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The uniqueness of behavioral biometrics (e.g., voice or keystroke patterns) has been challenged by recent
works. Statistical attacks have been proposed that infer general population statistics and target behavioral
biometrics against a particular victim. We show that despite their success, these approaches require several
attempts for successful attacks against different biometrics due to the different nature of overlap in users’
behavior for these biometrics. Furthermore, no mechanism has been proposed to date that detects statistical
attacks. In this work, we propose a new hypervolumes-based statistical attack and show that unlike existing
methods, it (1) is successful against a variety of biometrics, (2) is successful against more users, and (3) requires
fewest attempts for successful attacks. More specifically, across five diverse biometrics, for the first attempt,
on average our attack is 18 percentage points more successful than the second best (37% vs. 19%). Similarly,
for the fifth attack attempt, on average our attack is 18 percentage points more successful than the second
best (67% vs. 49%). We propose and evaluate a mechanism that can detect the more devastating statistical
attacks. False rejects in biometric systems are common, and by distinguishing statistical attacks from false
rejects, our defense improves usability and security. The evaluation of the proposed detection mechanism
shows its ability to detect on average 94% of the tested statistical attacks with an average probability of 3%
to detect false rejects as a statistical attack. Given the serious threat posed by statistical attacks to biometrics
that are used today (e.g., voice), our work highlights the need for defending against these attacks.
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1 INTRODUCTION

Researchers have shown that a variety of biometrics are unique enough to warrant identity ver-
ification of users. These biometrics include keystroke [Bergadano et al. 2002; Monrose and Rubin
1997], voice [Chung et al. 2018; Nagrani et al. 2017], mouse movement [Ahmed and Traore 2007;
Jorgensen and Yu 2011], stylometry [Brocardo et al. 2014; Fridman et al. 2016], gait [Boulgouris
et al. 2005; Liu and Sarkar 2006], gaze [Liu et al. 2015; Maeder et al. 2004], and touch input
behaviour [Frank et al. 2013; Li et al. 2013]. Financial institutions and enterprises are increasingly
adopting biometrics to corroborate their customers’ and employees’ identities [Lee 2016; Mayhew
2016]. A few banks have provided the option of voice authentication through Amazon Alexa
to their customers [Burt 2018]. Several commercial solutions (including Samsung’s Nexsign)
enable identity verification through behavioral biometrics on personal devices [BehavioSec 2021;
Samsung SDS 2021].

Some researchers have revisited the claimed security of various biometrics. Biometrics authen-
tication systems rely on machine learning and statistical analysis techniques to model the normal
behavior of a user and then flag anomalies by identifying deviations from normal behavior. Re-
searchers have proposed attacks that exploit the overlaps in users’ behavior across the population
(“statistical attacks”) [Negi et al. 2018; Serwadda and Phoha 2013a, b; Serwadda et al. 2011]. To
mount a statistical attack, the attacker uses behavioral data of the population (a subset of users
excluding the victim) to infer the “normal behaviors” of the population and uses these to defeat
the biometrics-based authentication system against the victim. Although less successful than other
attack approaches [Khan et al. 2016, 2018; Tey et al. 2013], statistical attacks are less expensive to
set up since they do not require any knowledge of the behavior of the victim.

Previous works have devised different methods to infer general population statistics [Negi et al.
2018; Serwadda and Phoha 2013a, b; Serwadda et al. 2011; Zhu et al. 2020]. However, these ap-
proaches do not quantify the degree of overlap between the regions capturing the behavior asso-
ciated with users, which helps identify the most promising attack samples. Furthermore, existing
approaches work well when most of the population is closer to the population mean. If the pop-
ulation is distributed within clusters, there may be multiple overlapping regions and the attacker
needs to navigate the entire cluster space for victims that are close to the centroid of the clusters.
Consequently, several existing approaches [Serwadda and Phoha 2013a, b; Serwadda et al. 2011] re-
quire a large number of failed attempts before success for a significant proportion of their victims.
For a targeted attack (i.e., where an attacker targets a particular victim), it is desirable for the at-
tacker to have fewest failed attempts possible to avoid getting locked out or raising an alarm [Acar
et al. 2020; Khan et al. 2018; Negi et al. 2018]. Finally, no mechanism has been proposed to detect
statistical attacks on biometrics.

We propose to use hypervolumes to identify overlapping regions in the biometrics space.
Hypervolumes have previously been explored in ecology and evolutionary studies to describe and
compare niches or trait spaces characterizing phenotypes [Hutchinson 1957]. We then use the over-
lapping regions to infer population statistics and mount statistical attacks. Our intuition for using
hypervolumes comes from the fact that data used to capture users’ behavior is multidimensional
and can be modeled as an n-dimensional hypervolume, allowing us to calculate the overlapping
regions. The identified overlapping regions will result in uncertain boundaries for classification,
which could lead to misclassifications. For adversaries, the overlapping regions are of interest
since they may attempt to impersonate the victim by submitting samples that come from the
overlapping regions of the population, thereby increasing the probability to mount a successful
attack. Previous statistical attacks have considered population means [Negi et al. 2018; Serwadda
and Phoha 2013b; Serwadda et al. 2011] or better feature space traversing approaches [Negi et al.
2018] to exploit this overlap (see Figure 2); however, our approach determines precise overlap
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regions using hypervolumes (see Figure 2), thereby significantly improving attack performance
by reducing the search space and extracting the statistics from overlapping regions where the
boundaries for classification would be uncertain. Furthermore, unlike previous approaches that
assume a unimodal data distribution by completely relying on the population mean [Serwadda
and Phoha 2013b; Serwadda et al. 2011], hypervolumes work for multimodal distributions too.

To demonstrate the efficacy of our attack, we compare it with three existing statistical attack
approaches [Negi et al. 2018; Serwadda and Phoha 2013b; Serwadda et al. 2011]. We evaluate
our approach by attacking five diverse biometrics: touch input [Frank et al. 2013], mouse move-
ment [Eberz et al. 2018], gait [Zou et al. 2020], keystroke dynamics [Killourhy and Maxion 2009],
and voice [Chung et al. 2018; Nagrani et al. 2017; Zhao et al. 2020]. We evaluate these attacks on
two metrics—the percentage of compromised population and number of attempts required for a
successful attack. We show that our attack performs consistently well in all tested scenarios. On
the first attempt, it outperforms the second-best attack, on average, by 18 percentage points (37%
vs. 19%). It consistently performs better against most scenarios, and after 10 attempts, on average, it
compromises at least 17 percentage points (77% vs. 60%) more victims than the second-best attack
for different biometrics.

Some researchers have proposed to use biometrics in a multimodal fashion to circumvent statis-
tical attacks [Acar et al. 2020; Stanciu et al. 2016]; however, we propose the first ever mechanism
to detect statistical attacks. False rejects in biometrics systems are common. Distinguishing failed
statistical attack attempts from users’ samples ensures the usability of the authentication biometric
by not locking out legitimate users unnecessarily. Our detection mechanism exploits the attacker’s
desire to efficiently break the system against a particular victim with as few attempts as possible.
This assumption has been made by other researchers in this area [Acar et al. 2020; Khan et al.
2018; Negi et al. 2018], as a large number of failed attempts within a short interval can lock out the
victim’s account and spreading the attack over a longer period can take much longer. Unlike a legit-
imate user, when a sample submitted by the statistical attacker gets rejected, the attacker submits a
new sample different from the rejected one and different from users’ previously observed behavior
with non-trivial probability. When presented with two consecutive rejected samples, our detection
mechanism considers the classifier’s decision, the distance of the samples from the centroid of the
victim’s samples, and the distance between the samples to determine whether they are from a sta-
tistical attack source. We validate our detection mechanism against the attacks evaluated in this
work. We evaluate our detection mechanism against users for whom statistical attacks are not suc-
cessful in the first attempt. Our evaluation shows that our detection mechanism is, on average, able
to detect 94% samples of the best-performing attacks (Hypervolume and K-means++) while mis-
classifying, on average, only 3% of users’ samples. Our main contributions include the following:

• A novel statistical attack method that outperforms existing statistical attacks in terms of
the number of users it can successfully attack and the number of failed attempts before
a successful attack. This superior performance of our attack is demonstrated against five
diverse biometrics with four different classifiers.
• First-ever demonstration of the susceptibility of the voice biometric to a statistical attack.
• A detection mechanism against statistical attacks that can reliably detect statistical attacks

with low False Detection Rates (FDRs) using as few as two samples.
• An open source release of our proposed attack (evaluated on five public datasets) and detec-

tion mechanism for the research community to reproduce our results and advance research
in this area.1

1https://github.com/sohailhabib/SecurityMetrics.
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2 BACKGROUND AND RELATED WORK

In this section, we first outline how biometrics are used for user authentication and metrics used
by the proposals and attack work. We then discuss three broad categories of attacks on biometrics-
based authentication systems.

