é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Sharing without Scaring:
Enabling Smartphones to Become Aware
of Temporary Sharing

Jiayi Chen and Urs Hengartner, University of Waterloo;
Hassan Khan, University of Guelph

https://www.usenix.org/conference/soups2022/presentation/chen

This paper is included in the Proceedings of the
Eighteenth Symposium on Usable Privacy and Security
(SOUPS 2022).

August 8-9, 2022 » Boston, MA, USA
978-1-939133-30-4

Open access to the
Proceedings of the Eighteenth Symposium
on Usable Privacy and Security
is sponsored by USENIX.

+ .' b I : v -

Sharing without Scaring:
Enabling Smartphones to Become Aware of Temporary Sharing

Jiayi Chen
University of Waterloo

Abstract

Smartphone owners often hand over their device to another
person for temporary sharing, such as for showing pictures
to a friend or entertaining a child with games. This device
sharing can result in privacy concerns since the owner’s per-
sonal data may become vulnerable to unauthorized access.
Existing solutions have usability problems and neglect hu-
man factors of sharing practices. For example, since device
sharing implies trust between people, explicitly hiding data
may signal mistrust. Besides, an owner may fail to enable a
sharing-protection mechanism due to forgetfulness or lack of
risk perception. Therefore, we propose device sharing aware-
ness (DSA), a new sharing-protection approach for temporar-
ily shared devices, which detects a sharing event proactively
and enables sharing protection subtly. DSA exploits natural
handover gestures and behavioral biometrics for proactive
sharing detection to transparently enable and disable a de-
vice’s sharing mode without requiring explicit input. It also
supports various access control strategies to fulfill sharing
requirements imposed by an app. Our user study evaluates
handover detection over 3,700 data clips (n=18) and compre-
hensive device sharing processing over 50 sessions (n=10).
The evaluation results show that DSA can accurately detect
handover gestures and automatically process sharing events
to provide a secure sharing environment.

1 Introduction

Prior research shows that it is common for smartphone users
to temporarily share their devices with another person for trust

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2022.
August 7-9, 2022, Boston, MA, United States.

Urs Hengartner
University of Waterloo

Hassan Khan
University of Guelph

and convenience [20,31]. For example, a smartphone user
may show pictures stored on the phone to a friend or hand
over the device to a child to play games. This device sharing
can result in negative experiences due to all-or-nothing access
control [12]. Liu et al. [27] report that 86% of the participants
in their user study always kept their phone in sight when
sharing, which puts an extra burden on the owner and may
make the sharee feel mistrusted. (We use the terms “owner” to
refer to a smartphone owner sharing their device and “sharee’
to refer to people a device is shared with.) Hang et al. [12]
report that the majority of participants in their user study
wanted the ability to share only specific apps and features.

i

Existing solutions for temporary device sharing empha-
size how to impose access restrictions on sensitive apps and
data during sharing. They allow the owner to add a guest
account [17], pin an app [15, 16], or launch apps with limited
features (e.g., a camera app without a view of existing pic-
tures) when the device is locked. However, most solutions
require an explicit action from the owner before sharing the
device. Vulnerabilities arise when humans are forgetful [36]
or lack risk perception of certain situations [4]. Owners may
forget to switch to the guest account or to pin an app before
sharing. Furthermore, sharing behavior is closely related
to trust [38]. An owner explicitly enabling these solutions
signals mistrust for device sharing between the owner and
sharee [1, 13,20, 30, 32]. Besides, these solutions are inad-
equate for some sharing scenarios. A guest account works
well to entertain children with a game but not for temporary
sharing with spouses. Pinning an app grants access only to
the current foreground app. It is insufficient when a sharee
needs access to multiple shareable apps.

We introduce device sharing awareness (DSA) to address
when to enable device sharing solutions. DSA should: 1)
proactively detect device sharing instead of requiring an
owner to remember performing a predefined action, 2) contin-
uously identify the owner to prevent unauthorized access and
ensure that only the owner has full access, 3) be exception-
resistant to automatically handle possible false detection or
exceptions and mitigate the exposure of sensitive resources.

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 671

For an outcome of device sharing awareness, DSA should pro-
vide flexible access control to choose an appropriate strategy
based on the current app type.

To fulfill the above requirements, DSA automatically deals
with all aspects of a device sharing event with little to no input
from the device owner. For subtle and fast sharing detection,
DSA continuously senses for device handover gestures us-
ing motion sensors and verifies the owner’s identity using
behavioral biometrics with high accuracy and low power con-
sumption. Behavioral biometrics alone may make it hard
to distinguish a sharing event from unauthorized access and
rapidly react to the sharing event. When detecting a sharing
event (or upon manual activation by an owner), DSA can en-
able app-level access control using allowlisting or blocklisting.
Besides, it allows the shared app to adopt its sharing-specific
access control strategies (if available). Other apps are also
notified of the device sharing by DSA and can adopt their
own sharing reaction (e.g., de-authenticating a user).

We conducted a user study and collected data from 18 par-
ticipants to evaluate DSA. Our evaluation over 3,700 motion
data clips shows that DSA can detect handover gestures ac-
curately for 95% of the sharing events. On a public dataset
containing 81-hour phone usage data from 100 users [40],
DSA generated only 0.9 false positives per hour of continu-
ous device use. For an average daily smartphone use of about
three hours [11], DSA will generate about three false positives
a day. We also tested the device sharing processing ability
of DSA with a popular touch-based implicit authentication
(IA) solution [10], which includes 50 complete device shar-
ing sessions. DSA succeeded in detecting handover gestures
in 48 sessions, and automatically handled 41 sessions with-
out exceptions while its exception processing additionally
recovered six sessions. DSA adopts adaptive sensing, and
consumes 0.11% of battery per half hour at high-frequency
sensing when there is significant movement, and consumes
only 0.06% of battery per half hour at low-frequency sensing.

Our main contributions include: 1) A demonstration of the
ability of low-cost proactive sharing detection using smart-
phone built-in sensors. 2) An open-source solution for An-
droid' that secures sensitive data during device sharing, while
mitigating human factors of forgetfulness and mistrust. 3) An
extensive evaluation to demonstrate its practicality in terms
of accuracy to detect sharing and battery consumption. 4) A
public, labelled motion sensor dataset with over 3,700 sharing
gesture clips for the research community.

2 Related work

Device sharing surveys. According to recent surveys, mo-
bile device sharing is common in people’s daily life [31]
and even a systemic practice in some regions (e.g., South

IThe source code and the dataset are available at https://github.com/
cryspuwaterloo/DSA-Framework

Asia [1,4,35]). Reasons for device sharing are not limited
to economic consideration, help, convenience, or access to
specific features. As a social and cultural practice, it is also
driven by the need for maintaining social relationships and
signaling trust among people [1,4,30]. However, as revealed
by extensive qualitative studies [1,20,31], people still have
privacy concerns over sharing their mobile devices given pos-
sible device misuse and exposure of sensitive or private data.
For example, a social networking app may keep a user logged
in due to its single-user design. A sharee can move to that
app during sharing and access restricted data or functionality.

Access control for device sharing. Researchers have studied
smartphone owners’ security and privacy concerns with shar-
ing different apps and called for access control mechanisms
for device sharing [12,20,24,31,35]. Studies [12,13,20] show
that all-or-nothing access control cannot meet the need for
device sharing from both security and convenience aspects.
Koushki et al. [24] show that app- or task-level access control
can significantly reduce unnecessary or missed interventions
compared to all-or-nothing access control. xShare [27] en-
ables the owner to specify the resources to share and offers
a restricted mode for the sharee but requires modification
to the operating system. DiffUser [33] establishes a multi-
user security model for Android smartphones, but it requires
creating different accounts to apply different access control
rules. SnapApp [6] adopts a time-constrained access control
model where a short sliding gesture can activate a 30-second
usage session. This scheme reduces the authentication over-
head and enables quick device sharing, but the attacker can
still launch an attack within the session. TreasurePhone [37]
considers both environmental and user contexts to realize
context-dependent access control to groups of apps. Overall,
most existing systems need manual activation and lack inter-
action with third-party apps to secure sensitive resources. In
comparison, DSA enables smartphones to proactively detect
device sharing without being manually activated by an owner
and provides flexible access control.

Trust. As trust is an important motivation of device sharing,
we also need to take trust into account when designing device
sharing solutions. A guest account for socially close sharees
is deemed inappropriate since it signals mistrust [20, 30]. Ex-
plicitly hiding certain apps may also imply a lack of trust [1,4].
Recent device sharing proposals have explored how to protect
sensitive resources while not compromising trust. Seyed et
al. [38] propose a modular smartphone comprising of multiple
access-controlled hardware components to address the trust
and convenience issues of device sharing. PrivacyShield [34]
provides a subtle just-in-time privacy provisioning system,
which enables the owner to quickly enable an access control
rule by entering pre-defined touch gestures. Ahmed et al. [2]
adopt two accounts for shared use and secret space, respec-
tively, which can be accessed via the same interface but with
different passwords. To address the trust issue, DSA takes
control of the entire sharing process proactively and auto-

672 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

https://github.com/cryspuwaterloo/DSA-Framework
https://github.com/cryspuwaterloo/DSA-Framework

matically so that smartphone users do not need to specify or
enable access control rules in front of a sharee. Note that DSA
emphasizes the subtlety of enabling a device sharing solution.
It does not try to hide from a sharee that the device is currently
in a restricted environment, which is a design problem [1].
Achieving this goal reliably requires tremendous efforts of
app developers to redesign their apps [2].

