
PUPy: A Generalized, Optimistic Context Detection
Framework for Implicit Authentication

Matthew Rafuse and Urs Hengartner
Cheriton School of Computer Science

University of Waterloo
{matthew.rafuse, urs.hengartner}@uwaterloo.ca

Abstract—Devices like smartphones and laptops employ some
form of user authentication to ensure that access to confidential
data by the wrong user is avoided. Implicit authentication aims
to limit the number of explicit authentications that a user
is subjected to by using passive approaches to authenticate
the user. Context detection frameworks aim to reduce explicit
authentications by disabling explicit authentication entirely when
appropriate. Since explicit and implicit authentication are not
mutually exclusive, we can also use context detection frameworks
to decide whether explicit or implicit authentication should be
used when authentication is required.

We present a novel context detection framework, PUPy, that
uses sensed context data to infer and make available three
values—privacy, unfamiliarity, and proximity—allowing clients
of our framework, like authentication services, to better adapt
to different contexts. As opposed to existing work, our context
detection framework is based on an optimistic approach to
context detection. Our assumption is that the absence of data,
like the inability to detect nearby people or devices, can be taken
as a sign that a context is safe. Such an optimistic approach may
provide less security than a pessimistic approach, but provides
a significantly improved user experience due to reducing the
number of explicit authentications.

We provide an Android implementation of the framework,
including an API that allows other developers to contribute
modules to the system. We also conduct a statistical analysis
of our framework based on a large real-world dataset. We find
that PUPy compares favourably to existing works, permitting a
77.2% reduction in the number of explicit authentications.

I. INTRODUCTION

The usage of devices like smartphones and laptops that
allow for access to information, communication with friends
and colleagues, and other indispensible services has become
ubiquitous. Due to the utility and convenience of such devices,
people have gradually taken to performing more and more of
their daily tasks on and through these devices. This increase
in usage has led to these devices containing vast quantities
of confidential user data. Therefore, all modern smart devices
employ some form of user authentication to ensure that access
to this confidential data by the wrong person is avoided.

Modern authentication methods are generally knowledge-
based or biometric. These authentication methods can be an
annoyance to users, as they impede immediate use of the
device while authenticating. Instead, users will often forgo any
authentication for the sake of convenience [1]–[4]. In response
to this trend, the field of implicit authentication has arisen.
Implicit authentication aims to limit the number of explicit
authentications that a user is subjected to by using passive

approaches to authenticate the user instead. These approaches
take many forms but generally revolve around authenticating
the user passively through the use of device sensor data.

In contrast, context detection frameworks aim to reduce
explicit authentications by disabling explicit authentication
entirely when appropriate in contexts deemed “safe” [5], [6].
Since explicit and implicit authentication are not mutually
exclusive, there also exist context detection frameworks [7],
[8] that use the context around them to decide which of the
two authentication approaches to use when authentication is
required. This combination of context detection with implicit
authentication is the approach taken in this work.

We introduce a new context detection framework called
PUPy. PUPy provides context information to apps and ser-
vices running on a device through a simple interface. PUPy
takes in sensor data sensed by the device and condenses it
into three values—privacy, unfamiliarity, and proximity—each
describing a different aspect of the device’s context. (The first
letters of these values form the basis for the name of our
framework.) Briefly, privacy measures how private the device’s
context is, based on the number of nearby people detected.
Unfamiliarity indicates how unfamiliar the device’s context is,
based on the number of unfamiliar nearby people detected.
Proximity measures how close the device is to its owner.

We demonstrate the flexibility of PUPy by providing three
sample modules that take advantage of the three values pro-
vided by PUPy to decide whether to enable the module:

1) an authentication module that uses context information
to switch between explicit, implicit, and no authentica-
tion,

2) a device theft module that decides whether the device
is in a context where it may get stolen and therefore
raises an alert if the device ends up being away from
the owner, and

3) a device loss module that raises an alert when the device
is in danger of unintentionally being left behind in a
public context.

PUPy provides optimistic context detection, which assumes
that a context is safe unless PUPy’s perception of the context
indicates otherwise. In particular, our assumption is that the
absence of data, like the inability to detect nearby people
and devices, can be taken as a sign that the context is safe.
This optimistic approach may provide less security than a
pessimistic approach, but provides a significantly improved

user experience due to reducing the number of explicit au-
thentications.

