can help schedule
authenticators to reduce unnecessary detection and false rejections.
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Fig. 8. The per-user raw false rejection numbers of authenticators and the EA numbers of baseline methods

and MRAAC.

8 DISCUSSION

Client-server communications. MRAAC proposes a client-server structure for MDM/EMM so-
lutions, which involves communications between the client app and the MRAAC service. Potential
attacks may happen during the communication. On the one hand, the stage information broad-
cast to a client app may include or imply sensitive information (e.g., a user’s location). Thus, the
MRAAC service can only send digested or coarse-grained risk information that is essential to the
client app. The client app should also declare the required permissions of sensitive risk informa-
tion. On the other hand, the client app can send fake authentication results to MRAAC, which
may lead to impersonation attacks (fake IA acceptance) and denial of service attacks (fake IA re-
jection). Thus, MRAAC only allows verified and trusted client apps to send authentication results
(see Section 5.2.2) to avoid these attacks.
Accommodation of existing adaptive mechanisms. We propose MRAAC as a general adaptive
authentication framework that is compatible with existing adaptive systems. Most existing adap-
tive authentication mechanisms [17, 40, 43] can be accommodated and abstracted as conditional
policies. For example, CASA and PRISM use machine learning techniques to learn context models
from sensor data and map the model output to a certain adaptation scheme that (de-)activates an
authenticator or changes its parameters. Each model is a context provider and provides a signal
for stage transition or an adaptation policy in MRAAC.
Modeling and policy-making. MRAAC is primarily provided for developers to design a multi-
stage adaptive authentication system. Developers are responsible for designing use cases and using
MRAAC to build the multi-stage model for their authentication system. However, end-users may
have their own preferences and requirements of security and usability and may want to configure
the adaptive authentication system. Existing studies [10, 11] have investigated how to enable users
to customize authentication mechanisms. Thus, it should be possible for end-users to configure
some components, such as authenticators and context providers (e.g., setting up a geofence for
the trusted place [10]). End-users should also be able to determine what use cases to enable, but
cannot modify the multi-stage model to change the adaptation flow of a certain use case. A possible
avenue is to implement a usable configurable adaptive authentication system for end-users based
on the MRAAC framework.
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For deployment, all stages except the locked stage are transparent to end-users, i.e., stage tran-
sitions and adaptations are performed automatically and internally. End-users may perceive the
existence of MRAAC only when EA is activated. Thus, the complexity of a multi-stage model is
not a direct factor affecting end-users’ normal device usage.
Usability study. Our simulation used traces generated from a real-world dataset to evaluate the
usability of MRAAC in terms of the number of EA triggered. Existing studies [28] have covered
the usability of IA mechanisms and shown that users are concerned with interrupt-authenticates
(i.e., immediate device lock with EA). According to our experiment results, we can observe that
MRAAC can significantly reduce the times of EA compared to individual IA mechanisms. However,
performing a user study to collect user perceptions and feedback about MRAAC is future work.

9 CONCLUSION

We present a multi-stage risk-aware adaptive authentication and access control framework,
MRAAC. It combines context and implicit authentication to dynamically adapt the authentica-
tion and access control mechanisms. The multi-stage design supports progressive and complex
adaptation workflows. MRAAC provides two libraries to enable adaptive authentication and make
third-party apps implement in-app control with risk awareness, respectively. Extensive experi-
ments have shown the effectiveness of MRAAC in balancing security and usability of authentica-
tion systems with low performance overhead.
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