Activity detection. DSA uses smartphone motion sensors to
detect a sharing event based on hand movements. Existing
work [3, 28, 39] focuses on using motion sensors to detect
specific hand gestures. DSA detects natural device handover
gestures continuously so that owners do not need to remember
to perform a pre-defined gesture for device sharing. Vaizman
et al. [41,42] propose a multi-modal system that uses various
sensors on smartphones and smartwatches to recognize a
person’s behavioral context in natural environments, which
is close to our purpose of detecting a sharing gesture in the
wild. However, unlike behavioral contexts, such as walking
and running, a sharing gesture lasts only one to two seconds
and is not a repetitive or periodical activity. Nevertheless, we
follow the feature selection from existing work [25,41] to
train our gesture detection model.

3 Device Sharing Awareness

3.1 Modeling temporary device sharing

Temporary device sharing is a social activity where a device
owner shares certain resources on the phone with one or sev-
eral sharees. The device sharing scenario targeted by our
work is: The device is initially with its owner, and the owner
directly hands it over to a sharee as a signal of granting tempo-
rary access. During sharing, a sharee should not have access
to sensitive resources, including personal data (e.g., messages,
photos) and critical operations (e.g., deleting files). We do
not study device sharing where the device is initially not with
its owner, or where a sharee can access the device indirectly
(e.g., the owner puts the unlocked device on a table to pass
the device) or without the owner’s presence. Traditionally,
this kind of sharing is enabled with separate user accounts or
PIN sharing [1,30]. We discuss this case in § 6.

We describe a sharing event with the following three-stage
device sharing model:

1. Pre-sharing. The owner initially holds the phone. The
owner unlocks the device and opens the app that contains
the resources to be shared. Then, the owner passes the
device to the sharee.

2. Sharing. The sharee holds the device and starts using
the opened app. During sharing, the sharee should be
able to access only the specified resources for sharing.
For the multi-sharee scenario, sharees may pass around
the device, but we still regard it as a single sharing event.

3. Returning. The (last) sharee finishes using the device
and returns it to the owner. A sharing event ends only
when the current user is confirmed to be the owner.

We define the shared app as the foreground app at the
moment when sharing is initiated. Based on the owner’s
preferences, a sharee may be allowed to access further apps
during sharing. The term shared app always refers to the
original one.

3.2 Limitations of existing sharing solutions

Many technical solutions have been proposed to protect sen-
sitive information from unauthorized access on a shared de-
vice. We classify these solutions into four categories based
on their scopes and methods: 1) Guest accounts create an
independent environment for sharees without access to the
personal data of a device owner. However, it prevents sha-
rees from accessing non-sensitive resources only available on
the owner’s account (e.g., non-sensitive photos, a public post
on the owner’s social networking app). 2) App locks (e.g.,
Samsung S Secure [7], Norton App Lock [26]) make an app
require credentials (e.g., a PIN) for launching the app. App
locks provide all-or-nothing access control: a device owner
can only choose from sharing the entire app or nothing. It
introduces unnecessary authentication overhead and does not
apply to many common apps with personal data. For example,
a browser app provides the essential web browsing function
and may store the owner’s passwords for auto-filling. 3) App
pinning (e.g., Android Screen Pinning [16], i0OS Guided Ac-
cess [15]) restricts a sharee’s access to the current foreground
app only. While it is handy for single app sharing, it fully
blocks access to other apps but imposes no restrictions on ac-
cessing in-app content of the foreground app. 4) Vaults (e.g.,
App Vault [18], Private Space [14]) allow owners to hide apps
and files from sharees. A common practice is to provide two
interfaces for shared access and private access, respectively.
It provides finer-grained control over the shared resources
compared to the other methods. However, vault solutions
have been found to provide limited stealth functionality [2]:
1) Most vault apps on the market still provide an entry point
that reveals the existence of a hidden vault. 2) They may only
apply to specific file types (e.g., photos, text, videos).

There are still several gaps between the current practices
and a desired device sharing solution:

1. Lack of subtlety. Ahmed et al. [1] have found that the
act of locking or pinning an app or data may incur so-
cial challenges and raise suspicion, especially when it
comes to device sharing with family members. Thus, a
device sharing solution should be activated subtly and
automatically by the device.

2. Relying on a user’s explicit input. Many device shar-
ing solutions require a user to manually trigger them. A
user’s forgetfulness or lack of risk perceptions [4] can

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 673

cause inaction to device sharing, resulting in the expo-
sure of sensitive data. Besides, relying on a user’s input
can also result in poor usability since an owner may need
to take additional steps (e.g., enter a PIN for app locks)
to access certain resources during regular phone use.

3. Coarse-grained access control. Many solutions follow
a simple access control model to grant all or nothing
access to each app. However, it is preferable to give
apps the option to adapt their own fine-grained access
control strategies during sharing. For the browser app
example, a sharee should be allowed to browse the web
without accessing the owner’s data.

As existing device sharing solutions [2, 6,34] mainly ad-
dress how to protect sensitive resources from unauthorized
access during sharing, we focus on a novel perspective, device
sharing awareness (DSA), to address when to (de-)activate
such solutions. The device should be able to detect device
sharing and identify the owner proactively and transparently.
We present the following example to illustrate how DSA is
expected to handle device sharing automatically:

In a coffee shop, Owen shares with his friend, Shannon,
a bunch of travel photos stored on his smartphone. When
he hands over the phone to Shannon, DSA automatically
detects the sharing activity and notifies the gallery app so
that the app can hide all photos labeled as private. At the
same time, all notifications from messaging apps are silenced.
During sharing, DSA allows Shannon to be redirected to
the Map app by the location metadata of photos but not to
move to any social networking apps to post photos. After
Shannon finishes browsing the photos and returns the device,
the system recovers as before the sharing activity.

3.3 Sharing detection

For minimizing the restrictions on an owner, a device shar-
ing solution is supposed to take effect only when there is an
ongoing sharing event. Therefore, an important requirement
of device sharing awareness is to proactively determine the
beginning and the end of a device sharing event. According
to the device sharing model, we emphasize two factors for
sharing detection: sharing gestures and owner detection. A
sharing gesture is an indicator of a sharing event and implies
that the owner authorizes the sharee to access the phone. We
regard manual activation methods adopted by existing sharing
solutions as explicit sharing gestures (e.g., buttons, touch-
screen swipe gestures, and shortcut keys [15, 16, 34]). They
explicitly indicate the beginning of a sharing event and trigger
sharing solutions immediately. However, for subtlety and less
reliance on explicit input, we also exploit an implicit sharing
gesture, the device handover gesture, which can be directly
sensed from the natural hand movements when the device is
handed from one person to another. In this paper, we mainly
investigate the detection of the device handover gesture.

While a handover gesture indicates the beginning of a shar-
ing event, we cannot use it to determine the end of a sharing
event since there may be multiple sharees passing around
the device. Here, verifying the user’s identity is essential:
While a non-owner user is temporarily allowed to access the
device during sharing, the device should ensure that the cur-
rent user changes back to the owner at the end of a sharing
event. A common practice for de-activating the sharing mode
is to ask for explicit authentication (e.g., a PIN) to ensure the
device has been returned to the owner. DSA should be able
to determine if the current user is the owner proactively and
transparently. It can be achieved by continuous and implicit
authentication: A device can distinguish the device owner
from other people based on biometrics, including continuous
facial recognition [8,29], voice recognition [44], or implicit
authentication (IA) based on behavioral biometrics [19,22].
In addition to determine the end of device sharing, owner
detection can complement a device sharing solution in cases
where a handover gesture is detected erroneously and can
avoid false activation of the sharing mode.

Detecting sharing events based on owner detection alone,
ignoring handover gestures, is insufficient. It is hard to distin-
guish a sharing event from unauthorized access of a stranger
(e.g., a stranger using an unattended, unlocked phone with-
out permission) since a non-owner user can be detected in
both cases. Besides, continuous facial recognition may cause
significant power consumption; voice recognition and behav-
ioral biometrics require sufficient input data for identification,
making the device slow to react to a sharing event. Thus, a
crucial problem is how to combine handover detection and
owner detection for detecting sharing events.