User authentication using biometrics has been modeled as a binary classification problem—both
by original proposals [Frank et al. 2013; Xu et al. 2014] or attacks on these proposals [Serwadda
et al. 2011, 2016]. We note that user authentication using biometrics is sometimes also modeled
as an anomaly-detection problem [Killourhy and Maxion 2009]. Since statistical attacks attempt
to submit an attack sample that is possibly close to the users’ samples, previous works have suc-
cessfully targeted both binary classification [Serwadda and Phoha 2013b] and anomaly detection
[Serwadda et al. 2011] approaches. In the binary classification problem, the training data consti-
tutes of a positive class and a negative class. The positive class comprises of a subset of data of the
user, and the negative class comprises of data from multiple other users. The positive test cases are
the remaining samples from the target user, whereas the negative test cases are samples from other
users not considered in the training set (“synthetic attacks”). The performance of the classifiers is
measured using TAR (True Accept Rate) and corresponding FAR (False Accept Rate), where TAR
is the proportion of legitimate users correctly classified and FAR is the proportion of non-users
misclassified as legitimate users.

The usual evaluation follows a “zero-effort attacker model,” where the attacker has no knowl-
edge of their victims’ behavior and spends no effort to bypass the system. However, a determined
adversary may spend some effort to bypass the victim by studying their behavior or submitting
samples that may be closer to those from the victim. The performance of attacks on these systems
has been reported using the increase in EER (Equal Error Rate) (the operating point where the
classifier’s FAR is equal to its FRR (False Reject Rate) [Serwadda et al. 2016] or the bypass success
rate or percentage of population compromised (the fraction of targeted users who were success-
fully attacked) [Khan et al. 2016]. In addition to capturing the success of attacks, mean attempts
to bypass captures the expected number of failures before a successful bypass of the system.

Attacks on biometrics, where the attacker spends effort for a successful attack, can be mounted
using different techniques. Zhao et al. [2020] propose a random input attack that exploits the fact
that the acceptance region for biometric classifiers is usually larger than the true positive region
due to unlabeled space. Poisoning attacks on behavioral biometrics are also possible, where the
attacker exploits the behavior template update procedure [Lovisotto et al. 2020]. Two of the more
common attacks are imitation and statistical attacks, which are discussed in the following.

2.1 Imitation Attacks

In imitation attacks, human attackers attempt to mimic the behavior of the target victim to defeat
the authentication system. To mount the imitation attack, an attacker either needs to observe the
victim [Hautamäki et al. 2015; Stang 2007] or have access to victims’ behavioral data [Gafurov et al.
2007; Tey et al. 2013]. However, statistical attacks can be mounted without any knowledge of the
victims’ behavior, as they leverage overlaps in the behavior of the general population. Researchers
have evaluated imitation attacks against the gait, voice, keystroke, and touch input-based biomet-
rics [Gafurov et al. 2007; Khan et al. 2016; Panjwani and Prakash 2014; Tey et al. 2013].

Gafurov et al. [2007] used crowdsourcing techniques to evaluate the susceptibility of the gait
biometric to imitation-based attacks. Using data from 90 participants, they showed that matching
subjects against a set of physical characteristics could increase the EER from 0.12 to 0.22. Stang
[2007] mounted an imitation-based attack on gait biometrics using a multimedia projector. In their
experiment, 13 participants attempted to mimic 4 victims, each with 15 attempts of imitations to
achieve an average bypass success rate of 42%.
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Panjwani and Prakash [2014] mounted an imitation attack on the voice biometric using the
MTurk platform and human imitators. They were able to find nine imitators, six through MTurk
and three through human agents from a pool of 176 and 25, respectively. The nine candidates
had a bypass success rate of 33%. Hautamäki et al. [2015] also targeted the voice biometric using
professional mimickers. They used non-expert human listeners along with three different speaker
verification systems and reported that the EER increased by almost 100%.

Tey et al. [2013] trained attackers to mimic victims’ keystroke patterns on physical keyboards
by practicing them while getting feedback in a user interface. They showed that with the partial
knowledge of the keystroke patterns of the victims, 14 of their best attackers (out of 84 attackers)
were able to bypass the system with a 99% success rate. An approach to train attackers using
a user interface was also utilized by Khan et al. [2016] against touch input biometrics. They
developed an application to mimic the touch input behavior and recruited 32 participants to
achieve a bypass success rate of 86%. An augmented reality based approach was used to target
keystroke biometrics against a virtual keyboard on smartphones [Khan et al. 2018, 2020]. The
attackers trained by an augmented reality based guidance system were able to achieve a bypass
success rate of 87% against virtual keyboards on smartphones [Khan et al. 2018]. A similar setup
was used to bypass the touch input biometric with a bypass success rate of 99% [Khan et al. 2020].

Despite their high success rates, imitation attacks require the behavior of the victim, which may
not always be possible.

2.2 Statistical Attacks

The key idea behind statistical attacks is that biometrics are not truly distinct and may have a con-
siderable behavioral overlap across the general population. Statistical attacks infer general popula-
tion statistics to attack the victim and have been demonstrated against the handwriting, keystroke,
touch, and gait biometrics. Statistical attacks are demonstrated with datasets that do not include
victims’ data and only include data from the general population [Negi et al. 2018; Serwadda and
Phoha 2013a; Serwadda et al. 2011].

Ballard et al. [2006] targeted handwriting biometrics. They collected 11,038 handwriting sam-
ples from 50 users using a digitized pen tablet. They used human forgers and a generative model
for attacks. Their generative model takes the victim’s style information (e.g., “cursive” vs. “block”
writer), randomly chooses another user with the same style, and then uses statistics of this user to
generate attack samples. If the attack is unsuccessful, another user is chosen. They showed that the
nine best human forgers raised the EER from 5.5% for the zero-effort attack to 20.6%. The genera-
tive attack increased the EER to 27.4%. Unlike Ballard et al.’s choice of using a random person from
a subset of users, like several recent approaches, we use statistical properties of the population
(and not a target user) to generate attack samples. Furthermore, our approach efficiently navigates
the search space instead of making random selection.

Keystroke behavior like other biometrics is not quite unique, and exploitable overlaps exist
across the general population. Serwadda et al. [2011] attacked the keystroke biometric on personal
computers using population statistics inferred from more than 3,000 users. Their attack (“Mas-
terKey”) models keystroke biometric using a Gaussian distribution, identifies the mean of the data,
uses this mean as the first attack attempt, and then uses a step size based on the standard deviation
to gradually move away from the mean for subsequent attempts. They found that with a single
guess they can breach approximately 5% to 30% of the users. In their follow-up work [Serwadda
and Phoha 2013a], they performed a statistical analysis of the keystroke biometric. This version of
MasterKey increased the mean EERs of the three high performing keystroke classifiers between
28% and 84%. Due to its construction, MasterKey is not effective against victims who are far from
the population mean, as it requires a large number of attack attempts to bypass them.
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Negi et al. [2018] improved the performance of MasterKey by navigating the population charac-
teristics more efficiently. They modified the K-means++ initialization algorithm (where the initial
points are farther away from each other and have a higher probability of landing in different
clusters) [Vassilvitskii and Arthur 2006] to efficiently find samples that match with the victim’s be-
havior among the general population. They considered two variants of K-means++. The targeted
version assumes that the attacker has many samples of the keystroke behavior for the victim’s pass-
word mined from the general population using crowdsourcing. The indiscriminate version uses
the probability distribution derived from the general population to generate samples. With the tar-
geted variant, they were able to compromise the security of 40% to 70% of users within 10 attempts
or less. The indiscriminate version was able to breach 30% to 50% of the users within 10 attempts.

Serwadda and Phoha [2013b] showed the vulnerability of the touch input biometric against input
derived from general population statistics. After mining general population characteristics, they
used a Lego robot to feed the input to a smartphone. They reported an increase in the classifier’s
EER between 339% to 1,000% compared to a zero-effort attack. In their follow-up work [Serwadda
et al. 2016], they evaluated the effectiveness of their statistical attack on seven different touch input
classifiers. They reported that the FAR increased from between 0.17 and 0.32 to over 0.70.

Zhu et al. [2020] showed that the gait biometric is also vulnerable to statistical attacks. They
considered two attack scenarios. In the first scenario, they repurposed the K-means++ approach of
Negi et al. [2018] for their attack, which does not require the knowledge of the victim’s behaviour.
They showed that against different gait classifiers, it was able to compromise 15% to 60% of the
victims within five attempts. In the second scenario, with some knowledge of the victim’s gait
pattern, the attack was able to compromise 20% to 80% of the users within five attempts against
different classifiers.

Stanciu et al. [2016] designed a statistical attack that uses a combination of feature weights and
data binning to generate attack samples. Their attack bins each individual feature and generates
attack samples based on the size of bins and feature weights as learned by a Support Vector

Machine (SVM) classifier. For demonstrating the attack, they collected keystroke and sensory
(accelerometer and gyroscope) data from 20 participants. The collected data was used to generate
attack samples and attacked two classifiers against three scenarios: (1) only keystroke features,
(2) only gyroscope and accelerometer features, and (3) a multimodal combination of keystroke and
gyroscope and accelerometer features. The attack resulted in an EER between 31.5% and 50.6%
for the keystroke feature only, 0.2% and 3.9% for sensory features only, and 0.2% and 14.9% for
a combination of features. Therefore, they argued that the keystroke biometric should be com-
plemented with sensory biometric to defend against statistical attacks. We do not compare with
Stanciu et al.’s attack, as they report that their attacks fail for SVM and Naive Bayes classifiers. Un-
like their defense that relies on sensory biometric, our detection mechanism is generic and works
against different biometrics (see details in Section 5).

