
Exploiting Hierarchical Identity-Based Encryption for Access Control to

Pervasive Computing Information

Urs Hengartner† and Peter Steenkiste†‡

†Computer Science Department
‡Department of Electrical and Computer Engineering

Carnegie Mellon University

{uhengart, prs}@cs.cmu.edu

Abstract

Access control to confidential information in pervasive

computing environments is challenging for multiple rea-

sons: First, a client requesting access might not know which

access rights are necessary in order to be granted access

to the requested information. Second, access control must

support flexible access rights that include context-sensitive

constraints. Third, pervasive computing environments con-

sist of a multitude of information services, which makes

simple management of access rights essential. We dis-

cuss the shortcomings of existing access-control schemes

that rely on either clients presenting a proof of access to

a service or services encrypting information before hand-

ing the information over to a client. We propose a proof-

based access-control architecture that employs hierarchical

identity-based encryption in order to enable services to in-

form clients of the required proof of access in a covert way,

without leaking information. Furthermore, we introduce an

encryption-based access-control architecture that exploits

hierarchical identity-based encryption in order to deal with

multiple, hierarchical constraints on access rights. We

present an example implementation of our proposed archi-

tectures and discuss the performance of this implementa-

tion.

1. Introduction

Access control to confidential information has been well

investigated in the context of traditional distributed systems,

such as a distributed file system. However, access control

faces additional challenges in the context of pervasive com-

puting environments. First, there might be covert access

requirements. In particular, a client that wants to access in-

formation might not know which of the client’s access rights

are required for gaining access. For instance, a person’s cal-

endar entry reveals the location of the people that the person

is currently meeting with. In order to be granted access to

this entry, a client should at least have access rights to each

of these people’s location information. However, since the

client does not know who the person is meeting with, the

client does not know which access rights are required. Sec-

ond, access rights need to be more flexible. For instance, it

should be possible to issue access rights that are constrained

based on a person’s context, such as her location or the cur-

rent time.

There are proof-based and encryption-based access-

control schemes. In a proof-based scheme, a client needs

to assemble some access rights in a proof of access, which

demonstrates to a service that the client is authorized to ac-

cess the requested information. This proof of access pre-

vents the service from having to locate the required access

rights, which can be an expensive task. Proof-based ac-

cess control is attractive for scenarios where flexible, client-

specific access rights are required. Since access rights are

flexible, it is easy to include support for constraints in them.

However, it is difficult to add support for covert access re-

quirements. Existing designs [2, 12] assume that a service

can inform a client of the nature of the required proof of

access. When we apply this principle to our example men-

tioned above, we could end up with an information leak. In

particular, assume that a service informs a client of the iden-

tity of the people for whose location information the client

needs to present access rights. Based on this knowledge,

the client can infer who the owner of the calendar entry is

meeting with. A naı̈ve solution is to have the client sub-

mit all obtained access rights to the service. This solution

has privacy and bandwidth issues: the service can learn a

lot about the client, and the client might have to transmit

a lot of data. Instead, the service must let the client know

about the nature of the required proof of access such that

only clients authorized to access the information listed in

the proof description can understand this description.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

In an encryption-based access-control scheme, a service

provides confidential information to any client, but only in

an encrypted form. Clients authorized to access the infor-

mation have the corresponding decryption key. This ap-

proach is attractive for scenarios where there are lots of

queries to a service since it shields the service from having

to run client-specific access control. It is straightforward

to add support for covert access requirements to existing

encryption-based architectures [1, 9, 14, 15]. In particu-

lar, a service encrypts information as usual, but it does not

tell a client which decryption key to use. Assuming that a

client has a set of decryption keys, the client now needs to

search this set for a matching key. It is less straightforward

to add support for constraints on access rights to the pro-

posed architectures, especially when considering that key

management should remain simple.

Our contributions are two novel applications of hier-

archical identity-based encryption that address the above

mentioned shortcomings of proof-based and encryption-

based access-control schemes for pervasive computing en-

vironments (Section 3). In identity-based encryption, pub-

lic keys are arbitrary strings, which simplifies key man-

agement. First, we employ hierarchical identity-based en-

cryption to add covert access requirements to a proof-

based access-control scheme. Second, we use hierarchical

identity-based encryption to develop an encryption-based

access-control scheme that supports multiple, hierarchi-

cal constraints on access rights. Moreover, our contribu-

tions include extensions to an existing hierarchical identity-

based encryption scheme to support multiple hierarchies

and novel ways for dealing with expiring keys in identity-

based encryption. Finally, we have implemented our so-

lutions in a pervasive computing environment (Section 4),

and we evaluate this implementation and discuss its relative

strengths and weaknesses (Section 5).

2. Access Control in Pervasive Computing

In this section, we discuss the challenges for access con-

trol and for access rights to information in the context of

pervasive computing. We present a list of requirements and

our threat model.

2.1. Overview

In pervasive computing environments, there are a lot of

services that provide potentially confidential information to

clients. Clients need to have access rights in order to be

granted access to confidential information. An access right

has an issuer, a recipient, an information item, and a set of

constraints. For example, Alice grants Bob access to her

location information during office hours. Multiple services

may offer the same type of information (e.g., people loca-

tion services exploiting cellphones, RFID badges, or Wi-

Fi devices). To simplify management of access rights, we

want service-independent access rights, that is, access rights

should be about information, not about information offered

by a specific service. For example, there should be access

rights for Alice’s location information, not for Alice’s loca-

tion information as offered by her cellphone service.