3.4 App types

Most sharing solutions impose access control on sharees to
avoid access to sensitive resources. We name this restricted
environment for device sharing as the sharing mode. Many
apps contain both shareable and non-shareable content, while
some apps may involve redirection to other apps to process
specific requests. Thus, existing solutions that only restrict
the sharee to the current foreground app cannot fulfill these
requirements. Based on whether resources in an app are
shareable and existing taxonomies [13,27], we classify apps
into the following three categories:

» Shareable apps. Apps that are completely shareable
without any sensitive resources, such as games or
weather apps. A sharee has full access to such apps.

* Semi-shareable apps. Apps that contain both shareable
and non-shareable resources, such as social networking
or photo gallery apps. A sharee can access the shareable
resources during sharing without access to personal data
and sensitive operations in such apps.

* Non-shareable apps. Apps that contain no shareable
content, such as system settings, banking, or corporate

674 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

apps. During sharing, a sharee should have no access to
such apps. Specifically, corporate apps have higher secu-
rity requirements and need to react to the sharing event
even when running in the background (e.g., terminate
the session, disconnect from a remote service).

Our goal is to design a device sharing access control strat-
egy that meets the requirements of different kinds of apps.
Moreover, we need to consider some special apps or compo-
nents such as the home screen and the notification bar, most
of which are provided by the system launcher in Android.

3.5 Threat model

Device sharing involves two kinds of roles: an owner and one
or more sharees. A malicious owner is out of the scope of
DSA since the owner can disable DSA and launch attacks on
a sharee (e.g., accessing a sharee’s account that is not properly
logged out after sharing, or sniffing passwords the sharee en-
ters on a website). Instead, we focus on attacks from sharees.
We classify sharees into two categories: A benign sharee uses
only the specified resources without any intention of accessing
sensitive information or other apps during sharing. However,
a benign sharee can do accidental mis-operations that expose
private data (e.g., switch to other apps). It is also possible that
some apps may push notifications that contain sensitive in-
formation to a benign sharee (e.g., an email notification with
a preview). A malicious sharee targets other apps than the
shared app and intends to access private information during
sharing. They may try to leave the current app and access
unauthorized resources. A malicious sharee may be aware of
the existence of the protection mechanisms, such as screen
lock and implicit authentication, and attempts to bypass them.
A malicious sharee may also know of the existence of our
proposed solution and launches attacks accordingly.

4 System design

We now introduce the design of our framework. We present
how DSA works based on different states, its main modules,
complete workflow, and exception handling strategies.

4.1 State transition

We define three states of a device: normal, sharing, and
locked. In state “normal”, the user has full access to the de-
vice. In state “sharing”, the user has limited access to the de-
vice and cannot access sensitive resources. In state “locked”,
the user has no access to the device and needs to explicitly
authenticate. Fig. | shows the state transition among the three
states. Existing app pinning solutions fully rely on manual
operations to switch among the three states (see Fig. 1 Loop
(D): 1) pin an app to start sharing (i.e., limit access only to the
current foreground app), 2) unpin an app to end sharing and

Non-owner detected

Gesture @@ Violation
detected detected

Pin Unpin
® @ le)
/

Owner

identified @ Fail to unlock

[©6l6)]

Unlock
O state ==J» manual operation = automatic detection

Figure 1: State transition of device sharing. Three sharing
loops: () explicit sharing loop (manual option), (2) implicit
sharing loop (handover gesture + owner detection), (3) hybrid
sharing loop (handover gesture + manual unlock).

lock the device, 3) authenticate the user to return to normal
state. DSA keeps this loop to allow users to start or end the
device sharing manually.

Following § 3.3, we introduce an implicit sharing loop (see
Fig. 1 Loop @) as a new trigger mechanism: 1) Sharing:
If DSA detects a handover gesture, the state changes from
“normal” to “sharing”. 2) Returning: If DSA confirms the
owner’s identity, the state changes back to “normal”. Note
that detecting a handover gesture, which may occur when a
sharee returns the device, cannot be used to end a sharing
event given possible multi-sharee cases or gesture spoofing
attacks (i.e., the sharee fakes a handover gesture). In the im-
plicit sharing loop, DSA can handle device sharing and secure
sensitive resources without locking the device or asking for
manual actions by the owner. However, state “locked” is
still useful for processing violations (see § 4.6). DSA allows
a hybrid sharing loop (see Fig. 1 Loop 3)) where DSA de-
tects a handover gesture to move into sharing state while the
owner or sharee have to manually end sharing, and explicit
authentication is required to move back into state “normal”.

4.2 Handover detection

We use the device handover gesture as a trigger of an implicit
sharing loop. A handover gesture lasts only a few seconds and
does not occur frequently. Compared to the typical gesture
recognition problem, a handover gesture is performed in a
natural manner rather than a specified motion (e.g., drawing a
circle). The key to handover gesture detection is to study the
common patterns of handover gestures and distinguish them
from similar motions (e.g., switch hand).

Pilot experiments. We conducted a pilot experiment to inves-
tigate possible handover gesture patterns for feature selection:
one experimenter, acting as a device owner, handed over
a Google Pixel phone to another person (i.e., sharee) with
two different position settings: 1) the owner handed over the
phone from their right hand to the sharee sitting in front of
them; 2) the owner handed over the phone from their right
hand to the sharee sitting next to them. Each setting was
repeated ten times. We collected data from the accelerometer

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 675

10

,QV“ Pattern 2 Accy

E 51 Patternl H}J\ A Acc-z

Y of S WAl T " r'”"\/\/\w*—»f“—

® N4 v

= 10

3 Pattern 3 — Gyro-z

£ sy

o

°

> 0

m T T T T T
0 1 2 3 4

time (s)

Figure 2: Handover patterns. 1. (horizontal movement): the
device travels a distance in the xy-plane, where acceleration
follows a sine curve like pattern; 2. (spike): When the sharee
catches the device, a spike appears on the z-axis of accelera-
tion; 3. (rotation): the device is rotated either by the owner or
by the sharee to adjust the orientation.

and gyroscope at a sampling rate (denoted as f;) of 50Hz.
We use a software linear acceleration sensor provided by An-
droid, which isolates gravity from raw acceleration data with
the help of the gyroscope. The collected data includes linear
acceleration and rotation speed on the three axes.

According to the collected sensor data, we observed that
the length of a handover gesture is about two to four sec-
onds. We also observed three patterns and exemplify them
in Fig. 2. The observation shows the possibility to detect
a handover gesture with motion sensors. It also helps us in
determining features and targeting possible misleading activ-
ities that share similar patterns with handover gestures. For
example, the acceleration readings of a horizontal hand move-
ment follow a sine curve like pattern, which can be described
by time-domain waveform features. A spike on the z-axis of
acceleration resulting from a slight fluctuation of catching a
device can be captured by entropy-based features. A mislead-
ing activity with similar patterns is a user’s passing the device
from their left hand to their right hand (i.e., switching hand).
Feature extraction. To proactively detect handover gestures,
the device continuously collects motion data from the ac-
celerometer and the gyroscope. We first divide the collected
time series data into fixed-size, overlapping segments, where
the sampling rate is fs, the segment length is d seconds (equal
to f; - d samples), and the interval between the start of two
consecutive segments is p seconds. (Fig. 7 shows an example
of segmentation.) The choices of d and p affect the detection
performance. If d is too small, it is hard to capture the han-
dover patterns from a data segment; if d and p are too large,
it takes more time to capture handover. We investigate the
impact of different settings on detection performance in § 5.

After segmenting the raw data, we extract the following fea-
tures for each segment: We first calculate the magnitude of lin-

ear acceleration, m = , /a2 + a% + a?. Together with each axis

of linear acceleration and gyroscope data, we use common
statistics widely adopted in gesture detection [3] and activity
recognition [25] including: average, standard deviation, max-

imum, 25" percentile, median, 75" percentile, sum, double
integration, and range. Also, we measure root mean square
(RMS) [9] of the readings to capture time-domain wavelet
patterns: RMS(v) = y/ (V3 +vi+---+v2_|)/n, where v =
{vo,v1,...vu—1} is a series of n sensor readings. Value and
time entropy [41] measure sudden changes in a signal. We
calculate the value entropy by quantizing all magnitude values
to a 20-bin histogram for a moderate granularity. For time
entropy, we normalize all sensor readings to form a proba-

bility distribution and calculate H(|v]) = — Y7 Z‘vll‘ll log)l_vll\‘/\ .
Furthermore, to include correlations between different axes,
we calculate the correlation coefficient between every two
axes. In total, there are 87 features.

Classification. Based on the extracted features, DSA uses
a pre-trained classifier to determine if the current segment
belongs to a handover gesture. We adopt an offline learning
strategy and train a generic classifier before deploying the
system. For an online strategy, data labelling is challeng-
ing since it may need a user’s feedback to position a sharing
event. Besides, our evaluation results in § 5 show the feasi-
bility of applying a generic classifier to different users. To
reduce false positives, we use a sliding window strategy that
makes decisions based on several consecutive segments: if
two consecutive segments are classified as positive, the sys-
tem concludes that a sharing event is happening.