Acar et al. [2020] also used accelerometer and gyroscope sensors on a smartwatch to augment
keystroke authentication. They collected keystroke and sensory data from 34 participants using
an Android smartwatch. In addition to evaluating using the zero-effort attack model, they also
mounted imitation and statistical attacks. For imitation attacks, participants watched typing videos
of the victim and imitated their behavior. For statistical attacks, they used the same approach as
Stanciu et al. [2016], with three bin sizes (5, 50, 500). They reported acceptance rates between 0.025
and 0.11 for the zero-effort attack, between 0.035 and 0.115 for the imitation attack, and between
0.02 and 0.078 for the statistical attack. They concluded that statistical and imitation attacks against
their approach were only about as effective as a zero-effort attack.

Statistical attacks are a serious threat since they do not require the knowledge of the victim’s
behavior and are successful against a significant proportion of the population [Negi et al. 2018;
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Serwadda and Phoha 2013a; Serwadda et al. 2011, 2016]. The existing approaches have three lim-
itations. First, the degree of overlap is not quantified, which helps identify the most promising
attack samples. Second, most existing approaches work well when most of the population is close
to the population mean or centroid. If the population is distributed across multiple clusters, there
may be multiple overlapping regions and the attacker needs to navigate the entire cluster space
for victims who are not close to the population mean. By identifying overlapping regions within
clusters, our approach maximizes the likelihood of attackers’ success in as few attempts as possible
(see Figure 1 and the discussion in Section 4). Third, these approaches suffer from multiple failed
attempts for a considerable user population before a successful bypass. Finally, none of the exist-
ing works discuss how to detect these attacks and only show the limited efficacy of these attacks
against multiple biometrics [Acar et al. 2020; Stanciu et al. 2016].

3 THREAT MODEL

We assume that the attacker targets a specific victim and aims to bypass the victim (i.e., the attacker
is not mounting a spray attack). Similar to previous works, the goal of the adversary is to gain
access in as few attempts as possible to not raise an alarm or get locked out [Acar et al. 2020;
Khan et al. 2018; Negi et al. 2018]. The targeted behavior-based authentication system constructed
using a machine learning classifier is employed to authenticate the user. The system may need
to aggregate multiple samples for one binary decision. This system could be deployed as a web
service (“user-to-remote service authentication”) or on a device (“user-to-device authentication”).
For user-to-remote service authentication, like other attack proposals [Serwadda et al. 2011; Tey
et al. 2013], we assume that the adversary has access to the API to the biometric system, which is
trained with the data of the target user and some random negative users. This API accepts a feature
vector and provides a binary outcome (accept or reject). For user-to-device authentication, similar
to other attack proposals [Khan et al. 2016, 2018; Serwadda and Phoha 2013b], we assume that the
adversary needs to submit raw biometric samples to the system to receive the binary outcome. To
submit data to the remote service, the adversary can use a bot, like the assumption by Tey et al.
[2013].

For user-to-device authentication, the adversary needs physical access to the device often
for a longer duration. The adversary can use different methods to submit attack data without
rooting or installing anything on the device. For instance, to submit touch or keystroke inputs,
the adversary can use a smartphone-to-smartphone augmented reality based setup [Khan et al.
2018, 2020]. For the voice biometric, adversaries can use methods proposed by Gao et al. [2018]
to generate voice samples with certain characteristics. For the gait biometric, Zhu et al. [2020]
proposed different ways an attacker can submit gait data without rooting the device including
using a simple robotic body [Serwadda and Phoha 2013b], imitation based on human training,
and using SMASheD [Mohamed et al. 2016] to directly manipulate motion sensors on an unrooted
Android device via the Android debug bridge. Like previous works, we assume that if the device
or the remote service is protected using a primary authentication mechanism (e.g., a PIN or
password), the attacker has its knowledge (both username and the corresponding secret) and the
knowledge of the features used by the model [Khan et al. 2016, 2018; Serwadda and Phoha 2013b;
Serwadda et al. 2016; Tey et al. 2013].

The adversary does not have any behavioral samples from the victim and has no information
about the distribution of the victim’s behavioral data. The adversary uses population statistics de-
rived from a pool of behavioral biometric data to find a feature vector (or corresponding raw data)
using one or more techniques for which the system accepts the user. It should be noted that this
pool of data does not include the data of the victim and may be collected from public sources includ-
ing crowdsourcing platforms like Amazon MTurk. However, the general population data needs
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to be for the same scenario for the same biometric. For instance, if the biometric authentication
scheme is for free-form swiping during the normal device use, then the general population data
from the swiping behavior of a banking application only may not work as desired.

4 STATISTICAL ATTACKS USING HYPERVOLUMES

Previous approaches to statistical attacks have been designed for specific biometrics and do not
quantify overlap and are ineffective against population samples that are farther from the mean or
centroid (see Section 2). Since overlap is fundamental to statistical attacks, we use hypervolumes to
model and exploit overlap. A hypervolume is a region defined by three or more dimensions in the
n-dimensional space and can be considered as an n-dimensional geometric shape [Blonder 2018].
Hypervolumes have been widely used in the field of ecology and evolution since the proposal
of Hutchinson [1957]. We propose to use hypervolumes to quantify overlaps in n dimensions to
identify regions where overlapping user biometric behavior exists. Once we quantify overlaps, we
use this information to generate attack samples.

Despite the intuitive nature of the concept, determining how to estimate the shape and related
operations on hypervolumes has proven to be difficult [Blonder et al. 2018]. Multiple methods
for calculating hypervolumes are available—each with its own underlying assumptions. Existing
approaches for calculating hypervolumes use dynamic range boxes [Junker et al. 2016], convex
hulls [Villéger et al. 2008], multidimensional ellipses [Swanson et al. 2015], Gaussian kernel density
estimation [Blonder et al. 2018], and one-class SVM [Blonder and Harris 2019]. We choose the
dynamic range boxes technique proposed by Junker et al. [2016], as it provides several desirable
properties, including (1) it is independent of the data distribution, (2) it is robust against outliers,
(3) it is applicable for data of different dimensions and produces dependable results independent of
the data dimensionality, and (4) it provides information about individual dimensions. More details
are provided next.

4.1 Hypervolumes Using Dynamic Range Boxes

In this section, we describe the dynamic range box approach to hypervolumes in the context of
behavior biometrics using the notation and methods from Junker et al. [2016].

Let A = (ai )n
i=1 and B = (bi )n

i=1 be two n-dimensional matrices containing biometric data cap-
tured as an array of features for two users A and B. These matrices are standardized to the n-
dimensional unit box [0, 1]n , by calculating the minimum, min(min(ai ),min(bi )), and maximum,
max (max (ai ),max (bi )), for each dimension and using these numbers to translate and then scale
all points in each dimension separately. The corresponding standardized matrices are Â = (âi )n

i=1

and B̂ = (b̂i )n
i=1. If more than two users are involved, the minimum and maximum are taken over

all users.
For simplifying the notation, let X = Â, and by definition, α-quantile of X = (x )n

i=1 is a feature
vector represented as F−X (α ) = (F−Xi

(α ))n
i=1. For each dimension i = 1, . . . ,n and α ϵ [0, 1], the

α-range interval Ii (α ) is given by

Ii (α ) :=
⎡⎢⎢⎢⎢⎣
F−xi

�
�

1 − (1 − α )
1
n

2
�
�
, F−xi

�
�
1 − 1 − (1 − α )

1
n

2
�
�

⎤⎥⎥⎥⎥⎦
. (1)

The n-dimensional range box is then defined as the Cartesian product of the intervals
I1 (α ), . . . , In (α ), denoted as RA

n (α ) := Xd
i=1Ii (α ). The range box RB

n (α ) is calculated similarly. This
choice of interval in each dimension ensures that (under the independence assumption) the range
boxes cover 100(1 − α )% of the data. It is well established that the empirical quantile function,
F−X (α ), converges weakly to the true quantile function [Van der Vaart 2007]. Using dominated
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Fig. 1. A simple 2D representation of the proposed approach. (a) Data distribution of four users in two

dimensions. (b) Data is clustered to reduce the overlap calculations (shown using ovals). (c) Hypervolumes are

calculated for each user within each cluster (shown using rounded rectangles, where same colors represent

the same user). (d) Overlapping regions are identified using intersecting hypervolumes (shown using dashed

ovals).

convergence [Klenke 2007], we directly get consistency of users’ behavior overlap—that is, empir-
ical overlap converges to true overlap with probability 1.

Let V denote the n-dimensional volume (i.e., the product of the side length of the boxes). We
are interested in the average portion of the biometric behavior of user A that is covered by the
behavior of user B, and the average portion of the biometric behavior of user B covered by user A.
These quantities are defined as

overlap (A,B) :=

∫ 1

0

V (RA
n (α ) ∩ RB

n (α ))

V (RB
n (α ))

dα , (2)

overlap (B,A) :=

∫ 1

0

V (RB
n (α ) ∩ RA

n (α ))

V (RA
n (α ))

dα . (3)

The volume of user A is defined as the average portion of A in the uniform distribution U on
[0, 1]n , which is given by

vol (A) := overlap (A,U ) =

∫ 1

0
min

{
V (RA

n (α ))

1 − α , 1

}
dα . (4)

Therefore, the minimum in the integrand makes sure that the quotient cannot exceed 1. Setting
αi =

i−1
m

for every i = 1, . . . ,m, these integrals can both be well approximated using the trapezoidal
rule.