It should be possible to constrain access rights. In this

paper, we limit ourselves to constraints whose current value

is publicly known (e.g., current time). Our architecture also

supports constraints that involve confidential information

(e.g., current location of the client or of the queried indi-

vidual), but additional access control is required in order to

avoid leaks of this confidential information, which is out-

side of the scope of this paper.

Access rights should be granularity aware. Some in-

formation (e.g., location information) is available at differ-

ent levels of granularity (e.g., “CMU”, “CMU Wean Hall”,

“CMU Wean Hall 8220”). Having an access right to fine-

grained information should imply having an access right

to coarse-grained information. Granularity-aware access

rights also simplify management of access rights.

Access rights are managed by policymakers. Typically,

an individual is the policymaker for her own personal infor-

mation. Depending on the access-control scheme, an access

right can be represented in different forms. For proof-based

access control, it is a digital certificate issued by the poli-

cymaker, whereas for encryption-based access control, it is

a decryption key. Regardless of the form, dealing with ac-

cess rights should be simple for all involved entities (clients,

services, and policymakers).

We now discuss how proof-based and encryption-based

access control meet the requirements of granularity aware-

ness and constraints. We also elaborate on some additional

requirements, namely, indistinguishability, asymmetry, and

personalization.

2.2. Proof-Based Access Control

Proof-based access control is attractive since it offloads

the assembly of a proof of access to a client. If the client

does not know the nature of the required proof of access,

a service will give it a description of this proof. The de-

scription lists the information for which the client needs to

present access rights. However, when this description leaks

confidential knowledge, the service must obscure it. Let us

summarize the requirements for this case:

Indistinguishability. The service must obscure the descrip-

tion such that a client learns nothing about the information

listed in the description, unless the client has some secret

knowledge. The client has this secret knowledge only if the

client has an access right to the information.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

Constraints. Access rights can have constraints on them.

These constraints should also apply to a client’s ability to in-

terpret an obscured proof description. For example, when a

client’s access right to information expires, the client should

no longer be able to interpret an obscured proof description

asking for this information. To support this feature, each

possible value of a constraint must require separate secret

knowledge. For instance, a client’s secret knowledge al-

lowing interpretation of an obscured proof description on

January 1 must not allow interpretation on January 2. This

requirement leads to an increase in the amount of secret

knowledge to be managed by the client. The problem be-

comes worse when there are multiple constraints on an ac-

cess right. We observe that many constraints are of a hierar-

chical nature. Therefore, we want an architecture that sup-

ports hierarchical constraints. For example, if a client has

secret knowledge for January, the client can derive secret

knowledge for January 1, January 2,... This requirement

simplifies management of the secret knowledge.

Granularity awareness. Some information in pervasive

computing (e.g., location information) is available at differ-

ent granularities. If a client’s secret knowledge allowed the

client to interpret an obscured proof description asking for

fine-grained information, the same knowledge should also

allow the client to interpret an obscured proof description

asking for coarse-grained information.

Personalization. We want obscured proof descriptions to

be personalized for a client. In this way, if a client’s secret

knowledge required for understanding an obscured proof

description asking for particular information leaked, other

clients being able to understand obscured proof descriptions

asking for the same information would not be affected.

Asymmetry. Service-independent access rights grant ac-

cess to information independent of the service offering this

information. A service generating an obscured proof de-

scription listing specific information must not be able to in-

terpret an obscured proof description listing the same in-

formation generated by another service (unless the former

service has the required access right).

2.3. Encryption-Based Access Control

If there are lots of requests for the same information,

encryption-based access control is attractive since it is in-

dependent of the individual clients issuing these requests.

For example, a service can encrypt an information item

once and use the ciphertext for answering multiple requests.

However, the uniform treatment of requests makes deal-

ing with constraints on access rights and with granularity-

aware access rights difficult. Covert access requirements

and service-independent access rights present further chal-

lenges. Let us summarize the requirements:

Indistinguishability. The encrypted information must not

reveal any knowledge about the used encryption key or the

required decryption key.

Constraints. Each value of a constraint must require a sep-

arate key for decrypting encrypted information that should

be accessible only under the given constraint/value com-

bination. To make key management simple, we want a

scheme that supports hierarchical constraints.

Granularity awareness. To simplify key management, the

decryption key for coarse-grained information should be

derivable from the key for fine-grained information.

Asymmetry. Service-independent access rights imply that

if multiple services offer the same information, this infor-

mation will be decryptable with the same decryption key.

Therefore, in a symmetric cryptosystem, a service encrypt-

ing information would be able to access the same informa-

tion offered by some other service. We can avoid this prob-

lem by using an asymmetric cryptosystem.

We do not require personalization for encryption-based

access control since it is client independent by design.

2.4. Threat Model

In our threat model, an attacker can corrupt clients or ser-

vices, but not policymakers. Corrupted clients try to gain

non-authorized access to information provided by a service,

that is, information to which a client does not have any ac-

cess rights. Corrupted clients can collude. A corrupted

service tries to gain non-authorized access to information

provided by another service, where this service might of-

fer the same type of information as the corrupted service.