Adaptive sensing. Given that proactive handover detection is
always running in the background, its power consumption is a
concern. We adopt an adaptive sensing strategy to reduce bat-
tery consumption. The accelerometer and gyroscope initially
collect raw motion data at a sampling rate at 10 Hz. When
significant movement is detected (i.e., the acceleration magni-
tude exceeds a pre-defined activation threshold), it switches
to a high sampling rate of 50 Hz and conducts handover de-
tection. When the device is stationary for a period of time,
the sampling rate is lowered to 10Hz. This strategy reduces
unnecessary computations when the device is stationary.

4.3 Owner detection

Owner detection is provided by continuous and implicit au-
thentication (IA) mechanisms. DSA relies on IA results to
determine if the current user is the owner or not. Biometric
mismatch results in a negative IA result, indicating that the
current user is not the owner. In state “normal”, IA mecha-
nisms are running continuously to prevent unauthorized ac-
cess from non-owner users. They will lock out the current
user upon negative IA results. In state “sharing”, IA mecha-
nisms are automatically configured not to block users upon
negative results as they indicate an ongoing sharing event.
Once the IA results change from negative to positive in this
state, DSA regards it as the end of a sharing event.

We incorporate existing IA mechanisms for owner detec-
tion and do not design a new IA mechanism. The selection of

676 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

IA mechanisms should take accuracy, availability, detection
latency, and battery consumption into consideration. Ide-
ally, IA mechanisms with low false rejection rate and low
battery consumption are preferred in state “normal” since a
device is not under sharing most of the time. In contrast, A
mechanisms with low false acceptance rate and short detec-
tion latency are preferred in state “sharing” to determine if
the device has been properly returned to the owner. Owner
detection can adopt multiple modalities to ensure accuracy
and availability. For example, if touch-based IA produces
a positive result, the device can automatically conduct face
recognition to determine if the current user has changed back
to the owner. It helps to ensure high accuracy with avoiding
battery consumption of continuous facial recognition.

Considering the availability of various behavioral biomet-
rics on smartphones, we use the touchscreen input biometric
and adopt Touchalytics [10], whose reported equal error rate is
below 4%, as the default scheme in our evaluation. Touchalyt-
ics extracts 29 features from touch events to capture behavior
related to acceleration, velocity, duration, orientation, width,
pressure, and trajectory length. It performs classification for
each touch event and authenticates the user based on the re-
sults of several consecutive touch events. According to Khan
et al. [22], the battery consumption of touch-based IA is low
enough for continuous owner detection.

4.4 Access control for device sharing

For improved usabililty, DSA adopts different strategies for
enforcing app-level access control based on the shared app
type. It also notifies apps of sharing status changes so that a
shared app can change its behaviors to a shared mode. The
common app-level access control strategies involve: 1) Block-
list. A device owner can determine a list of non-shareable apps
that cannot be accessed by a sharee. In state “sharing”, the
system rejects all access attempts to the apps on the blocklist.
Besides, hiding non-shareable apps is also applicable to block
a sharee’s access in a subtle way. 2) Allowlist. A sharee is
only allowed to access a list of shareable or semi-shareable
apps. App pinning methods can be regarded as a kind of
allowlist that makes only the current foreground app available
to a sharee. 3) Profile switching. Mobile operating systems
(e.g., Android) organize user data in profiles and allow the
programmatic switching of an app’s profile [5]. It enables
a sharee to use a semi-shareable app without accessing the
owner’s data. If this feature is not available, an app can switch
a profile as part of in-app sharing control (see below).

While an owner can configure access control strategies for
different apps, DSA can infer what access control strategy to
adopt: In most cases, DSA sets the current foreground app
as a shared app and automatically adopts an allowlist-based
strategy to restrict a sharee’s access to the shared app and
any shareable or semi-shareable apps redirected to from the
shared app. If there is “no app” running in the foreground

Handover

Sharing

Shatring gesture Ede?cti(teZt:;r;in
gesture detector P 9
gesture

DSA identi Owner Implicit
’ authentication

service detector .
mechanisms

Notification

Access listener
(eesiife] B Foreground app

scanner

state control

foreground app

1

(Ao] Cawi] w2 |

Figure 3: DSA architecture.

(e.g., the current foreground app is a launcher or home screen),
DSA enables blocklist-based access control.

In addition to app-level access control, an app may have
its own device sharing control strategies. Possible options
include switching to guest mode, disabling user-specific con-
tent, logging out the owner’s account, etc. For example, a
camera app can provide only the camera function without
revealing any local photos. As suggested by existing stud-
ies [1,2], it is important for apps to incorporate the “shared
use" paradigm into their current design to provide more fine-
grained in-app sharing control. In this case, DSA can provide
important device sharing notifications to these apps to help
them decide whether to enable such a shared use design.

4.5 DSA workflow

Fig. 3 shows the architecture of DSA. The high-level work-
flow of DSA follows the three stages introduced in the device
sharing model in § 3.1.

Pre-sharing. The sharing gesture detector and the owner de-
tector run continuously. At state “normal”, the owner detector
is performing continuous authentication to reject non-owner
users. Once a handover gesture is detected or the owner ex-
plicitly starts the sharing mode, the DSA service updates the
current state to “sharing” and adopts an access control strategy
according to the current foreground app. It also broadcasts
the device sharing signal to other apps so that they can enable
their own sharing mode or other reactions such as requesting
re-authentication for the next access.

Sharing. The device is in state “sharing” and the sharing
mode is enabled. The foreground app scanner continuously
checks if the sharee is authorized to access the current fore-
ground app. It rejects any unauthorized access to sensitive
resources based on the access control strategy by redirecting a
sharee to the shared app given possible mis-operations. If the
mis-operations reach a pre-defined threshold, the DSA service
locks the device. The notification listener intercepts incoming
notifications to filter out the ones from non-shareable and
semi-shareable apps. The blocked notifications are temporar-
ily stored during sharing. The owner detector keeps verifying

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 677

if the current user is the owner and stops blocking non-owner
users (i.e., negative IA results).

Post-sharing. Once the current user is identified as the owner
or the owner manually ends sharing and passes explicit authen-
tication, the DSA service updates to state “normal”. The DSA
service notifies the foreground app scanner and the notifica-
tion listener for lifting the access restrictions. The notification
listener shows the owner all cached notifications that were
missed during sharing. The owner detector resumes to defend
against unauthorized access from non-owner users. The DSA
service then broadcasts the state change to other apps so that
they can revoke the changes made for device sharing.

4.6 Exception processing

As the implicit sharing loop allows DSA to handle device shar-
ing automatically without a user’s explicit input, exceptions
may occur, resulting from false detection, mis-operations, or
attacks, and cause security or usability issues. It is critical
to have an exception processing mechanism to recover from
exceptions and mitigate their negative impact. Specifically,
it needs to minimize the chance of sensitive resources ex-
posed to a sharee. We classify exceptions into four types and
provide solutions accordingly. In addition, in our user study
(see § 5.3), we investigated the exceptions that DSA may
encounter and how efficiently it handled these exceptions.
Non-owner user detected in state ‘“normal”. When the
owner detector detects a non-owner user, it locks the device
and asks for re-authentication, such as a PIN code or
password. There are three situations: 1) the current user is
an attacker, and the owner detector successfully prevents
unauthorized access, which is not an exception of device
sharing; 2) the current user is the owner, and the owner
detector falsely rejects the owner, which is a failure of the
adopted TA mechanism; 3) the current user is the sharee, and
the owner detector makes a correct detection, but the sharing
gesture detector failed to capture the sharing event. Therefore,
we need to distinguish the second and third situations. If
the user passes re-authentication, the DSA service prompts
a dialog to confirm if a sharing event was initiated. If so, it
updates the sharing state and starts the sharing mode.

App exception. An app exception happens when a sharing
event is detected but the current foreground app is invalid. It
can be one of the following invalid apps: 1) a non-shareable
app: DSA blocks the access and re-authenticates the owner. If
the non-shareable app is logged in with the owner’s account,
the current session of the app will be immediately ended.
2) system launcher: it provides entry points to all apps on
the smartphone. Since no app is specified for sharing, DSA
applies a blocklist-based access control strategy. The sha-
ree is prevented from accessing non-shareable apps, and the
notifications of non-shareable apps are hidden.