Interested readers are referred to the original paper [Junker et al. 2016] for the further details
and design goals. We used the R package DynRb [Schreyer et al. 2018] related to the original pa-
per [Junker et al. 2016] for calculating hypervolumes in this work.

4.2 Attack Intuition

Figure 1 provides a simplified version of our proposed approach using four users with two fea-
tures for each user’s behavior. Figure 1(a) shows the data distribution for the four users. There
are overlaps in behavioral regions in our example—as shown to be expected by previous works on
biometrics [Negi et al. 2018; Serwadda and Phoha 2013b; Serwadda et al. 2011]. Users’ behavior
depending on the biometric used can exist in multiple local clusters throughout the population
space. To calculate hypervolumes in these local clusters, we first create clusters of the population
data (see Figure 1(b)). Next, hypervolumes are calculated for each user within each cluster (shown
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using rounded rectangles in Figure 1(c)). Calculating hypervolumes for each user separately for
each cluster enables us to identify the regions in the n-dimensional space where the general user
behavior is most likely to exist. Finally, we calculate the intersections of hypervolumes to deter-
mine the overlapping regions (i.e., where hypervolumes intersect each other). Figure 1(d) shows
samples in these regions. Attack samples are generated based on the properties of these regions.

Algorithm 1 provides the detailed construction of our attack. It takes a dataset, which does not

contain the target victim’s data in it. We first cluster data using the K-means clustering algorithm
with K-means++ initialization [Vassilvitskii and Arthur 2006] (lines 2 and 3). The K-means algo-
rithm requires the number of clusters. For selecting the number of clusters, we evaluated two
methods for minimizing the within cluster sum of squared distances from the centroid—silhouette
analysis [Rousseeuw 1987] and elbow methods [Satopaa et al. 2011]. We compared the perfor-
mance of two clustering techniques by comparing the percentage of population compromised in
the first attempt. For the majority of attacks, the percentage of population compromised was higher
when the data subset was partitioned using optimal number of clusters found by the elbow method.
Therefore, we chose the elbow method. Next, we calculate the hypervolume for each user, overlaps
among hypervolumes in each cluster, and cluster score, S , for each cluster (lines 4–6; for details,
refer to Algorithm 2).

Algorithm 2 calculates hypervolumes and overlaps between them using DynRb [Schreyer et al.
2018] (Algorithm 2: line 5). Overlap information is used to extract samples from the overlapping
regions (Algorithm 2: line 10). Finally, each cluster is scored based on three characteristics: (1) the
mean overlap within a cluster, which identifies clusters with most overlapping samples; (2) the
number of unique users in a cluster; and (3) the number of samples in a cluster (Algorithm 2: line
12). This scoring will be used for ranking the clusters. The ranking provides a sizable cluster with
a high overlap of a larger number of users. A weighted average of the three criteria is used for
our ranking. Weights used in our experiments are (1) 0.9 for the mean overlap, (2) 0.05 for the
number of unique users, and (3) 0.05 for the number of unique samples in a cluster. These weights
were selected using a randomized grid search. The search vector for each weight was generated
by splitting the range of 0 to 1 into 20 equally spaced points. The metric used to evaluate the
performance of weights was the percentage of population compromised. Next, we rank the clusters
to identify the order in which attack samples from each cluster will be extracted (Algorithm 1: line
7). Ranking is done by sorting the cluster scores in descending order.

We then generate the first few attack samples using the centroids of the overlap clusters, �μ,
in descending order (highest-ranked clusters are attempted first) (lines 8–14). If the centroids of
overlap clusters are exhausted, we adopt the following strategy. According to the cluster ranking in
each cluster, the distance between overlapping samples,O , and the last tried samples is calculated
(lines 17, 18). A new attack sample is selected until a successful sample is found using a strategy like
the modified K-means++ approach of Negi et al. [2018] (lines 19–21). If a sample is unsuccessful,
it is removed from the cluster’s overlapping samples (line 24). Algorithm 1 terminates when all
samples in the cluster’s overlapping samples are exhausted (line 25).

We note that our attack technique requires the calculation of hypervolumes and overlaps for
each pair of users, which is computationally expensive and depends on the size of the feature space.
For different datasets used in this work, these calculations may take up to several hours on a per-
sonal computer. However, this is a one-time cost, and the performance of the hypervolume attack
to crack users within a small number of attempts (see Section 6) justifies this computational cost.

5 EXPERIMENTAL SETUP FOR ATTACKS

In this section, we provide the details of our attack setup including biometrics, datasets, and
machine learning classifiers. After establishing an evaluation baseline, we discuss the other
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ALGORITHM 1: Mount Hypervolume Attack

Data: χ : Attacker’s Biometric data
Result: True if attack is successful else False

1 Function MOUNT_HYPERVOLUME_ATTACK(χ ):
2 k ← elbow_method (χ ) � k is number of clusters

3 C ← k-means (χ ,k )

4 for i ← 1, . . .k do

5 � Provides cluster scores, overlap region samples of each cluster, and mean of overlap region

samples as described in Algorithm 2

6 Si ,Oi , �μi ← GET_CLUSTER_SCORE (Ci )

7 sort (S,O, �μ ) � Sort by descending cluster score

8 � Try mean of overlap region samples:

9 for t ← 1, . . .k do

10 T ← �μt � T is attack sample;V is target victim

11 if T is accepted forV then

12 return True

13 else

14 �xt ← �μt � Setting last tried point to overlap region centroids

15 while samples_exist do

16 for r ← 1, . . .k do

17 � Compute distances from last tried point to each sample

18 D ← COMPUTE_DISTANCES(Or , �xr )

19 T ← �x with probability

(
D ( �xr )2∑

x ′ϵOr
D ( �x ′r )2

)

20 if T is accepted forV then

21 return True

22 else

23 �xr ← �x

24 remove sample �x from Or

25 return False

statistical attack approaches that we compare against, the metrics used for the comparison, and
our experimental setup.

5.1 Targeted Biometrics

We target five popular biometrics: touch input, keystroke dynamics, mouse movement, gait, and
voice. Our choice of biometrics is diverse as it includes both physiological (voice) and behavioral
biometrics. The behavioral biometrics capture behavior using users’ interaction data as well as
gait patterns using onboard motion sensors. We do not target face and fingerprint biometrics, as
these biometrics are more unique than behavioral or voice biometrics [Jain et al. 2004]. A brief
description of each scheme, including its features and reported evaluation results, is provided next.

5.1.1 Touch Input. Touch input schemes use finger movement patterns during normal device
usage to build a profile of the user. We employ Touchalytics [Frank et al. 2013], which extracts
31 features from the raw touch data of each swipe. These features capture the behavior of the
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ALGORITHM 2: Get Cluster Score
Data: C: One cluster of biometric dataset samples
Result: Cluster score, overlapping region samples, and overlapping regions mean

1 Function GET_CLUSTER_SCORE(C):
2 � Gather control values:

3 U ← count_unique_users_in_cluster(C)

4 m ← compute_number_o f _samples (C )

5 �OS ← compute_hyp_overlaps_each_user_pair(C)

6 wu ← get_weight_for_number_of_users(U )

7 wm ← get_weight_for_number_of_samples(m)

8 μOS ←mean( �OS )

9 wOS ← get_weight_for_overlap_region_mean(μOS )

10 O ← дet_overlap_reдion_samples (C, �OS )

11 �μo ←mean(O )

12 s = μOS ∗wOS +U ∗wu +m ∗wm

13 return s,O, �μo

user using the swipe direction, swipe location, duration and length of the swipe, velocity and
acceleration of the swipe, curvature of the swipe, touch area and touch pressure of the swipe,
and the orientation of the finger and the device. An evaluation of Touchalytics on a dataset of
41 users shows that when using either an SVM or a K-Nearest Neighbors (KNN) classifier for
authentication on this dataset that these provide an EER of 4% for a window of eight swipes.

5.1.2 Keystroke Dynamics. Keystroke dynamics approaches have been proposed for physical
keyboards on computers and smartphones [Clarke and Furnell 2007; Killourhy and Maxion 2009].
Buschek et al. [2015] also proposed a keystroke dynamics scheme for virtual keyboards on smart-
phones; however, several features for virtual keyboards overlap those of Touchalytics. Therefore,
we choose the scheme of Killourhy and Maxion [2009] for physical keyboards of a personal com-
puter. They capture the keystroke behavior of each key using two features: key hold interval and
inter-stroke interval. These features have been widely used by other schemes and previous sta-
tistical attacks on keystroke dynamics [Serwadda and Phoha 2013a; Serwadda et al. 2011]. On a
dataset of 50 users entering a password on a laptop, they show an EER of 10% using SVM.

5.1.3 Mouse Movement. For mouse movement behavior, we choose the scheme proposed by
Zheng et al. [2011]. They capture mouse movement behavior using 21 features including the stroke
curvature, speed, click duration, and acceleration [Zheng et al. 2011]. Their evaluation of the mouse
biometric on two datasets using SVM shows an EER of 1.3% using 20 clicks.