Corrupted services can collude. Attackers can also sniff,

modify, or inject network traffic.

3. Access Control based on Hierarchical

Identity-Based Encryption

We want an access-control architecture where access

rights are simple to manage, aware of granularity, and con-

strainable. The architecture also has to be asymmetric, pro-

vide indistinguishability, and be personalizable in the case

of proof-based access control. Identity-based encryption

(IBE) is a good fit for such environments. It is asymmet-

ric and provides indistinguishability. Since public keys are

strings, access right management and personalization are

simple. In addition, a hierarchical version of identity-based

encryption lends itself to the implementation of hierarchical

constraints and granularity awareness. Therefore, with the

help of hierarchical identity-based encryption (HIBE), we

can overcome the shortcomings of existing access-control

architectures for pervasive computing environments. In this

section, we review HIBE and discuss how we extend it to

build an access-control architecture satisfying our require-

ments.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

3.1. Hierarchical Identity-Based Encryption

In an IBE scheme, the public key of an individual is an

arbitrary string, typically corresponding to her ID (e.g., her

email address). The individual gets her private key from a

third party, called a Private Key Generator (PKG). The third

party also provides additional, public parameters required

for the cryptographic operations. Boneh and Franklin [3]

present one of the first practical IBE schemes. Based on this

work, Gentry and Silverberg [7] introduce a HIBE scheme.

In this scheme, a root PKG gives out private keys to sub

PKGs, which in turn give out private keys to individuals

in their domains (or further sub PKGs). The public key

of an individual corresponds to the IDs associated with the

root PKG, any sub PKGs on the path from the root PKG to

the individual, and the individual. For encrypting messages,

public parameters are required only from the root PKG.

The limited success of PKI has lead to the development

of simpler public-key infrastructures (e.g,. SPKI [5]), that

do not require (hierarchical) certification authorities. In

SPKI, a user’s public key is her identity, and not her name

as certified by an authority. In our work, we pursue a similar

approach. Instead of requiring the existence of a single hier-

archical PKG infrastructure, we let each policymaker have

a PKG. A policymaker uses the PKG for managing access

rights to information. In addition, a policymaker can set up

a hierarchical PKG infrastructure and control both the root

PKG and any sub PKGs. In this way, a policymaker will

be able to establish granularity-aware access rights with hi-

erarchical constraints (see Section 3.4). In the rest of this

paper, we use the term “policymaker” instead of PKG.

Our architecture builds on Gentry and Silverberg’s HIBE

scheme. This scheme supports only a single hierarchy for a

root PKG, which is too limiting for our application scenar-

ios, where we might have multiple hierarchical constraints

on access rights. Therefore, we extend the scheme to sup-

port multiple hierarchies.

A HIBE scheme has the advantage that it reduces the

amount of required storage and the complexity of the access

right management. As we will see in Section 3.4, the public

key associated with some information corresponds directly

to the name of the information. We discuss the advantages

of a HIBE scheme in more detail in Section 3.6.

3.2. Basic Operations

Our architectures for proof-based and encryption-based

access control each employ four basic, randomized oper-

ations. We discuss these operations in this section and

their application in proof-based and encryption-based ac-

cess control in the next two sections. Our operations are

based on the operations introduced by Gentry and Silver-

berg, but we extend them to support multiple hierarchies.

We give a detailed discussion, showing the exact crypto-

graphic steps for each operation, in the extended version of

this paper [10]. For readability reasons, we omit some of

the parameters of the operations here.

In order to achieve indistinguishability, we assume that

all the policymakers agree on a set of public parame-

ters, params. The basic operations are Root Setup(),
Extract(), Encrypt(), and Decrypt().

• Root Setup(params) → Q0:

A policymaker runs this operation in order to generate

a master secret. In addition, the operation returns the

policymaker’s public key, Q0.

• Extract(〈IDi,1, ..., IDi,ti
〉, Si,ti−1, params) →

Si,ti
with ti ≥ 1:

This operation returns the private key, Si,ti
, of a node

at level ti in hierarchy i. Unless ti = 1, this key is

derived from the private key of the ancestor node,

Si,ti−1. If ti = 1, this operation needs to be run by

a policymaker, since it requires the policymaker’s

master secret. 〈IDi,1, ..., IDi,ti
〉 is the sequence

of node IDs along the path from the root node of

hierarchy i to the node in question.

• Encrypt(〈ID1,1, ..., ID1,t1〉, ..., 〈IDh,1, ..., IDh,th
〉,

M, Q0, params) → C: After choosing a node in each

hierarchy, a service uses this operation to encrypt a

message, M , using the nodes’ public keys. For each

of the h hierarchies, the operation accepts a sequence

of node IDs, 〈IDi,1, ..., IDi,ti
〉, from the root node to

the chosen node. The operation returns a ciphertext,

C.

• Decrypt(〈S1,t1 , ..., Sh,th
〉, C, params) → M :

A client uses this operation to decrypt a ciphertext, C.

The operation requires the private key of each node

chosen by the service in its call to Encrypt() and the

ciphertext.