False positives of the handover detector. If the handover
detector falsely detects a handover gesture when there is no

345 @ A o B94%

Sensitive notifications of .
owner’s downloaded files Sharmg Normal
_____ S detected
345 @ @) | O % B94%
Notfcations hidden | Sharing
346 @ A[L L] Owner | @ = 094%
Notifications recovered | identified Normal

Truncated log view

15:45:25.300 I/HandoverDetection: Sharing detected
15:45:25.353 I/AccessControl: Sharing mode
15:45:25.354 I/DSAService: Broadcast sharing state
15:46:19.588 I/OwnerDetection: IA result: owner
15:46:19.588 I/DSAService: Return confirmed
15:46:19.660 I/AccessControl: Normal mode

Figure 4: DSA Service Example: 1) At 3:45pm, DSA de-
tected a sharing event and enabled the sharing mode; 2) Dur-
ing sharing, sensitive notifications were hidden, and DSA
broadcast the sharing signal; 3) At 3:46pm, DSA identified
the owner and ended the sharing mode with recovering the
hidden notifications. Note: the first icon in the notification
bar means the device is connected to a computer (for logging
purposes); the second icon indicates that DSA Service is run-
ning; the third and fourth icons are the sensitive notifications.

sharing event, the DSA service still moves to state “sharing”,
which causes inconvenience to owners. However, the owner
detector can help correct false positives. If the owner contin-
ues using this app, the owner detector can identify the owner,
and the system moves back to state “normal”. Even if the
owner detector also happens to make a false detection and
mistakenly regards the owner as a sharee, the owner can still
explicitly end the sharing mode and re-authenticate. In § 5.2,
we evaluate how the owner detector addresses false positives.
App redirection. A shared app may involve resources that
redirect to other apps, such as a URL to be opened in a
browser. DSA allows redirection to shareable and semi-
shareable apps. Note that an app can activate its sharing mode
by acquiring the sharing state from the DSA service at startup.

4.7 Implementation

We implement our demo DSA solution on Android as a ser-
vice and release the source code'. Developers and researchers
can incorporate DSA into their device sharing solutions for
automatic (de-)activation. Developers of third-party apps can
set up a broadcast receiver to obtain the sharing notifications
from the DSA service for enabling their in-app sharing control.
Fig. 4 illustrates the log view and the changes of the notifica-
tion bar at different states of an implicit sharing loop to reflect
how DSA automatically handles device sharing. We can see
that DSA automatically hid the sensitive notifications after de-
tecting a handover gesture and recovered them once the user
changed back to the owner. During this process, the owner
did not need to manually enable and disable the sharing mode.

678 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

5 Evaluation

We first evaluate handover detection as it plays an important
role in starting the implicit sharing loop. Then, we test how
DSA coordinates handover detection and owner detection to
automatically handle sharing events. We received approval
from our IRB for the user study reported in this work.

5.1 Evaluation setup

Study description. We conducted a user study advertised
as “the evaluation of context detection techniques for smart-
phone sharing”, and recruited 18 participants (5 females and
13 males) through word-of-mouth advertising. Eleven partic-
ipants were between 18-29 years, five were between 30-39
years, and two were above 40 years of age. 13 participants
were related to the field of Computer Science and the rest
were in non-related fields. The study consisted of two parts:
handover detection and device sharing. Participants chose to
complete the first part only or both parts. 10 of 18 participants
completed both parts. Participants received $25 remuneration
for completing the whole study ($15 for completing the first
part only). Due to the pandemic, most experiments happened
remotely, and participants were instructed and supervised us-
ing a videoconferencing platform. Participants could choose
to use a provided experiment smartphone or to install a data
collection app on their devices. The phones recorded in the
evaluation include Google Pixel, Google Pixel 3, Samsung
S8, Xiaomi Redmi 5, and Huawei P9.

Model setup. For the detection of handover gestures, we used
Support Vector Machines (SVM) and Neural Networks (NN)
to train the gesture detection model and use it for classifi-
cation. Considering the NN model’s superior performance
and the increasingly mature support for NN on today’s smart-
phones, we adopted NN in our evaluation. The input layer
of the NN is the feature vector (size=87) of each segment.
The model includes two hidden fully-connected layers using
ReLU as the activation function: one 64-neuron layer and
one 48-neuron layer. We apply 10% dropout in between two
hidden layers to reduce overfitting. The output layer uses
Sigmoid as the activation function since our gesture detec-
tion is a binary classification task. We use the cross entropy
loss function and Adam optimizer for model training. We set
the number of epochs as 120 and the batch size as 128. For
the training set, the positive instances were from handover
gestures, and the negative instances were from movements
sharing similar patterns with handovers. Given the low fre-
quency of sharing events in practice, an imbalanced training
set reflecting the actual distribution may make the model fo-
cus on detecting non-handover gestures [21]. Thus, we adopt
a balanced training set where positive and negative instances
are evenly distributed, and use 10% of the data for validation.
Metrics. Handover detection involves segmenting motion
data, classifying each segment, and making decisions based

User# | 1 2 3 4 5 6 7 8 9 10 11 12
AUC | 098 098 098 098 099 099 097 097 097 096 097 096
EER | 0.07 005 0.06 007 0.03 002 0.07 0.08 003 0.07 004 0.09

Table 1: Segment-level experiments: Per-user models.

User# | 1 2 3 4 5 6 7 8 9 10 11 12
AUC | 094 096 098 097 099 095 090 090 097 093 094 097
EER | 0.11 0.10 0.09 0.10 004 0.12 0.16 015 007 0.5 0.11 0.09

Table 2: Segment-level experiments: Cross-user models.

on a number of consecutive segments. For segment-level
classification, we evaluate the classifier performance based
on its receiver operating characteristic (ROC) curve and use
area under curve (AUC) and equal error rate (EER). For
event-level detection, we use precision, recall, and f1-score
to evaluate the overall detection performance under different
settings. To measure the reaction time of each positive gesture
detection, we use its elapsed time after the moment when the
participant receives the instruction to hand over the device.

5.2 Evaluation of handover detection

The first part of our user study evaluated the accuracy of han-
dover detection. Training a gesture detection model requires
both handover (i.e., positive) and non-handover (i.e., negative)
data to distinguish handover gestures from other movements.
Thus, the user study involved two-participant handover tasks
and single-participant non-handover tasks. In the handover
tasks, participants were asked to hand over a smartphone from
either their left or right hand in two directions: 1) Face-to-
face: the owner was in front of the sharee. 2) Side-by-side:
the owner was next to the sharee. Participants also performed
the handover tasks with random directions to provide diverse
handover data, where they randomly adjusted their relative
positions each time. For each pair of participants, one par-
ticipant handed over the device to the other at least 20 times
per direction. Then, they swapped roles and repeated. In the
non-handover tasks, we recorded motion data for activities
having similar patterns with handover, such as switching hand,
putting the device down, rotating the device, and random
movements with combining device rotations and movements
in different directions. All participants completed each single-
participant task (e.g., switching hand) 20 times. Each data
clip of handover or non-handover events lasts 5s to 10s.

In total, we collected 2044 positive and 1737 negative clips.

5.2.1 Cross-user experiments

A pre-trained gesture detection model should work on a new
user (i.e., low user dependence) without retraining. Thus,
we evaluate the cross-user performance of gesture detection
from the perspectives of AUC and EER. A high AUC and
a low EER indicate that a model can distinguish handover
gestures from these activities better. We split each data clip
into segments (d = 2s, p = ls). For positive events, we focus
on data segments that have 50% overlap with this time interval

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 679

1.0 - - - -
dFm SEE TS T g @ =EEET = FFF 33 Fger o * ¥
0 0.9 io' - T otk i
S I precision I precision é I precision I precision ?
2 0.87 mm@ recall == recall ° == recall == recall
07 B f1 B fl B fl B fl
—~6
v
e o L]
g 4 3 o] o — g (=] o o o] o] l i‘
e o) o o —) o —)
I T -~ - |TTFTT
g ? o] ? (=] ° — o o] T
=) P4 o
d=1 d=2 d=3 d=4 0.5 1.0 15 1 2 3 0.0 0.3 0.6 0.9 1.2

(a) segment size (s) (b) interval (s)

(c) window size (d) activation threshold (m/s?)

Figure 5: Event-level experiments: impact of different parameters on the detection performance and latency.

and label them as positive segments.We label all the segments
from negative events as negative segments.

First, a cross-user model, which is pre-trained with hybrid
data from multiple users, should have comparable accuracy
as a per-user model. As a reference, we run a 10-fold cross
validation to test the performance of per-user models for 12
participants using the same Google Pixel phone. We split
each user’s data in 10 subsets and use one subset as the test-
ing set and the other nine subsets as the training set for each
fold. As shown in Table 1, the AUCs of all models are above
0.96 while the EERs are below 10%. Then, the cross-user
model is trained with multiple users’ motion data. We adopt
the following protocol: for each participant, we train a model
with 11 other participants’ data and then test it on the chosen
participant’s data. Table 2 shows that the cross-user model
can still provide a high AUC when it is applied to a new
user, where the worst AUC is 0.90 and the worst EER is 16%.
We can observe an increase in EER by comparing cross-user
models to per-user models, which implies a weaker ability
to distinguish a new user’s handover gesture from their other
movements. Nevertheless, we apply a sliding window-based
strategy for sharing event detection (see § 5.2.2) and addi-
tionally apply IA based owner detection (see § 5.3) to further
mitigate false detection. In summary, the results shows that
the gesture detection model can recognize handover gestures
across different users, which imply its low user dependence.