5.1.4 Gait. Data from accelerometer and gyroscope sensors on smartphones has been used to
characterize gait behavior of users. Thang et al. [2012] proposed a gait pattern based classifier
that captures gait patterns using the first 40 Fast Fourier Transform coefficients calculated on
eight consecutive gait cycles. They used an SVM classifier on data from 11 users to achieve a
classification accuracy of 92%.

5.1.5 Voice. Speaker verification in an unconstrained environment is a challenging prob-
lem [Nagrani et al. 2020]. [Nagrani et al. 2020] created a dataset, VoxCeleb, using the recordings of
celebrities. Over samples of 1,251 speakers, they reported an average EER of 7.8% using a convolu-
tional neural network. Chung et al. [2018] proposed a method based on a residual neural network
and evaluated it on the VoxCeleb2 dataset (with 6,112 speakers) to report an average EER of 3.95%.
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5.2 Datasets

For our analysis, we used publicly available datasets. A brief description of the datasets follows.

5.2.1 Touch Input. Sitová et al. [2015] collected raw touch data from 100 participants across
eight sessions in a lab environment. During each session, the participants were randomly assigned
a reading, writing, or map navigation task. Their touch interaction data was collected on an An-
droid device and made publicly available. Since there was insufficient data from one user, we
used data from the remaining 99 users. In our data subset, there are 1,393 samples per user on
average.

5.2.2 Keystroke Dynamics. We used the keystroke dataset collected by Killourhy and Maxion
[2009]. This dataset has key hold and inter-stroke intervals from 51 participants, where they typed
a strong password, “.tie5Roanl.” The data was collected on a Windows XP laptop across eight
sessions, where participants entered the password 50 times during each session. In total, each
participant typed the password 400 times.

5.2.3 Mouse Movement. For the mouse biometric, we used data collected by Eberz et al. [2018].
They recorded data on a Windows machine through the PyHook Python module, which uses the
Windows hooking API. Data was collected from 59 participants, where each participant played a
mole clicking game 250 times.

5.2.4 Gait. For the gait biometric, we used data collected by Zou et al. [2020]. This data was col-
lected from 118 participants and contains accelerometer and gyroscope readings on a smartphone.
This data has an average of 155 samples per user.

5.2.5 Voice. The extracted voice biometric features of VoxCeleb and VoxCeleb2 are publicly
available. We used the test portion of the VoxCeleb2 dataset [Chung et al. 2018], which contains
118 users with an average of 406 utterances per user.

5.3 Classifiers, Parameter Selection, and Zero-Effort Performance Baseline

We evaluate attacks against SVM, KNN, Random Forest (RF), and Deep Learning (DL) classi-
fiers. These classifiers have been used for different biometrics evaluated in this work [Negi et al.
2018; Serwadda and Phoha 2013b; Serwadda et al. 2016; Zhao et al. 2020]. The original proposal
for the voice biometric [Nagrani et al. 2020] used a DL classifier only. However, we use both tra-
ditional and DL classifiers across all biometrics for a systematic comparison. For DL models, we
used the TensorFlow [Abadi et al. 2016] library, whereas the remaining classifiers were evaluated
using the Python sklearn [Buitinck et al. 2013] library.

For evaluations, we split each of the datasets into two halves with an approximately equal num-
ber of users in each. One half is used for inference to generate attack samples (“inference subset”)
and the other half for evaluating these attacks (“evaluation subset”). This simulates a real attack
scenario, where the attacker has no prior knowledge of a victim’s samples. We also cross validate
by switching the role of the two halves and report the average results.

In the evaluation subset, each users’ data (positive samples) is combined with other users’ data
(negative samples) in the same subset to get a balanced dataset for each user. This balanced dataset
is then split into training and test sets (80:20 split). We ensure that the training data temporally
precedes test data to avoid any temporal bias. A different classifier for each user is trained using
random grid search of the parameters with 10-fold cross validation. This step ensures that the
classifier is at its best operating point against the attack. The base line for the performance is
established by testing the trained classifier on the test data for that user. We see that our grid
search converges to a subset of points for most of the users. For instance, for SVM, on average,
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Table 1. Details of the DL Model

Layer Layer Type Feature Map
Dense 1 Fully connected 1 × 768
Normalization 1 Normalization 1 × 768
Drop 1 Dropout 1 × 768
Reshape 1 Reshaping 16 × 16 × 3
Conv 1 Convolution 14 × 14 × 32
Pool 1 Max pooling 7 × 7 × 32
Drop 2 Dropout 7 × 7 × 32
Flat 1 Flatten 1 × 1568
Dense 2 Fully connected 1 × 512
Out Fully connected 1 × 1

theC parameter converges to eight values for 90% of the users. More details about the parameters
of each classifier are provided in the following. If a value of a parameter is not reported, then its
default value for sklearn was used [Buitinck et al. 2013].

Table 2 shows the performance of each classifier using the AUC (Area Under the ROC Curve)
and EER. For a better comparison, we report results for individual samples without combining
multiple scores using a majority decision. The table shows that most classifiers perform similar to
the original papers. Performance evaluation for attacks is discussed in Section 5.5.

SVM. We used the radial-basis kernel function. For the regularization parameterC , we performed
a random grid search with 10-fold cross validation. The range of C was set between 10−3 and 104

and 100 evenly spaced points were used in the range on a log scale.
KNN. For the three KNN parameters, we used random grid search with 10-fold cross validation.

These parameters and the ranges explored are (1) the number of neighbors between 1 and 50,
(2) the leaf size used for computing nearest neighbors if a tree algorithm is selected by sklearn
between 1 and 70, and (3) the power parameter for the Minkowski metric as 1, 2.

RF. The six RF parameters and corresponding ranges that were used in the random grid search
with 10-fold cross validation are (1) the number of trees in the forest between 200 and 2,000; (2) the
maximum depth of the tree between 10 and 110; (3) the minimum number of samples required to
split an internal node as 2, 5, 10; (4) the minimum number of samples required to be at a leaf node
as 1, 2, 4; (5) the number of features to consider when looking for the best split as auto, sqrt ; and
(6) whether bootstrap samples are used when building trees (bootstrap) as True, False .

DL. Details of the model that we used are provided in Table 1. We used early stopping and
dropout layers to regularize the model and the Adam optimizer for training the neural network.

5.4 Comparison with Other Attack Approaches

To compare the efficacy of our attack, we implemented the following three statistical attack ap-
proaches. We explain these attacks using Figure 2, which provides a simplified 2D example for
the attacks considered in this work. Figure 2 shows the data from the general population that the
attacker possesses as black circles. The data for Victim A is shown using indigo left triangles, and
the data for Victim B is shown using blue down triangles. Victim A’s data distribution is very close
to the mean of the general population data. The data distribution for Victim B is away from the
mean of the attackers’ data but still lies within the overlapping regions of the general population
data. Finally, the attack samples are shown using shapes and colors according to the order in which
they are generated (see the legend for Figure 2 for details). The attack samples are also numbered
in the order in which they are generated.
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Table 2. Baseline Performance of Classifiers on Biometrics

Biometric Metric SVM KNN RF DL
Mean SD Mean SD Mean SD Mean SD

Touch
AUC 0.83 0.07 0.76 0.08 0.86 0.07 0.84 0.08
EER 0.23 0.07 0.29 0.07 0.22 0.07 0.23 0.08

Keystroke
AUC 0.97 0.08 0.93 0.08 0.99 0.04 0.97 0.06
EER 0.07 0.1 0.11 0.10 0.03 0.06 0.06 0.07

Mouse
AUC 0.77 0.10 0.72 0.08 0.83 0.08 0.74 0.10
EER 0.29 0.10 0.34 0.07 0.24 0.08 0.32 0.09

Gait
AUC 0.94 0.07 0.90 0.08 0.97 0.05 0.92 0.09
EER 0.11 0.09 0.15 0.09 0.08 0.07 0.13 0.09

Voice
AUC 0.99 0.01 0.95 0.05 0.99 0.01 0.99 0.02
EER 0.03 0.03 0.08 0.08 0.04 0.03 0.04 0.04

5.4.1 MasterKey. Serwadda and Phoha [2013a] and Serwadda et al. [2011] proposed MasterKey,
which generates attack samples by modeling the data of general population as a Gaussian distri-
bution. Although MasterKey was proposed against keystroke dynamics, we evaluate it against all
biometrics considered in this work. MasterKey uses the mean as the first attempt, shown as a red
square in Figure 2(a). The first attempt will most likely compromise Victim A (indigo left triangle),
due to the proximity of Victim A’s samples to the mean of the population. If the first sample is
not successful, then MasterKey navigates the attack space in steps based on a multiple of stan-
dard deviation away from the mean. This scenario is shown for Victim B (blue down triangle) in
Figure 2(a), where MasterKey fails to compromise Victim B after five attempts. Unlike MasterKey,
Hypervolume attack quantifies and prioritizes overlapping regions in the attack space.