3.3. Proof-Based Access Control

If Alice grants Bob an access right to information, she

will also give him a personalized secret. When Bob re-

ceives an obscured proof description asking for this infor-

mation from a service, this secret will allow him to interpret

the description. In the rest of this paper, we use the term

challenge for such an obscured proof description. We keep

management of the challenges simple by using the name of

the information for generating a challenge for it. In our ar-

chitecture, a challenge corresponds to a ciphertext/plaintext

pair and a secret corresponds to a tuple of private keys en-

abling the decryption of ciphertexts. To support granularity-

aware, constrainable challenges and secrets, Alice defines a

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

Figure 1. Architecture for proof-based access

control. The service sends a challenge to

Bob. Upon resolving this challenge, Bob

sends a proof of access to the service.

set of hierarchies. We give an overview of our extended

proof-based access-control architecture in Figure 1. It con-

sists of three entities: a policymaker managing access rights

to personal information (“Alice”), a service offering infor-

mation with covert access requirements, and a client trying

to access the information provided by the service (“Bob”).

We now discuss the individual steps shown in Figure 1.

Setup. Alice runs Root Setup() to set up her IBE

scheme (1) and to retrieve her public key. She also estab-

lishes multiple hierarchies (2): She first defines a hierarchy

resembling the granularity properties of information about

her (information hierarchy). Figure 2 (a) gives an example

hierarchy for location information. The rule for a hierarchy

is that anyone who has access to information covered by

a node should also have access to information covered by

a child node. Alice then establishes another hierarchy for

each of the constraints that she wants to include in her ac-

cess rights to location information (constraint hierarchies).

Figure 2 (b) shows a hierarchy that restricts the lifetime of

access rights, and Figure 2 (c) presents a hierarchy for lim-

iting access based on time of the day. (Non-hierarchical

constraints are dealt with similarly; there, the hierarchy has

only one level and lists all possible values.) The root node

of each hierarchy includes the name of the information to

ensure that, for example, a constraint granting unlimited ac-

cess to location information cannot be used for getting un-

limited access to medical information.

Alice then informs the service of her public key and her

hierarchies (3). Since none of this knowledge is confiden-

tial, an authenticated communication channel suffices. In-

stead of defining her own hierarchies, Alice can exploit pre-

defined hierarchies that the service is already aware of. For

example, we expect that there will be a widely accepted and

shared hierarchy for location information.

To allow Alice to issue personalized secrets to clients, we

have her personalize the information hierarchy by adding

the identity of a client to its root node. For example, for

Figure 2. Hierarchies. Alice establishes hier-

archies for her location information (a) and

for each constraint (b, c).

the hierarchy given in Figure 2 (a), the root node becomes

“location fine Bob”.1 Since this personalization is done in

the same way for each client, there is no need for Alice

to submit each personalized information hierarchy to the

service. To avoid collusion attacks between clients, Alice

should also personalize each of her constraint hierarchies.

When issuing an access right to Bob (e.g., in the form

of a digital certificate), Alice also gives Bob a personal-

ized secret, corresponding to the information in the ac-

cess right and limited to the same constraints (5). In

her information hierarchy, she chooses the node corre-

sponding to the information to which she wants Bob to

have access (e.g., “medium”). She then walks the path

from the root node to this node. In particular, she

keeps a sequence of node IDs and, for each node on the

path, she calls Extract() with the current sequence (e.g.,

Extract(〈location fine Bob〉, null, params) → S1,1 and

Extract(〈location fine Bob, medium〉, S1,1, params) →
S1,2) (4). Ultimately, this process will return the private

key of the chosen node. Similarly, for each type of con-

straint, she picks the appropriate node in the corresponding

constraint hierarchy and derives the private key by repeated

calls to Extract(). For each hierarchy, Alice will end up

with a private key. The tuple of private keys returned by

these calls serve as the secret.

Alice then gives the secret to Bob, together with the cor-

responding sequences of node IDs and the sub-hierarchies

rooted in the chosen nodes (5). Transfer of the secret re-

quires a secret communication channel.

Given the tuple of private keys and the sub-hierarchies

from Alice, Bob can derive additional tuples of pri-

vate keys for nodes in the sub-hierarchies by (repeat-

edly) calling Extract() (6). For example, given the pri-

vate key for 〈location fine Bob, medium〉 and the sub-

hierarchy “coarse”, Bob can extract the private key for

〈location fine Bob, medium, coarse〉. It is possible for Bob

to delay this step until he receives a ciphertext.

Access Control. Bob issues a query to the service and fails

to submit a proof of access (7). Since the requested informa-

1In the actual implementation, Bob is identified by his public key.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

tion (e.g., calendar information) has covert access require-

ments, the service needs to computes a challenge (8). In

particular, the service calls Encrypt() to encrypt a random

plaintext, M . The public keys required for this operation

come from the information and constraint hierarchies of the

policymaker responsible for the information for which the

client needs to present an access right. The service locates

the corresponding node in Alice’s information hierarchy.

The service then gathers the IDs of all the nodes along the

path from the root node to this node. For example, if an

access right to fine-grained information is required, the ID

sequence is 〈location fine Bob〉. Similarly, for each of the

constraint hierarchies, the service chooses the leaf node that

contains the current value of the constraint and gathers the

IDs along the path from the root node. The service then

calls Encrypt() with the gathered sequences of node IDs

(e.g., Encrypt(〈location fine Bob〉, 〈location 2005 Bob,

February, 2〉, 〈location always Bob, office hours〉,M,Q0,

params)). Note that the public keys used for encryption

correspond directly to the node IDs.