In the appendix, we present cross-device evaluation results
to show model transferability to different devices.

5.2.2 Impact of different settings

As introduced in § 4.2, the choice of segment size d and
interval p affects the detection accuracy. Besides, we adopt a
sliding window-based strategy, where handover detection is
performed over w segments to balance accuracy and detection
delay. Moreover, we use adaptive sensing to save battery
(see § 4.2), and the choice of its activation threshold 6 may
affect the detection performance. We divide all events into
10 subsets and adopt 10-fold cross validation. We enable
adaptive sensing only for the adaptive sensing experiments.

Segment size and interval. Intuitively, a larger segment size
d and a smaller interval p provide better ability to cover a
sharing gesture. We tested four d’s (1s,2s,3s,4s) and set p to
achieve a 50% segment overlap. We set w = 2. In Fig. 5(a),
d = 3s provides higher precision compared to d = 2s, but it
takes longer to make a detection. To balance latency and accu-
racy, we set d = 2s. Then, we test three different p’s. Fig. 5(b)
shows that a shorter interval has higher recall, but lower preci-
sion. A larger overlap allows more classifications in the same
period to improve recall and capture a gesture earlier.
Window size. Considering the length of a sharing gesture, we
change the window size from one to three segments at d = 2s
and p = 1s. Fig. 5(c) shows fl-score reaches the highest
(median: 98%) and the average elapsed time is only 2s when
w = 2. When w = 3, the average recall decreases to 81%.
When w = 1, the average precision drops to 92%. This result
shows the necessity of a window-based strategy to avoid false
positives instead of directly using segment-level results.
Adaptive sensing. We set up the evaluation environment as
follows: 1) low frequency mode: f; = 10Hz without classifi-
cation task. 2) mode switch: if m > 6, high frequency mode
is activated; if m < 0.1m/ 52, low frequency mode is activated;
there is a 90ms latency when mode switch happens, which
is the maximum of 50 measurements on Google Pixel. 3)
high frequency mode: f; = 50Hz with feature extraction and
classification. We test five different thresholds: 0, 0.3m/ 2,
0.6m/s%,0.9m/s?, 1.2m/s*. Fig. 5(d) shows that recall drops
with higher 6. Due to the mode switch delay, it is likely to
miss data at the beginning of a gesture. Nevertheless, when
0 = 0.3m/s?, recall is still acceptable (mean: 95%).

Given our results, we use the default settings d = 2s, p = 1s,
w=2,and 6 = O.3m/s2 to balance precision (mean: 0.98),
recall (mean: 0.95), and reaction time (mean: 2.33s).

5.2.3 False positive evaluation

We train the gesture detection model using the training data
from all participants in § 5.2.1 and adopt the settings sum-
marized in § 5.2.2. We evaluate the long-term false pos-
itive rate of handover gesture detection using the HMOG

680 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

* lA:owner
IA:non-owner

—— Linear Acc.
Normal

+ lA:owner
IA:non-owner

Sharing

magnitude (m/s?)
magnitude (m/s?)

—— Linear Acc.

Locked

* lA:owner
IA:non-owner

—— Linear Acc.
Normal

Sharing

Normal [Locked

magnitude (m/s?)

0 5 10 15 20 25 30 35 0 10
time (s)

(a) Example 1: error-free session.

20

(b) Example 2: gesture detection failure.

time (s)

15 20 25 30 35
time (s)

30 40 50 0 5 10

(c) Example 3: IA false acceptance.

Figure 6: A user study session consists of three stages: 1. owner uses the device and then hands it to sharee; 2. sharee uses
the device and then returns it; 3. owner receives the device. The grey plot shows the intensity of the movements measured by
the accelerometer. Green area: the device is in state “normal”. Yellow area: the device is in state “sharing”. Red area: the device
is locked. Blue and orange points are the per-swipe results of touch-based IA, representing owner and non-owner, respectively.

dataset [40,43]. This testing data involves 493 sessions (about
81 hours) of 100 smartphone users’ reading and writing activ-
ities, but no sharing activities, while standing or sitting. For
each session, we keep detection running even after a false
positive is detected. The result shows that the hourly false
positive rate for continuous device use is 0.9 per hour. Since
handover detection runs only when the screen is on, the num-
ber of false positives is correlated to the daily screen time of
a user. For an average daily screen time of three hours [11],
handover detection may produce two to three false positives
in a day. Even if a false positive makes DSA move to state
“sharing” falsely, DSA switches back to state “normal” once
the owner’s identity is confirmed, which mitigates the false
positive. Thus, the false positive rate of handover detection
is acceptable for daily usage. For future work, we will con-
duct a longitudinal study on the impact of false positives on
usability.

5.3 Device sharing processing

The second part of our user study tested if DSA is able to
automatically detect the sharing and the returning of a smart-
phone with the help of both handover detection and owner
detection. Besides, we captured potential exceptions.

Task description. We adopted a touchscreen input based TA
scheme [10] (i.e., touch-based IA) and used a (m,n)-sliding-
window-based strategy: If m out of n swipes are accepted as
the owner’s, IA will accept the current user as the owner. Here,
we set m = 4,n =7 for balancing false rejection rate and false
acceptance rate of touch-based IA. For IA enrollment, we
collected 200 swipes from each participant to train the per-
participant IA models. For handover detection, we trained a
model with the training data from the controlled experiments
in § 5.2 and use the default settings. In each session, a group
of two participants was asked to perform a web page sharing
task: the owner shared a web page and handed the phone to the
sharee; after reading the page, the sharee returned the phone
to the owner. Each participant was required to swipe at least
10 times during reading when the phone is in their possession.
Once they completed the reading task, they swapped their

roles and repeated the above process. Each group contributed
to 10 sessions. Given that the amount of time for temporary
device sharing is usually limited [31], most sharing events
in our study lasted from 30 seconds to one minute. Short
sharing events require DSA to detect the starting and end
of a sharing event rapidly. We did not specify the position
of each participant and how they handed over the device so
that participants could hand over the device in their natural
manner. In total, we collected 50 device sharing sessions
from five groups of participants for analysis.

Results. We counted the sessions with exceptions of either
handover detection or IA among the 50 sessions. We observed
three exception types: 1) failure in detecting handover ges-
tures to enable the sharing mode: 2 sessions, 2) IA falsely
accepting a sharee as an owner: 6 sessions, and 3) failure in
detecting the end of a sharing event: 1 session. Therefore,
DSA completed the implicit sharing loop in 41 sessions with-
out explicit inputs from the owner. We note that the results
were related to the performance of the selected IA scheme,
which can be improved by using IA schemes with higher
accuracy. Fig. 6(a) shows an example of a session without
exceptions: The owner was using the phone during the first 9
seconds and then handed it over to the sharee; DSA detected a
handover gesture and switched to state “sharing” at 12s; after
the sharee finished using the phone and returned the phone to
the owner, the owner detector detected the owner at 24.5s and
switched back to the normal state.

Exception processing. We recorded all sessions with excep-
tions and analyzed how DSA processed them. In two sessions,
handover detection failed to detect handover gestures but DSA
blocked the sharee according to the negative IA results (see
Fig. 6(b)). In six sessions, DSA initially falsely identified the
sharee as the owner. However, in four of these sessions, it
correctly identified the sharee as non-owner within several
seconds after obtaining more touch events from the sharee.
For example, in Fig. 6(c), DSA falsely identified the sharee
as the owner, and consequently, state “sharing” was left at
21.2s. However, after DSA detected several non-owner touch
events, it locked the sharee out at 24.4s to prevent potential
unauthorized access. DSA failed to recognize the owner after

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 681

the device had been returned in only one session. In this
case, the owner could still manually exit from state “sharing”
by passing re-authentication. A possible solution to mitigat-
ing potential security threats brought by IA false detection is
to set up stricter detection criteria for identifying the owner
(e.g., requiring more positive swipes in a window size) in
state “sharing”. Note that these errors or exceptions may be
specific to touch-based IA owner detection. Using or combin-
ing different biometrics may improve accuracy. Furthermore,
the training data was collected from only brief reading tasks,
which lacks diversity and may result in more false detections.

6 Discussion

Battery consumption. We run the DSA service on Google
Pixel in airplane-mode for 30 minutes without other running
apps and repeat 5 times for both high-frequency sensing and
low-frequency sensing. We use Battery Historian to estimate
the battery consumption of DSA Service. As a reference, we
leave the phone with screen always on, and the phone dis-
charges 3% of battery in 30 minutes. The results show that the
average estimated battery consumption of DSA Service alone
for high-frequency sensing is 0.11% per half hour; the rate for
low-frequency sensing is 0.06% per half hour. Therefore, the
battery consumption is very small while adaptive sensing can
further reduce battery consumption. Our battery consump-
tion evaluation is preliminary. Since DSA performs sharing
detection only when the screen is on, we chose a small time
frame. In the future, we will evaluate battery consumption
with longer time frames and its impact on device usage.