5.4.2 Vanilla Statistical Attack (“Vanilla-s”). Serwadda and Phoha [2013b]; Serwadda et al.
[2016] used population statistics estimated from large datasets to attack the keystroke and touch
biometrics. Their work shows that there is significant overlap in the user behavior for keystroke
and touch biometrics, which is used to estimate parameters for a Gaussian distribution. The learned
distribution is used to randomly generate adversarial samples. To reliably estimate the parameters
of a Gaussian distribution for adversarial sample generation, we need a large dataset. Due to the
limited sample size of open source datasets, we use bootstrapping to estimate population statis-
tics [Singh and Xie 2008]. The data from the inference subset is bootstrapped 30,000 times to
estimate mean and standard deviation of features. Attack samples are then generated randomly
using a Gaussian distribution with estimated mean and standard deviation. Figure 2(b) shows that
the five attack samples for Vanilla-s are mostly near the mean of the general population. There-
fore, Victim A with behavior similar to the general population mean is compromised in the first
few attempts. Due to this attack’s design, it is not able to transverse the attack space efficiently
and it is able to mostly target victims with behaviors close to the mean of the general population.
Since the data of Victim B (blue down triangle) is away from the mean of the general population,
Vanilla-s failed to compromise it.

5.4.3 K-means++. Negi et al. [2018] proposed an attack that addresses the shortcomings of
MasterKey and Vanilla-s of not navigating the attack space efficiently by repurposing the K-
means++ initialization algorithm [Vassilvitskii and Arthur 2006]. The original K-means++ al-
gorithm is meant to improve K-means clustering by choosing the initial cluster centroids that
are not close to each other (to avoid local optima in the K-means clustering algorithm). The
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Fig. 2. A simple 2D representation of the attack approaches. (a) MasterKey generates the first sample at

the mean and generates remaining samples by moving in fixed steps away from the mean based on the

standard deviation. (b) Vanilla-s generates the samples randomly from a Gaussian distribution. (c) K-means++

generates the first sample at the mean and generates remaining samples by selecting a point away from

the current sample. (d) Hypervolume clusters the space and ranks the clusters, then it extracts overlapping

regions from each of the clusters. The centroid of the highest rated cluster’s overlapping region is used as

the first attempt (for details, refer to Algorithm 1).

repurposed K-means++ algorithm of Negi et al. [2018] is provided as Algorithm 3. For their K-
means++ attack, they use the mean of the general population for their first attempt (Algorithm 3:
line 2). Figure 2(c) shows that Victim A (indigo left triangle) is most likely compromised in the first
attempt, as it is closer to the mean of the general population. If the first attempt fails, like in the
case of Victim B (blue down triangle), they use the K-means++ initialization algorithm to select
the next attack sample (Algorithm 3: lines 5–9). Figure 2(c) shows that these samples are far from
the previous samples, thus navigating the search space more efficiently. But since the search space
is not reduced, the K-means++ attack is unable to compromise Victim B in the first five attempts.
It should be noted that despite using the K-means++ initialization algorithm, K-means++ attack
does not divide the search space into clusters. They evaluated their attack against the keystroke
and touch biometrics and showed that it performs better than MasterKey.

Unlike existing approaches, our attack reduces the attack search spaces by extracting and prior-
itizing overlapping regions. Figure 2(d) shows the overlapping regions (dotted black lines) within
the identified clusters (solid black lines) and how Hypervolume prioritizes regions where pop-
ulation clusters with a higher degree of overlap exist. Our toy example shows that due to its
unique approach, Hypervolume attack is able to compromise both victims in just two attempts.
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ALGORITHM 3: Adversarial Targeted K-means++ [Negi et al. 2018]

1 Initialize

2 Try1 ← the mean of the collected adversarial dataset X

3 Auth ← False

4 i ← 2

5 while !Auth do

6 D (x ) ← distance from nearest Try chosen so far to point x (∀x ∈ X)

7 Tryi ← x ∈ X with probability D (x )2∑
x
′ ∈ X D (x

′
)2

8 Auth ← True if Tryi passes the authentication

9 i + +

In Section 6, we show that this approach of Hypervolume is more successful than other attack
approaches against the biometrics evaluated in this work.

5.5 Evaluation Metrics and Setup

To measure the efficacy of the attacks, we choose two metrics used by previous works. First, we use
the metric “Percentage of Compromised Population” to measure the percentage of the proportion
of compromised users in each population against an attack. This metric is more meaningful when
an attack’s success is complemented with its speed. To this end, we use “Attempts to Bypass” to
capture the number of attempts required to compromise vulnerable users. A good attack should
have a high proportion of compromised population coupled with fewer attempts to bypass. We
used the same classifier parameters and training and test sets as provided in Section 5.3.

6 ATTACK EVALUATION

6.1 Attack Results

The performance of the attacks against the five biometrics considered in this work are shown using
Attack Curves in Figures 3 through 6. Attacks that bypass the biometric in the first few attempts
are better since they are difficult to detect [Acar et al. 2020; Khan et al. 2018; Negi et al. 2018].
For SVM, Figure 3(a), (b), (c), (d), and (e) show that for the first attempt, the hypervolume-based
attack (“Hypervolume”) compromises 43%, 14%, 92%, 31%, and 9% of the population against the
touch, keystroke, mouse, gait, and voice biometrics, respectively. For touch, keystroke, mouse, and
voice, the second-best approach is a tie between K-means++ and MasterKey. This is because both
attacks use mean of the inference data as first attempt. They compromised 33%, 8%, 16%, and 9%,
respectively. For gait the second-best attack is Vanilla-s, which compromises 21% of the population.

These results indicate that choosing the population mean as the first attempt is not always the
best approach, as Hypervolume is, on average, 21 percentage points more successful (37.8% vs.
16.4% average population compromised) than the second-best attack.

Hypervolume after the fifth attempt against SVM compromises 92%, 52%, 100%, 61%, and 30%
of the population against the touch, keystroke, mouse, gait, and voice biometrics, respectively. K-
means++ is the second most successful attack except for the mouse and keystroke biometrics where
Vanilla-s outperforms it. In comparison, the proportion of population compromised for the second-
best attacks for the fifth attempt are 86%, 29%, 93%, 48%, and 23% against the touch, keystroke,
mouse, gait, and voice biometrics, respectively. For the 10th attempt, Hypervolume increases the
compromised proportion of the population for the keystroke, gait, and voice biometrics to 57%,
77%, and 52%, respectively, whereas the second best are at 35%, 53%, and 36%, respectively. After
20 attempts, the proportion of compromised population for the touch and mouse biometrics by
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Fig. 3. Performance of attacks against five biometrics trained using SVM classifiers.

Hypervolume is 100%, and Vanilla-s and K-means++ compromise more than 90% of the population.
MasterKey is only able to compromise 46% and 56%, respectively. After 50 attempts, we note that
Hypervolume compromises 8%, 26%, and 19% more victims than the second-best attack for the
keystroke, gait, and voice biometrics.

We observe quantitatively similar results for the other classifiers. For the RF classifier (see
Figure 4, Hypervolume outperforms the other attacks against touch, keystroke, mouse, and gait
biometrics in the first attempt by compromising between 3% and 37% more victims than the second
best. For the voice biometric, it compromised 14% of the population in the first attempt, where all
other attacks failed. We see similar attack performances for Hypervolume for the remaining at-
tempts. For the KNN classifier (see Figure 5), we see an improved performance of the other attacks.
However, Hypervolume provides better performance against all biometrics except the voice bio-
metric (see Figure 5(e)). For the voice biometric, for the first 20 attempts, on average, K-means++
compromises 20% more victims than Hypervolume. However, after 20 attempts, the performance
of Hypervolume improved, and after 50 attempts, it was able to compromise 5% more victims than
K-means++.
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Fig. 4. Performance of attacks against five biometrics trained using RF classifiers.

For the DL classifier (see Figure 6), the first attempt of Hypervolume is significantly more suc-
cessful compared to the other attacks across all biometrics and compromises 36%, 20%, 75%, 25%,
and 16% of the victims for touch, keystroke, mouse, gait, and voice biometrics, respectively. The
second-best attacks against touch and gait biometrics were K-means++ and MasterKey. They both
compromised 32% and 6% of the victims for touch and gait, respectively. Vanilla-s, K-means++,
and MasterKey were the second-best attack on keystroke and mouse biometrics compromising 4%
and 28% of the victims, respectively. Against the voice biometric, Hypervolume is the only suc-
cessful attack in the first attempt, and it compromises 16% of the population. By the fifth attempt,
Hypervolume compromises 91% and 86% of the victims in the touch and mouse biometrics. The
second-best attack against touch, K-means++, compromised 74% of the victims. Against the mouse
biometric, Vanilla-s was able to compromise 61% of the victims. Against gait and voice biometrics,
Hypervolume was able to compromise 65% and 34% of the victims, and the second-best attack,
K-means++, was able to compromise 28% and 11% of the victims, respectively.

Our evaluations show that Hypervolume performed consistently better than the other attacks
against all considered biometrics, except for the first 30 attempts for the voice biometric for KNN.
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Fig. 5. Performance of attacks against five biometrics trained using KNN classifiers.

K-means++ was often the second-best attack approach. In the following section, we further com-
pare and contrast the performance of Hypervolume and K-means++.