The plaintext, M , and the obtained ciphertext, C, serve

as the challenge, and the service sends them to Bob (9). If

the requested information covers multiple individuals, there

will be multiple challenges. Sending a challenge to Bob re-

quires only an authenticated communication channel, since

a challenge is personalized to a client and useless to other

clients.

To resolve challenge (M, C), Bob needs to find a tuple

of private keys that makes ciphertext C decrypt to plain-

text M . In particular, Bob calls Decrypt() for each of his

(potentially derived) tuples of private keys given to him by

Alice (and other policymakers) (10). He stops when the re-

turned plaintext is identical to M . We discuss ways to limit

the search space in Section 3.5. If Bob successfully resolves

the challenge(s), he will resubmit the query, together with

the required proof of access (11). The service will validate

the proof (12) and return the requested information (13).

Steps (11) and (13) need a secret communication channel.

Discussion. The benefits of our architecture are secrets that

support constraints and that are personalized and granular-

ity aware. Because a challenge for information is based on

the name of the information, challenges are simple to man-

age. Since all the policymakers use the same set of public

parameters, the challenges generated by a service are indis-

tinguishable. As opposed to a previous approach for dealing

with expiration [3], which makes the current date part of an

ID, our approach does not require handing out separate pri-

vate keys for each possible date.

A client resolves a challenge before submitting the re-

quired proof of access to a service. However, for some sce-

narios, this second step can be omitted since resolving the

challenge(s) already gives the client all the information that

the client is asking for. For example, if the client asks for

Figure 3. Architecture for encryption-based

access control. Alice sets up her IBE scheme

and hierarchies, informs the service, and

grants access to Bob. Bob issues a query.

the people in a room, the client will require access to all

these people’s location information. The service thus sends

a challenge for each person’s location information to the

client. After resolving these challenges, the client knows

about all the people in the room and thus all the originally

requested information and can skip submission of a proof

of access. An obvious question is why not skip this sec-

ond step all the time and stop using proofs of access? In

this model, the service would encrypt the requested infor-

mation instead of a random plaintext (as suggested by Holt

et al. [11]). We refrain from adapting this model because,

as we will see in Section 5, the decryption operation is ex-

pensive. We view covert access requirements as a special

case. For most queries, we expect clients to know what they

need to deliver a proof of access for. Therefore, we do not

place the burden of decrypting ciphertexts on them for every

request to confidential information.

Security Analysis. The security of the scheme is based

on the hardness of the Bilinear Diffie-Hellman problem.

(Please refer to the extended version [10] for details.) Given

this assumption, Gentry and Silverberg [7] show that their

HIBE scheme has adaptive chosen ciphertext security in the

random oracle model. It is straightforward to adapt their

proof for multiple hierarchies. Therefore, corrupted clients

and services and traffic sniffers cannot decrypt ciphertexts

without having the required decryption key or modify ci-

phertexts. We need to ensure that a client cannot learn from

the ciphertext which public key was used to produce this

ciphertext (indistinguishability). Holt et al. [11] prove this

property for the scenario where all the policymakers share

the same set of public parameters, as assumed in our model.

Our scheme is secure against collusion of clients or ser-

vices, since keys are personalized.

3.4. Encryption-Based Access Control

Figure 3 gives an overview of our encryption-based

access-control architecture; the architecture is similar to the

architecture for proof-based access control with challenges

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

given in Figure 1. We now review the changes. We assume

that the service provides location information.

Setup. There is no need for Alice to personalize her infor-

mation and constraint hierarchies, since encryption-based

access control is not client-specific.

Access Control. When queried by Bob for information

about Alice (7), the service encrypts the information (8)

and returns the encrypted information to Bob (9). Namely,

the service splits up the information based on its granular-

ity properties and encrypts each piece separately. For ex-

ample, the information “CMU Wean Hall 8220” is split

up into “CMU”, “Wean Hall”, and “8220”. Then, for

each piece, the service locates the node in Alice’s in-

formation hierarchy that describes the piece and gathers

the IDs of all the nodes along the path from the root

node to this node. In our example, the ID sequences are

〈location fine, medium, coarse〉, 〈location fine, medium〉,
and 〈location fine〉, respectively. Similarly, for each of the

constraint hierarchies, the service chooses the leaf node that

contains the current value of the constraint and gathers the

IDs along the path from the root node. The service then calls

Encrypt() with the gathered sequences of node IDs (e.g.,

Encrypt(〈location fine, medium, coarse〉, 〈location 2005,

February, 2〉, 〈location always, office hours〉, “CMU”,

Q0, params)). Bob decrypts the received ciphertexts

by calling Decrypt() with the required tuple of private

keys (10) for each ciphertext. He can decrypt a ciphertext

only if the encrypted information is of a granularity that he

has access to.

Discussion. Our solution fulfills the requirements of being

asymmetric and hierarchical and supporting multiple, hier-

archical constraints. Using the name of information or of

a constraint directly as its public key drastically simplifies

key management.