Defending against unauthorized access. Given the observed
latency of handover detection, we conclude that DSA can
swiftly activate the sharing mode, and a sharee can hardly
conduct effective attacks during such a short interval. Even if
handover detection fails, owner detection can block a sharee
upon negative IA results. As observed in § 5.3, owner detec-
tion was limited by the performance of its IA scheme. False
acceptance may temporarily deactivate the sharing mode so
that a sharee can move to sensitive apps at this moment. The
exception processing of DSA will reject a sharee if the IA
result is negative again. However, similar situations may re-
sult from a malicious sharee launching specific attacks on the
adopted IA scheme (e.g., mimicry attacks [23]). A promising
countermeasure is to adopt multiple modalities (i.e., multi-
modal TA) so that the failure of one modality is not likely to
make owner detection fail. Thus, how to incorporate multi-
modal IA into DSA will be our future work.

PIN sharing. For DSA, we assume that a device owner ini-
tially holds the device and performs a sharing gesture, indi-
cating a device sharing event. However, PIN sharing, another
way of device sharing, breaks the assumption. An owner
shares their PIN/password with a sharee in advance so that
the sharee can unlock the device without the owner’s pres-

ence. DSA cannot distinguish PIN sharing from unautho-
rized access since it only captures non-owner access for both
cases. However, a device sharing solution can be made aware
of PIN sharing through two ways: 1) The shared PIN can
reveal a user’s identity. A device owner can set up two dif-
ferent PINs [2] for themselves (i.e., private use) and sharees
(i.e., shared use), respectively. If a user is using the PIN for
sharees, it implies a sharing event. 2) A sharee can register
their biometrics (e.g., fingerprint, face, touch) in the system
so that they can be identified. The device sharing solution can
activate the sharing mode once the current user’s biometrics
match any registered sharee’s record. Otherwise, it identifies
the current user as illegitimate and locks the device.

Evaluation limitations. We list the following limitations in
the evaluation of DSA: First, the evaluation of handover de-
tection did not cover some conditions (e.g., from standing
to sitting, in a vehicle) and edge cases (e.g., non-handover
sharing actions via a table). For edge cases, as DSA’s sharing
detection is extensible, a feasible solution is to add models
for these sharing actions. For better security, sharing mode
can be enabled for these cases only if a non-owner is detected
under certain contexts (e.g., at home). Second, to collect
sufficient device sharing events in a short period, we asked
participants to execute tasks in the second part of our user
study. Some handovers in the first part of the user study re-
quired participants to follow specific position and direction
instructions. These may have influenced their device sharing
behavior during the tasks in the second part. Third, our anal-
ysis focused on how DSA handles sharing a device from a
system’s perspective. A potential avenue is to conduct a field
study with our prototype DSA implementation so that we can
investigate how DSA handles sharing events in the wild and
collect smartphone users’ perceptions about DSA.

7 Conclusion

We present DSA, a device sharing awareness solution for
temporary smartphone sharing. DSA enables smartphones
to conduct continuous and proactive device sharing detection
with low latency and low power requirements. It provides
flexible access control strategies to protect sensitive apps and
resources from unauthorized access during sharing. Extensive
experiments show that DSA can detect device sharing with
high recall and low false positive rates.

Acknowledgements

This research has been supported by the Waterloo-Huawei
Joint Innovation Laboratory. The authors would like to thank
the anonymous reviewers and shepherd for providing insight-
ful comments and feedback to improve the paper.

682 Eighteenth Symposium on Usable Privacy and Security

USENIX Association

References

(1]

[2

[}

3

—_

(4]

[5

—_

(6]

[7

[—

(8]

[9

—

[10]

Syed Ishtiaque Ahmed, Md Romael Haque, Jay Chen,
and Nicola Dell. Digital privacy challenges with shared
mobile phone use in Bangladesh. Proceedings of the
ACM on Human-Computer Interaction, 1(CSCW):1-20,
2017.

Syed Ishtiaque Ahmed, Md Romael Haque, Irtaza
Haider, Jay Chen, and Nicola Dell. “Everyone has
some personal stuff”’: Designing to support digital pri-
vacy with shared mobile phone use in Bangladesh. In
Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, pages 1-13, 2019.

Ahmad Akl, Chen Feng, and Shahrokh Valaee. A novel
accelerometer-based gesture recognition system. /EEE
Transactions on Signal Processing, 59(12):6197-6205,
2011.

Mahdi Nasrullah Al-Ameen, Huzeyfe Kocabas, Swap-
nil Nandy, and Tanjina Tamanna. ‘“We, three brothers
have always known everything of each other”: A cross-
cultural study of sharing digital devices and online ac-

counts. Proceedings on Privacy Enhancing Technolo-
gies, 2021(4):203-224, 2021.

Android. Supporting multiple users. https://source.

android.com/devices/tech/admin/multi-user.

Daniel Buschek, Fabian Hartmann, Emanuel
Von Zezschwitz, Alexander De Luca, and Flo-
rian Alt. SnapApp: Reducing authentication overhead
with a time-constrained fast unlock option. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, pages 3736-3747, 2016.

Samsung Electronics. S Secure.
//galaxystore.samsung.com/prepost/
000004637448.

https:

Mohammed E Fathy, Vishal M Patel, and Rama Chel-
lappa. Face-based active authentication on mobile de-
vices. In 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
1687-1691. IEEE, 2015.

Davide Figo, Pedro C Diniz, Diogo R Ferreira, and
Joao MP Cardoso. Preprocessing techniques for context
recognition from accelerometer data. Personal and
Ubiquitous Computing, 14(7):645-662, 2010.

Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic,
and Dawn Song. Touchalytics: On the applicability of
touchscreen input as a behavioral biometric for continu-
ous authentication. IEEE transactions on information
forensics and security, 8(1):136-148, 2012.

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

The Guardian. Shock! Horror! Do you know how
much time you spend on your phone? https://www.
theguardian.com/lifeandstyle/2019/aug/21/
cellphone-screen-time-average-habits.

Alina Hang, Emanuel Von Zezschwitz, Alexander
De Luca, and Heinrich Hussmann. Too much infor-
mation! User attitudes towards smartphone sharing. In
Proceedings of the 7th Nordic Conference on Human-
Computer Interaction: Making Sense Through Design,
pages 284-287, 2012.

Eiji Hayashi, Oriana Riva, Karin Strauss, AJ Bernheim
Brush, and Stuart Schechter. Goldilocks and the two
mobile devices: Going beyond all-or-nothing access to
a device’s applications. In Proceedings of the Eighth
Symposium on Usable Privacy and Security, pages 1-11,
2012.

Ltd. Huawei Device Co. Create a privatespace for
your private data. https://consumer.huawei.com/
en/support/content/en-us15834600/.

Apple Inc. Guided access. https://support.apple.
com/en-us/HT202612.

Google Inc. Android pin & unpin screens.
https://support.google.com/android/answer/
94551387h1l=en.

Google Inc. Manage guests and users.
https://support.google.com/nexus/topic/
61265467hl=en&ref_topic=3416294.

Xiaomi Inc. App vault. https://play.google.
com/store/apps/details?id=com.mi.android.
globalminusscreen.

Markus Jakobsson, Elaine Shi, Philippe Golle, and
Richard Chow. Implicit authentication for mobile de-
vices. In Proceedings of the 4th USENIX conference on
Hot topics in security, pages 9-9, 2009.

Amy K Karlson, AJ Bernheim Brush, and Stuart
Schechter. Can I borrow your phone? Understanding
concerns when sharing mobile phones. In Proceed-
ings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1647-1650, 2009.

Harsurinder Kaur, Husanbir Singh Pannu, and
Avleen Kaur Malhi. A systematic review on imbalanced
data challenges in machine learning: Applications and
solutions. ACM Computing Surveys (CSUR), 52(4):1—
36, 2019.

Hassan Khan, Aaron Atwater, and Urs Hengartner. Itus:
An implicit authentication framework for Android. In
Proceedings of the 20th annual international conference

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 683

https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://galaxystore.samsung.com/prepost/000004637448
https://galaxystore.samsung.com/prepost/000004637448
https://galaxystore.samsung.com/prepost/000004637448
https://www.theguardian.com/lifeandstyle/2019/aug/21/cellphone-screen-time-average-habits
https://www.theguardian.com/lifeandstyle/2019/aug/21/cellphone-screen-time-average-habits
https://www.theguardian.com/lifeandstyle/2019/aug/21/cellphone-screen-time-average-habits
https://consumer.huawei.com/en/support/content/en-us15834600/
https://consumer.huawei.com/en/support/content/en-us15834600/
https://support.apple.com/en-us/HT202612
https://support.apple.com/en-us/HT202612
https://support.google.com/android/answer/9455138?hl=en
https://support.google.com/android/answer/9455138?hl=en
https://support.google.com/nexus/topic/6126546?hl=en&ref_topic=3416294
https://support.google.com/nexus/topic/6126546?hl=en&ref_topic=3416294
https://play.google.com/store/apps/details?id=com.mi.android.globalminusscreen
https://play.google.com/store/apps/details?id=com.mi.android.globalminusscreen
https://play.google.com/store/apps/details?id=com.mi.android.globalminusscreen

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

on Mobile computing and networking, pages 507-518,
2014.