6.2 Comparison with K-means++

We compare the overall performance of attacks using the Area Under the Attack Curve (AuAC)

metric, defined in Equation (5). For our calculations, we approximate the integral using the trape-
zoidal rule [Herman et al. 2016]. AuAC is able to quantify the effectiveness of an attack scenario—
a more successful attack will compromise more population in fewer attempts, thus resulting in
higher value of AuAC. AuAC is defined by the following equation:

AuAC :=
1

n

∫ n

0
Percent Population Compromised d (Attempts to Bypass), (5)

where n is the number of attack attempts.
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Fig. 6. Performance of attacks against five biometrics trained using DL classifiers.

Table 3 compares the AuAC for all 20 attack scenarios (five biometrics using four classifiers).
Hypervolume has the highest AuAC in all attack scenarios except for the KNN classifier for the
voice dataset, where it is the second-best to K-means++. K-means++ is the second-best attack with
the second highest AuAC in 11 out of 20 scenarios and the highest AuAC in 1 scenario.

The attack curves can be considered to be cumulative distribution functions (CDFs) represent-
ing the distribution of the attacks. It is these underlying distributions that we wish to compare
through statistical testing. We perform statistical tests on the attack curves for Hypervolumes and
K-means++ (blue and green lines in Figures 3–6). To this end, for the two attacks, we test the
following hypotheses:

H0: The attack curves belong to the same attack distribution.
H1: The attack curves belong to the different attack distribution.

First, we perform the normality tests on the distribution using D’Agostino and Pearson’s
test [D’Agostino 1971; D’Agostino and Pearson 1973], which combines skew and kurtosis to

ACM Transactions on Privacy and Security, Vol. 26, No. 2, Article 21. Publication date: April 2023.



21:22 S. Habib et al.

Table 3. AuAC of Attacks

Dataset Attack SVM KNN RF DL

Touch

Hypervolume 0.95 0.94 0.93 0.95
K-means++ 0.93 0.86 0.88 0.89

MasterKey 0.50 0.72 0.62 0.79
Vanilla-s 0.84 0.87 0.84 0.81

Keystroke

Hypervolume 0.66 0.77 0.58 0.71
K-means++ 0.39 0.62 0.45 0.34
MasterKey 0.17 0.39 0.16 0.20
Vanilla-s 0.52 0.65 0.48 0.43

Mouse

Hypervolume 0.98 0.98 0.97 0.85
K-means++ 0.92 0.86 0.92 0.67
MasterKey 0.55 0.59 0.76 0.64
Vanilla-s 0.94 0.93 0.92 0.80

Gait

Hypervolume 0.80 0.84 0.65 0.80
K-means++ 0.58 0.80 0.40 0.50

MasterKey 0.22 0.19 0.14 0.33
Vanilla-s 0.58 0.61 0.35 0.41

Voice

Hypervolume 0.69 0.77 0.68 0.70
K-means++ 0.51 0.81 0.59 0.32

MasterKey 0.09 0.43 0.00 0.02
Vanilla-s 0.10 0.60 0.00 0.05

The highest values for each attack and dataset are highlighted . The

second highest values for each attack and dataset are shown in bold.

produce an omnibus test of normality. For the 40 normality tests, we perform the Bonferroni cor-
rection and use the significance level (α ) cutoff of 1.25e−3. The results for normality tests are pro-
vided later in Table 6 (see Appendix A), which shows that for most tests (33/40), the D’Agostino and
Pearson’s test indicates that the distributions are not normal. Therefore, we use a non-parametric
equivalent one-way ANOVA [Corder and Foreman 2011; Sidney 1957] and the Kruskal-Wallis
test [Kruskal and Wallis 1952]. We perform the Bonferroni correction for the 20 Kruskal-Wallis
tests and use the significance level (α ) cutoff of 2.5e−3

Table 4 shows the p values and H statistics for the Kruskal-Wallis tests. It shows that for 17/20
cases, Kruskal-Wallis tests found significant differences in the attack distributions of Hypervol-
ume and K-means++. The three cases for which the null hypothesis was not rejected and both
attacks had similar performance include Gait biometric (KNN) and voice biometric (KNN and RF).
Figure 5(d) shows that for the gait biometric for KNN, both attack curves for this case are very
similar and the AuAC of the curves are also close—0.84 for Hypervolume and 0.8 for K-means++.
Figure 5(e) shows that for the voice biometric for KNN, both attack curves for this case are also
very similar, but here K-means++ has a slight lead. The AuAC of the curves are also close—0.81 for
K-means++ and 0.77 for Hypervolumes. Finally, Figure 4(e) shows that both attack curves are very
similar until the 20th attempt for the voice biometric for RF. After the 20th attempt, Hypervolume
performed better, and this difference is reflected in the AuAC metric—0.68 for Hypervolume and
0.59 for K-means++.

The reason for the success of Hypervolume and K-means++ is their ability to explore the sam-
ple space more effectively compared to Vanilla-s and MasterKey. However, unlike K-means++,
Hypervolume does not blindly choose a farther point from the population but chooses a point
that is more probable based on the degree of overlap in the clusters, number of unique users in the
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Table 4. p Values and H Statistics for the Kruskal-Wallis Test Between

Hypervolume and K-means++

Dataset Classifier SVM KNN RF DL

Touch
H 10.12 37.33 20.17 38.25
p 1.46e-03 9.97e-10 7.09e-06 6.23e-10

Keystroke
H 63.01 59.16 55.24 67.09
p 2.06e-15 1.45e-14 1.07e-13 2.60e-16

Mouse
H 30.31 31.67 22.08 76.50
p 3.68e-08 1.82e-08 2.61e-06 2.20e-18

Gait
H 49.98 3.16 45.72 60.30
p 1.55e-12 7.54e-02 1.36e-11 8.14e-15

Voice
H 19.29 0.92 8.71 48.42
p 1.12e-05 3.38e-01 3.17e-03 3.43e-12

p-Values for which the null hypothesis cannot be rejected are highlighted .

Table 5. Overlap Mean and SD for Different Biometrics

Touch Keystroke Mouse Gait Voice
Mean 0.79 0.44 0.75 0.60 0.63

SD 0.02 0.12 0.09 0.06 0.11

cluster, and number of samples in the cluster. This enables Hypervolume to outperform K-means++
in early attempts for most scenarios (refer to Figure 2(d) for a 2D example).

6.3 Discussion

Our experiments are the first to explore and demonstrate the susceptibility of the voice biometric
to statistical attacks. Our experiments also show that although several attacks were not proposed
against some biometrics (e.g., MasterKey against the touch or mouse biometrics), these attacks
achieve good success. Similarly, we observe that some attacks performed better against different
classifiers for some biometrics (e.g., MasterKey for the touch biometric for SVM vs. KNN).

Figures 3 through 6 show that different biometrics provide different levels of resilience against
statistical attacks. The touch and mouse biometrics perform quite poorly against the attacks and
the top-3 attacks compromise 83% of the population within the first 10 attempts, on average. How-
ever, for the keystroke, gait, and voice biometrics, only 60% or less of the population is compro-
mised. Table 5 shows the mean population overlaps across different clusters, which explains the
attack resilience of these biometrics. It shows that both the touch and mouse biometrics have high
mean overlaps compared to the keystroke, gait, and voice biometrics.

We note that the attacks designed to use only statistical properties of the population mean like
Vanilla-s and MasterKey are only effective against biometrics with a higher degree of unimodal
overlap among users’ behavior. Due to the high overlap around the population mean, attack points
generated closer to the mean of the population have a higher probability of being successful. Both
Vanilla-s and MasterKey only compromise a smaller population against the voice and gait biomet-
rics, where there is less overlap compared to the touch or mouse biometrics. K-means++ performs
better than Vanilla-s and MasterKey, as it tries regions farther from the population mean as well.
Hypervolume performs consistently better since it not only captures but also ranks the overlap-
ping regions away from the population mean.

We note that using the traditional metrics, some biometrics provide a very similar baseline
performance (see Table 2). For example, the EER for the keystroke (mean = 0.11; SD = 0.10) and
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gait biometric (mean = 0.15; SD = 0.09) for KNN are not too far apart. Similarly, the AUC for
keystroke (mean = 0.99; SD = 0.04) and voice (mean = 0.99; SD = 0.01) biometrics are similar for
RF. Despite these similarities, the resilience of these biometrics against the attacks is different.
Although robust metrics have been proposed that are able to capture the performance of biometric
systems better [Eberz et al. 2017; Sugrim et al. 2019], these metrics are not designed to report
resilience to statistical attacks. Given the threat posed by statistical attacks, it is prudent to consider
a metric similar to “the percentage of the population compromised” and “ AuAC” to understand
the limitations of these biometrics. This approach will be able to identify biometrics that provide
little resistance against statistical attacks for a larger proportion of the population (e.g., the touch
and mouse biometrics). This approach also enables the identification of users whose behavioral
overlap is high and are more susceptible to statistical attacks. Like the blacklists for knowledge-
based authentication systems (e.g., for PINs [Markert et al. 2020] and passwords [Weir et al. 2010]),
such “hotspots” of behavioral overlaps could be used to flag the unacceptability of biometrics for
certain users. Such a metric will also enable system designers to better understand and defend
against threats to their systems from active adversaries. More research needs to be conducted
to design a standard metric that captures and communicates the susceptibility of biometrics to
statistical attacks.

7 DETECTION MECHANISM FOR STATISTICAL ATTACKS

In this section, we present and evaluate a detection mechanism against statistical attacks.