Security Analysis. The scheme is not secure against col-

lusion. For example, for the hierarchies given in Fig-

ure 2, assume that Bob has the tuple of private keys

for (〈location fine〉, 〈location 2005〉, 〈location always, of-

fice hours〉) and that Carol has the tuple for (〈location fine〉,
〈location 2005, January〉, 〈location always〉). If Bob

and Carol colluded, they could determine the tuple for

(〈location fine〉, 〈location 2005〉, 〈location always〉). Yao

et al. [16] propose a collusion-resistant HIBE scheme,

which we could also adopt. However, the complexity of

the Encrypt() and Decrypt() operations in their scheme

is O(nm), where n is the depth of a hierarchy and m is

the number of hierarchies. As we will see in Section 5, the

complexity of the operations in our scheme is O(mn).

3.5. Limiting the Search Space

Both for proof-based and encryption-based access con-

trol, if there are covert access requirements, Bob will not

know which of his (potentially derived) tuples of private

keys to use for the Decrypt() operation, and he will have

to search through his tuples. We discuss some optimization

strategies in this section.

We first concentrate on the scenario where the challenge

or the encrypted information returned by a service covers

only a single individual, that is, Bob needs to find only one

tuple of private keys. As described in Section 3.4, when

a policymaker gives a tuple of private keys to Bob grant-

ing him access to information under some constraints, Bob

can potentially derive additional tuples from this tuple. We

argue that among the original tuple and the derived tuples,

at most one tuple is of relevance for the search. For each

constraint hierarchy, Bob knows the current value of the

constraint and can throw out all the tuples that do not in-

clude the corresponding private key. In practice, Bob can

also limit the search space for the information hierarchy. In

many cases, it is safe for the service to inform Bob of the

nature and the granularity of the information for which he

needs to resolve a challenge. For example, it is well known

that calendar information is composed of fine-grained loca-

tion information, but not of medical information. Therefore,

the service can safely inform Bob that a challenge involves

fine-grained location information. In summary, for all tu-

ples of private keys given to Bob by a single policymaker

and all tuples derivable from these tuples, we expect at most

one tuple to be relevant for a search. Overall, the number

of tuples that Bob needs to search is at most one per policy-

maker.

If the information returned by a service covers multiple

individuals (i.e., a service returns multiple challenges or en-

crypts information multiple times), Bob will have to locate

multiple tuples of private keys. Therefore, Bob’s search

cost is proportional to the number of policymakers multi-

plied by the number of individuals covered by the informa-

tion returned by the service. While this sounds expensive,

Bradshaw et al. [4] present an optimization that requires the

client to perform the most expensive cryptographic opera-

tion in this search only once for each policymaker and not

for each combination of a policymaker and a covered indi-

vidual.

3.6. Discussion

IBE simplifies key management. For example, in an

email system, IBE allows Bob to encrypt email to Alice

simply by using her email address as public key. Bob does

not need to contact Alice beforehand to acquire a separate

public key. We seem to lose this advantage: Alice needs

to inform a service of her hierarchies and her public key.

However, as mentioned in Section 3.4, we do not expect

each policymaker to define her own hierarchies. Instead,

there can be a shared set of hierarchies, which a service is

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

Personal hierarchy Shared hierarchy

Public values Private keys Public values Private keys

Conventional cryptosystem 2n 1 n 1

HIBE scheme n 1 0 1

Table 1. Key management demand. For a hierarchy of n nodes, we show the number of public values

(including public keys) and private keys that a policymaker needs to define and give to a service and

to a client, respectively.

aware of. In addition, we observe that a setup step is also

necessary for IBE in an email system: First, IBE schemes

require a set of public parameters for encryption. Bob must

acquire these parameters before he can encrypt email for

Alice. Second, Bob should ensure that the email address he

is going to use to encrypt information destined for Alice re-

ally belongs to Alice. He should use this address only if he

was given it directly by Alice (or a trusted third entity) in a

setup step.

Instead of using a HIBE scheme, it is possible to make a

conventional asymmetric cryptosystem, such as ElGamal or

RSA, hierarchy aware [14]. The drawback of this approach

is increased demand in key management and transfer. We

summarize this demand in Table 1. (Both conventional and

HIBE schemes typically also require storage and transfer of

a constant amount of additional information, which is not

shown in the table.) If a policymaker defines a personal

set of hierarchies, the policymaker will have to transfer at

least the ID of each node to a service in order to inform the

service of the node’s meaning, regardless of the employed

hierarchical cryptosystem. For a HIBE scheme, only this

ID is required. For a conventional cryptosystem, a separate

public key needs to be generated and transferred for each

node. If a policymaker uses a shared information or con-

straint hierarchy and employs a conventional cryptosystem,

the policymaker will still have to generate a set of public

keys for all the nodes in the shared hierarchy and submit

these values to individual services. This is not necessary for

a HIBE scheme.

As we will see in Section 5, our proposed HIBE scheme

can be expensive in terms of performance. This could be-

come a problem when a client employs a computationally

weak device for accessing information (e.g., a cellphone).

A common architecture for pervasive computing is to have

agents perform tasks on behalf of clients. We could have

this agent decrypt information for its client. For perfor-

mance and availability reasons, it makes sense to run this

agent on a more powerful processing platform and to run

only a lightweight proxy on a client’s personal device.