Hassan Khan, Urs Hengartner, and Daniel Vogel. Aug-
mented reality-based mimicry attacks on behaviour-
based smartphone authentication. In Proceedings of
the 16th Annual International Conference on Mobile
Systems, Applications, and Services, pages 41-53, 2018.

Masoud Mehrabi Koushki, Yue Huang, Julia Rubin, and
Konstantin Beznosov. Neither access nor control: A
longitudinal investigation of the efficacy of user Access-
Control solutions on smartphones. In 37st USENIX Se-
curity Symposium (USENIX Security 22), Boston, MA,
August 2022. USENIX Association.

Jennifer R Kwapisz, Gary M Weiss, and Samuel A
Moore. Activity recognition using cell phone accelerom-
eters. ACM SigKDD Explorations Newsletter, 12(2):74—
82,2011.

Norton Labs. Norton app lock. https:
//play.google.com/store/apps/details?id=
com.symantec.applock.

Yunxin Liu, Ahmad Rahmati, Yuanhe Huang, Hyukjae
Jang, Lin Zhong, Yongguang Zhang, and Shensheng
Zhang. xShare: Supporting impromptu sharing of mo-
bile phones. In Proceedings of the 7th international
conference on Mobile systems, applications, and ser-
vices, pages 15-28, 2009.

Zhiyuan Lu, Xiang Chen, Qiang Li, Xu Zhang, and
Ping Zhou. A hand gesture recognition framework and
wearable gesture-based interaction prototype for mobile
devices. IEEE transactions on human-machine systems,
44(2):293-299, 2014.

Upal Mahbub, Vishal M Patel, Deepak Chandra, Bran-
don Barbello, and Rama Chellappa. Partial face de-
tection for continuous authentication. In 2016 IEEE
International Conference on Image Processing (ICIP),

pages 2991-2995. IEEE, 2016.

Diogo Marques, Tiago Guerreiro, Luis Carrigo, Ivan
Beschastnikh, and Konstantin Beznosov. Vulnerability
& blame: Making sense of unauthorized access to smart-
phones. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, pages 1-13,
2019.

Tara Matthews, Kerwell Liao, Anna Turner, Marianne
Berkovich, Robert Reeder, and Sunny Consolvo. “She’ll
just grab any device that’s close”: A study of everyday
device & account sharing in households. In Proceed-
ings of the 2016 CHI Conference on Human Factors in
Computing Systems, pages 5921-5932, 2016.

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

Michelle L Mazurek, JP Arsenault, Joanna Bresee, Nitin
Gupta, Iulia Ion, Christina Johns, Daniel Lee, Yuan
Liang, Jenny Olsen, Brandon Salmon, et al. Access
control for home data sharing: Attitudes, needs and
practices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 645—654,
2010.

Xudong Ni, Zhimin Yang, Xiaole Bai, Adam C Cham-
pion, and Dong Xuan. DiffUser: Differentiated user
access control on smartphones. In 2009 IEEE 6th In-

ternational Conference on Mobile Adhoc and Sensor
Systems, pages 1012—-1017. IEEE, 2009.

Saumay Pushp, Yunxin Liu, Mengwei Xu, Changyoung
Koh, and Junehwa Song. PrivacyShield: A mobile
system for supporting subtle just-in-time privacy provi-
sioning through off-screen-based touch gestures. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2(2):1-38, 2018.

Nithya Sambasivan, Garen Checkley, Amna Batool,
Nova Ahmed, David Nemer, Laura Sanely Gaytan-
Lugo, Tara Matthews, Sunny Consolvo, and Elizabeth
Churchill. “Privacy is not for me, it’s for those rich
women”: Performative privacy practices on mobile
phones by women in south asia. In Fourteenth Sympo-
sium on Usable Privacy and Security (SOUPS 2018),
pages 127-142, 2018.

Stuart E Schechter, Rachna Dhamija, Andy Ozment, and
Ian Fischer. The emperor’s new security indicators. In
IEEE Symposium on Security and Privacy, pages 51-65.
IEEE, 2007.

Julian Seifert, Alexander De Luca, Bettina Conradi, and
Heinrich Hussmann. TreasurePhone: Context-sensitive
user data protection on mobile phones. In International
Conference on Pervasive Computing, pages 130-137.
Springer, 2010.

Teddy Seyed, Xing-Dong Yang, and Daniel Vogel. A
modular smartphone for lending. In Proceedings of
the 30th Annual ACM Symposium on User Interface
Software and Technology, pages 205-215, 2017.

Sheng Shen, He Wang, and Romit Roy Choudhury. I
am a smartwatch and I can track my user’s arm. In
Proceedings of the 14th annual international conference

on Mobile systems, applications, and services, pages
85-96, 2016.

Zdeiika Sitova, Jaroslav Sedénka, Qing Yang, Ge Peng,
Gang Zhou, Paolo Gasti, and Kiran S Balagani. HMOG:
New behavioral biometric features for continuous au-
thentication of smartphone users. IEEE Transactions
on Information Forensics and Security, 11(5):877-892,
2015.

684

Eighteenth Symposium on Usable Privacy and Security

USENIX Association

https://play.google.com/store/apps/details?id=com.symantec.applock
https://play.google.com/store/apps/details?id=com.symantec.applock
https://play.google.com/store/apps/details?id=com.symantec.applock

[41] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet.
Recognizing detailed human context in the wild from
smartphones and smartwatches. IEEE Pervasive Com-
puting, 16(4):62-74, 2017.

[42] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and
Nadir Weibel. ExtraSensory app: Data collection in-
the-wild with rich user interface to self-report behavior.
In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1-12, 2018.

[43] Qing Yang, Ge Peng, David T Nguyen, Xin Qi, Gang
Zhou, Zdenka Sitova, Paolo Gasti, and Kiran S Bala-
gani. A multimodal data set for evaluating continuous
authentication performance in smartphones. In Proceed-
ings of the 12th ACM Conference on Embedded Network
Sensor Systems, pages 358-359, 2014.

[44] Linghan Zhang, Sheng Tan, Jie Yang, and Yingying
Chen. VoiceLive: A phoneme localization based live-
ness detection for voice authentication on smartphones.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1080—
1091, 2016.

A Appendix

segment size d

segment 0
overlap
segment 1
overlap

segment 2

interval p

window w (# of segments)

\ 4

2 3 4
time (s)

o
N

Figure 7: Data segmentation. In this example, segment size
d = 2s, interval p = 1s, and windows size w = 3 segments.

1.0 1.0
g) pixel
© 0.8 © 0.8 AUC=0.94, EER=0.13
o [
9] s8 o s8
206 AUC=0.94, EER=0.13 | > 0-6 AUC=0.94, EER=0.13
a __ . redmi @ _ redmi
S04 AUC=0.96, EER=0.10 | 2 0.4 AUC=0.96, EER=0.10
o __ pixel3 [] _ _ pixel3
2 AUC=0.94, EER=0.12 | 2 AUC=0.97, EER=0.09
Eoz2 Eo2
P9 P9
T AUC=0.92, EER=0.1 T AUC=0.95, EER=0.12
0.0 UC=0.9 0.16 0.0 UC=0.95 0
00 02 04 06 08 10 00 02 04 06 08 1.0

false positive rate false positive rate

(a) One-to-multi test (Pixel) (b) Multi-to-one test

Figure 8: Inter-device experiment.

Cross-device experiments. The gesture detection model is
also expected to work across different phone models. In
the cross-device experiments, we added four other Android
phone models: Samsung S8, Redmi 5, Google Pixel 3, and
Huawei P9 and collected motion data of two participants for
each phone model. We adopt the following two protocols
to test cross-device accuracy: (1) We train a model with
all 12 participants’ training data on the Google Pixel and
test it on the other four phones. As shown in Fig. 8(a), the
model trained with one phone’s data shows a consistently
good performance on the other phones, where the AUCs are
always above 0.92 and the EERs are around 10 to 16%. (2) We
use mixed training data from four phone models to train the
model and test it on the fifth phone. As shown in Fig. 8(b), the
cross-device model provides a consistently good performance
across different phone models.

USENIX Association

Eighteenth Symposium on Usable Privacy and Security 685

	Introduction
	Related work
	Device Sharing Awareness
	Modeling temporary device sharing
	Limitations of existing sharing solutions
	Sharing detection
	App types
	Threat model

	System design
	State transition
	Handover detection
	Owner detection
	Access control for device sharing
	DSA workflow
	Exception processing
	Implementation

	Evaluation
	Evaluation setup
	Evaluation of handover detection
	Cross-user experiments
	Impact of different settings
	False positive evaluation

	Device sharing processing

	Discussion
	Conclusion
	Appendix