7.1 Proposed Detection Method

Scope. Our evaluations show that although the evaluated biometrics can defend against adver-
saries whose behavior does not overlap that of the victim, statistical attacks or attacks where the
adversary is actively modifying their behavior pose a serious threat. Adversaries who actively mod-
ify their behavior may use an attack discussed in this work to guess the population statistics or
randomly modify their behavior (without any prior knowledge of victims’ behavior), which may
result in similar patterns as the statistical attack (discussed in the following in more detail). Our
results showed that victims whose behavior is close to the population mean can be easily bypassed
in the first few attempts by all attacks. Furthermore, due to the variations in the intra-user behav-
ior for several biometrics [Khan et al. 2020], it is difficult to create a model of the user’s behavior
that rejects overlapping samples from other users. Therefore, it is quite challenging to detect at-
tacks where the victim’s behavior is closer to the population mean and is compromised in the
first attempt. When the behavior of the victim is farther from the population mean, attacks like
MasterKey and Vanilla-s can be effortlessly detected using rule-based techniques. In the case of
MasterKey, subsequent rejected feature vectors will have very similar distance between them, and
they will most likely be not near the centroid(s) of a user’s data. Vanilla-s will be producing fea-
ture vectors in and around a particular area. Both behaviors are different from a legitimate user’s
feature vectors, which would not always be concentrated in a particular region farther from the
user’s behavior.

Our proposed detection method needs two or three samples for detecting attacks. Since Hyper-
volume attack was able to compromise 100%, 98.34%, 94.94%, and 90% of the population for SVM,
KNN, RF, and DL classifiers, respectively, in just two attempts, we choose not to evaluate our de-
tection method on this biometric due to the lack of data. In this work, we focus on building a
detection method against more potent attacks including Hypervolume and K-means++.

Intuition. Our assumption is that the attackers prefer an attack that requires a lower number of
attempts to bypass [Acar et al. 2020; Khan et al. 2018; Negi et al. 2018], since a higher failure rate
could be easily detected using a predefined threshold (similar to the throttling of failed password
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attempts). We observe that attacks with this desirable property explore the sample space more
effectively by exploring a region of data farther from the last submitted attack sample in case of a
failure. Similarly, an attacker who is trying to actively defeat the biometric system, by randomly
modifying their behavior after every failed attempt (rejected samples), moves farther away from
the region that captures their current attempt. This differs from the normal behavior of the user or
an attacker who is not actively trying to evade the biometric defence, where the behavior across
subsequent attempts does not vary greatly and is closer to the region(s) or cluster(s) containing
the behavior of the user or the attacker, respectively. For rejected samples from the user (false
rejects), the probability that these samples are farther from the region(s) or cluster(s) containing
the behavior of the user and subsequent rejected samples are farther from each other should be
low. Our detection method against statistical attacks exploits this observation.

Our proposed detection method continuously operates in the background and takes as input two
classifier scores and corresponding samples (i.e., feature vectors). Note that the proposed detection
method may be configured to operate only on the samples that were rejected, but since the numbers
of consecutively rejected samples for users are low for voice, keystroke, and gait in our datasets,
we test our defense as continuously operating in the background. For the two samples (S1, S2) for a
user with centroid of the user,C , the detection method computes the attack probability, PA, using
the following equation:

PA = Dist (S1,C )w1 + Dist (S2,C )w2 + Dist (S1, S2)w3

+ (winsize − (Cls f r (S1) +Cls f r (S2)))w4, (6)

where Dist is the cosine distance, Cls f r (Sx ) is the binary outcome of the classifier (‘1’ indicates
that the sample belongs to the user’s class), wx are the weights, and winsize is the number of
samples in the sliding window. Each distance and classifier score is scaled using weights so that
their value is between 0 and 1. This attack probability is computed over a sliding window of two
or three samples. For a window of three samples, like Equation (6), we compute a weighted sum of
all pairwise distances between the three samples, the distance between the three sample and the
centroid, and classifier scores for the three samples.

Evaluation and Results. For statistical attack samples, we focus on users in each dataset who
require two or more attempts to compromise by the evaluated attacks. We split each users’ data
into two disjoint groups: 80% of the data is used to estimate the thresholds for the attack probability,
whereas the remaining data is used to compute the FDR. For our experiments, we use the 97th
percentile of the calculated score as the threshold. If the observed score is above this threshold,
samples are tagged as possible statistical attacks.

Figure 7 shows the Attack Detection Rate (ADR) and FDR against the two attacks considered
for the evaluation of the detection method proposed in this work. ADR captures the correctly
detected proportion of statistical attacks, and FDR captures the proportion of the user’s samples
misclassified as statistical attack samples.

For Hypervolume, Figure 7(a) shows that for two samples, the proposed detection method can
provide a high ADR (85% or higher) with a low FDR (5% or lower) against all classifiers but KNN for
the gait biometric. The ADR for KNN is quite low for the touch and gait biometrics—70% and 68%,
respectively. With three samples, we see an increase in the ADR for touch from 70% to 100%; for
gait, it increases from 68% to 78% with similar FDR (2.4% and 4.8%, respectively) (see Figure 7(c)).
The performance of the detection method on the keystroke dataset on the SVM classifier remained
the same for both using two or three points, and 92% of the attacks were detected. Compared with
the other efficient attack, K-means++ (see the following), we note that detection of Hypervolume
is more challenging. This is because Hypervolume does not submit the farthest region from the
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Fig. 7. Attack detection rate of the proposed defense using a window of two and three samples.

current attack sample and instead prioritizes which region to submit next. Therefore, although
likely, the next attack sample may not surpass the chosen threshold.

Figure 7(b) shows that the proposed detection method provides a near perfect ADR (97% or
higher) with a low FDR (5% or lower) against K-means++ with only two samples. K-Means++
is easier to detect since it mostly tries the next sample that is farther away from the previous
failed sample. With three samples, K-means++ attack was detected with an ADR of 98% or higher
similar FDR (Figure 7(d)). Against the two detrimental attacks that explore the search space more
efficiently and pose a serious threat to biometrics, on average, our detection method can achieve
98% ADR with only 3.2% FDR using three samples.

We note that an adversary can evade our detection method if a rule-based defense is not compli-
mented by submitting new attack samples that have smaller distance from the previous samples
(i.e., like MasterKey, explores the attack space with a smaller step size). Although this approach is
difficult to flag using our defense, it requires a larger number of attempts to evade the biometric
system, thereby increasing the chances of getting detected using simpler techniques such as rate
limiting. Finally, although our detection method does not protect victims whose behavior overlaps
that of the population mean, our approach provides a method for security practitioners to pre-
emptively identify vulnerable users for a biometric and flag their unsuitability for the biometric.

8 CONCLUSION

We propose an attack that uses hypervolumes to capture overlap patterns for different biometrics
across population. We show that our attack can evade a diverse set of biometrics and performs
better when compared with other state-of-the-art attack methods. More specifically, our attack
can compromise a much higher proportion of the population with fewer attempts than the other
attacks. Furthermore, we propose a simple detection mechanism that can detect attacks that pose
a serious threat to these systems (i.e., attacks that cannot be throttled using simple rate limit-
ing techniques). For victims whose behavior is farther from the population mean, our detection
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mechanism can use two to three samples to detect a statistical attack with high accuracy. Our work
also exposes a previously undiscovered weakness of the voice biometric and highlights the need
to evaluate biometric authentication systems using metrics that capture the performance against
statistical attacks.

APPENDIX

A NORMALITY TEST

Table 6. Normality Test Results for Attack Curves

Dataset Attack Classifier SVM KNN RF DL

Touch
Hypervolume

H 70.48 68.12 80.28 73.65
p 4.97e-16 1.61e-15 3.70e-18 1.02e-16

K-means++
H 67.26 28.91 41.45 50.40
p 2.48e-15 5.28e-07 9.98e-10 1.14e-11

Keystroke
Hypervolume

H 50.69 76.92 40.84 35.18
p 9.84e-12 1.99e-17 1.35e-09 2.29e-08

K-means++
H 8.89 21.95 40.35 11.00
p 1.17e-02 1.71e-05 1.73e-09 4.09e-03

Mouse
Hypervolume

H 112.25 112.25 103.02 80.82
p 4.23e-25 4.23e-25 4.27e-23 2.82e-18

K-means++
H 67.07 24.67 59.20 39.14
p 2.73e-15 4.39e-06 1.40e-13 3.17e-09

Gait
Hypervolume

H 33.36 39.86 22.69 36.17
p 5.69e-08 2.21e-09 1.18e-05 1.40e-08

K-means++
H 50.18 33.04 33.87 13.90
p 1.27e-11 6.69e-08 4.41e-08 9.61e-04

Voice
Hypervolume

H 10.17 13.10 9.50 9.73
p 6.19e-03 1.43e-03 8.66e-03 7.73e-03

K-means++
H 6.33 16.72 14.76 15.15
p 4.23e-02 2.34e-04 6.24e-04 5.12e-04

H is the statistic H = s2 + k2, where s is the z-score returned by skew test and k is the z-score returned by
kurtosis test. p is the two-sided χ 2 probability. p-values for which null-hypothesis cannot be rejected are

highlighted .
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