4. Prototype Implementation

The Aura pervasive computing environment [6] serves

as a testbed for the implementation and deployment of our

proposed access-control architectures. Because the environ-

ment is mostly Java, we implemented our HIBE scheme in

Java. We ported a C implementation of IBE [8] to Java

and added support for hierarchies. We employ a hybrid en-

cryption scheme, that is, we symmetrically encrypt infor-

mation with a session key and encrypt only this key with

Encrypt().
We also implemented a few sample information services

that require access control. There is a service that provides

calendar information. This service runs proof-based ac-

cess control and has covert access requirements. There are

also several location services, each exploiting a different ap-

proach for locating people. They run either proof-based or

encryption-based access control. These services do not have

covert access requirements, so the proof-based versions do

not employ HIBE. The encryption-based versions always

use HIBE. While it is possible to switch to a different asym-

metric cryptosystem if, for example, no constraints are used

or information is not granularity aware, key management

would become difficult. In proof-based access control, we

express access rights in SPKI/SDSI certificates [5]. An in-

dividual provides the public parameters of her IBE scheme,

her hierarchies, and her tuples of private keys in self-signed

certificates. There is a command line tool for issuing certifi-

cates, setting up IBE schemes, and extracting private keys.

We use SSL for communication between entities, which

gives us authentication of peers and confidentiality and in-

tegrity of the transmitted data. We employ client authenti-

cation only for proof-based access control.

5. Evaluation

In our evaluation, we concentrate on encryption-based

access control. We run our experiments on a Pentium IV/2.5

GHz with 1.5 GB of memory, Linux 2.4.20, and Java 1.4.2.

An experiment consists of ten runs. We report both the

mean and the standard deviation (in parentheses).

We have a client contact a service that provides en-

crypted people location information, which is split into

three levels of granularity and encrypted using a three-level

information hierarchy. There are no constraints. We look

only at the case where information about a single individual

is provided. In addition, we assume that the client knows

which decryption key to use. It takes 1091ms (42ms) for the

client to retrieve and decrypt the information. Let us exam-

ine this cost in more detail. For the service, there is a cost of

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

25ms (2ms) for an Encrypt() operation that exploits only

the root level of a hierarchy. Our service has to perform

three Encrypt() operations. In addition, there is a cost of

14ms (1ms) per additional level used in an Encrypt() op-

eration (i.e., 3 ∗ 14ms in our experiment). Therefore, the

overall cost of encryption is about 117ms. The overall pro-

cessing time of the service is 253ms (31ms); 46% of the

cost is due to encryption. The rest of the cost is caused by

fingering a person’s desktop computer in order to locate her

and by (de)marshalling of the request and the response. For

the client, there is a cost of 136ms (2ms) per level used in a

Decrypt() operation. Our client runs three such operations,

operating at 1, 2, or 3 levels. Therefore, overall decryption

cost is about 816ms or 75% of the overall processing time.

In our second experiment, we investigate the influence

of the number of hierarchies on encryption and decryption

time. We encrypt and decrypt a random message using a

variable number of hierarchies, whereas we exploit all the

levels in each hierarchy. Similar to the first experiment, the

first hierarchy has three levels. All the additional hierarchies

have two levels. As shown in Figure 4, the cost increases

linearly with the number of hierarchies.

The performance numbers heavily depend on the un-

derlying implementation. Our implementation uses Java’s

standard mathematical package for its cryptographic rou-

tines. While we currently do not have a C-based implemen-

tation of HIBE, there is a more optimized, publicly avail-

able C-based implementation of standard IBE [13]. Since

hierarchical IBE exploits the same basic mathematical rou-

tines as standard IBE, we can predict the performance of a

C-based implementation of hierarchical IBE based on this

implementation. Figure 4 also shows our predictions. In

summary, the performance of a C-based, more optimized

implementation would be at least 3.5 (encryption) or 4.5

(decryption) times better.

The presented results allow us to judge the relative bene-

fit, performance-wise, of proof-based and encryption-based

access control. In our implementation of proof-based ac-

cess control, it takes a service about 3ms to validate the

1024 bit RSA signature of a SPKI/SDSI certificate. Assum-

ing a single-level information hierarchy and no constraint

hierarchies, it takes the service 25ms to encrypt a piece

of information. However, this operation does not need to

be executed for every client, the service can reuse an en-

crypted piece of information to answer requests from mul-

tiple clients. Therefore, it pays off for the service to use

encryption-based access control if there are more than 8 re-

quests for information during the lifetime of the informa-

tion. If there are constraints on access rights, this number

will become correspondingly larger.

For covert access requirements, the overall cost for

proof-based access control is larger than for encryption-

based access control. The performance of the HIBE opera-

Figure 4. Performance of encryp-

tion/decryption. We encrypt/decrypt a

message using a variable number of two-

level hierarchies, whereas the first hierarchy

has three levels. (The two graphs are

differently scaled.)

tions is similar for both cases. However, proof-based access

control requires two round trips, client authentication, and

validation of the proof of access.

6. Related Work

Automated trust negotiation explores issues related

to covert access requirements. For example, Yu and

Winslett [17] study the scenario where (parts of) a service’s

access policy is confidential. (An access policy lists the re-

quired access rights.) The authors suggest two strategies,

neither of them applicable to our scenario. The first strategy

transmits all the access rights of a client to a service, even

if they are not required. The second one transmits only ac-

cess rights that the service asks for by revealing (parts of)

its access policy. However, this strategy fails if access rights

whose corresponding access policy cannot be revealed are

required. In Holt et al.’s architecture [11], a service encrypts

information in a client-specific way, and the client needs to

find the corresponding decryption key(s) in its set of keys.

Similar to our architecture, Holt et al.’s work is based on the

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

Boneh and Franklin IBE scheme. However, due to reasons

outlined in Section 3.3, we do not have a service encrypt

information for proof-based access control. Holt et al. do

not investigate constraints on access rights and expiration of

access rights.

There has been previous work about access control in a

hierarchy [1, 9, 14, 15], where information items are clas-

sified into partially ordered security classes depending on

their sensitivity and users are assigned to classes depending

on their clearance. Each class has a key, which is used for

encrypting (decrypting) information in the class. Given the

key for a class, it is possible to derive the key for a class of a

lower security level. None of the proposed hierarchical ar-

chitectures fulfills our requirements of asymmetry and easy

access rights management. Our architecture supports only

tree-based hierarchies. However, tree-based hierarchies are

sufficient for expressing granularity-aware access rights and

hierarchical constraints on them.

7. Conclusions and Future Work

When running access control to confidential information

in a pervasive computing environment, we need to deal with

constraints on access rights and avert information leaks. We

showed how hierarchical identity-based encryption can be

employed to address these challenge in both proof-based

and encryption-based access-control architectures.

We implemented our proposed architectures in the con-

text of a pervasive computing environment. Our evaluation

shows that identity-based encryption is expensive. How-

ever, the overhead can be significantly lowered using a more

optimized implementation. Furthermore, our design gives

us the convenience of being able to use the name of the in-

formation or of a constraint as public key.

A weakness of our architecture is that all the policy-

makers need to share the same parameters for their HIBE

schemes, which could be difficult to achieve. A topic for

further investigation is whether we can weaken this assump-

tion without significantly compromising on security.

Acknowledgments

We are grateful to Nick Hopper for pointing out the ap-

plication of IBE to proof-based access control. We thank

the anonymous reviewers for their comments. This research

was supported by the Army Research Office through grant

number DAAD19-02-1-0389 and by the NSF under award

number CNS-0411116.

References

[1] S. G. Akl and P. D. Taylor. Cryptographic Solution to a Prob-

lem of Access Control in a Hierarchy. ACM Transactions on

Computer Systems, 1(3):293–248, 1983.

[2] L. Bauer, M. A. Schneider, and E. W. Felten. A General and

Flexible Access-Control System for the Web. In Proceedings

of 11th Usenix Security Symposium, pages 93–108, August

2002.
[3] D. Boneh and M. Franklin. Identity-Based Encryption from

the Weil Pairing. SIAM J. of Computing, 32(3):586–615,

2003. Extended Abstract in Proceedings of Crypto 2001, pp.

213-229, 2001.
[4] R. Bradshaw, J. Holt, and K. E. Seamons. Concealing Com-

plex Policies with Hidden Credentials. In Proceedings of 11th

ACM conference on Computer and Communications Security

(CCS 2004), pages 146–157, October 2004.
[5] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and

T. Ylonen. SPKI Certificate Theory. RFC 2693, September

1999.
[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.

Project Aura: Towards Distraction-Free Pervasive Comput-

ing. IEEE Pervasive Computing, 1(2):22–31, April-June

2002.
[7] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryp-

tography. In Proceedings of Asiacrypt 2002, pages 548–566,

December 2002.
[8] S. A. C. Group. IBE Secure E-mail. http://crypto.

stanford.edu/ibe.
[9] L. Harn and H. Y. Lin. A Cryptographic Key Generation

Scheme for Multi-level Data Security. Computer & Security,

9(6):539–546, 1990.
[10] U. Hengartner and P. Steenkiste. Exploiting Hierarchical

Identity-Based Encryption for Access Control to Pervasive

Computing Information. Technical Report CMU-CS-04-172,

Computer Science Department, Carnegie Mellon University,

October 2004.
[11] J. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hid-

den Credentials. In Proceedings of 2nd ACM Workshop on

Privacy in the Electronic Society, October 2003.
[12] J. Howell and D. Kotz. End-to-end authorization. In Pro-

ceedings of 4th Symposium on Operating System Design &

Implementation (OSDI 2000), pages 151–164, October 2000.
[13] S. S. Ltd. Multiprecision Integer and Rational Arith-

metic C/C++ Library (MIRACL). http://indigo.ie/

˜mscott/.
[14] I. Ray, I. Ray, and N. Narasimhamurthi. A Cryptographic So-

lution to Implement Access Control in a Hierarchy and More.

In Proceedings of 7th ACM Symposium on Access Control

Models and Technologies (SACMAT’02), pages 65–73, June

2002.
[15] R. S. Sandhu. Cryptographic Implementation of a Tree Hi-

erarchy for Access Control. Information Processing Letters,

27(2):95–98, 1988.
[16] D. Yao, Y. Dodis, N. Fazio, and A. Lysyanskaya. ID-Based

Encryption for Complex Hierarchies with Applications to

Forward Security and Broadcast Encryption. In Proceedings

of 11th ACM Conference on Computer and Communications

Security (CCS 2004), pages 354–363, October 2004.
[17] T. Yu and M. Winslett. A Unified Scheme for Resource Pro-

tection in Automated Trust Negotiation. In Proceedings of

IEEE Symposium on Security and Privacy, pages 110–122,

May 2003.

Proceedings of the First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05)
0-7695-2369-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