We make the following contributions:
• We introduce the novel theoretical underpinnings of our

context detection framework. We improve on existing
works through wider applicability and optimistic context
detection.

• We present an Android implementation of PUPy and
provide three sample modules that take advantage of
PUPy.1

• We evaluate our framework on a real-world dataset [9]
and compare PUPy to existing work. We find that PUPy
allows for a 77.2% reduction in explicit user authentica-
tions.

II. GOALS

The goals for PUPy are threefold. Our first aim is to
provide a context detection and authentication system that,
in contrast to existing works, is fundamentally optimistic
instead of pessimistic. Existing works mention how the point
of these systems is to provide a more user-friendly approach
to authentication. Despite this, existing approaches all stick to
a pessimistic threat model—assume the device is always in
danger, unless there is evidence to the contrary. Conversely,
this work aims to provide the opposite approach—assume
the device is safe, unless there is evidence to the contrary.
This allows for a far better user experience, and one that
better matches a user’s own perception of the situation than
a fundamentally pessimistic model. In general, we do not
constantly assume we are in danger all the time. Instead, we
tend to assume we are safe, unless we are convinced otherwise
through our perception of the context.

The second aim of this work is to allow for a more mod-
ular approach to context detection. Existing context detection
systems tend to be monolithic—they collect, process, and act
on the data alone, without making the data available for the
use of other applications, making extensibility of the system
difficult. PUPy attempts to take a more distributed approach
to context detection, allowing extension of the system through
a modular structure.

The third aim of this work is to bring a more nuanced and
accurate approach to context detection. Many existing works
tend to operate in binary—instead of providing a description of
the context, they collect and process the data, make a decision,
and act on it. This often comes in the form of locking the
device, or a binary safe/unsafe result. This work aims to expose
more information about the context that will allow for a more
nuanced approach to various situations, as well as allowing a
better description of the sort of context the device is in.

III. RELATED WORK

This section consists of an overview and discussion of a
number of existing works and systems that have been devised
to achieve similar goals as ours.

1https://github.com/mattrafuse/PUPy

A. Implicit Authentication

Implicit authentication is a fairly mature field of research.
It focuses on the use of device sensors and biometrics to
authenticate users passively, without the use of explicit modes
of authentication like a PIN or pattern lock. It is aimed at
everyday users, who are generally more concerned with ease
of use over security. As a compromise, implicit authentication
makes the process as seamless as possible, at the cost of
accuracy and overall security.

We use a slightly broader definition of implicit authen-
tication than existing works. While traditional implicit au-
thentication is limited to exploiting biometric or behavioural
differences between users, we take implicit authentication to
mean any method through which context information is used
to reduce the number of explicit authentications a user must
perform.

Implicit authentication forms an important use case for
our system, and many existing works hold important insights
and concepts for understanding context detection. The term
was first coined by Shi et al. [10], who investigate using
user behaviour as a way to reduce the number of explicit
authentications.

One of the first fully realized implicit authentication frame-
works to combine data from multiple sensors into a single
framework was progressive authentication by Riva et al [11].
While prior works were mainly about individual implicit
authentication schemes, Riva et al. looked at how one could
combine multiple implicit authentication methods to provide
a better user experience. The basic concept of combining
many inputs to get a better sense of the context is central
to PUPy, though we use it for context detection as opposed to
authentication.

We will now outline a number of existing implicit authenti-
cation schemes that could eventually be combined with PUPy
to further improve the user experience. SilentSense by Bo et
al. [12] and Touchalytics by Frank et al. [13] both investigate
using user interaction with the device to authenticate the user.
Cola et al. [14] investigate using gait-based authentication via
a wrist worn device (such as a smartwatch). MULE by Studer
et al. [15] uses location as a method of authentication.

B. Context Detection

Before discussing context detection frameworks, first let
us define what is meant by context. The device context is
a shorthand for the situation the device is in. The context
of the device is primarily determined through device sensors
such as the microphone or GPS, but could also be inferred
through past user behaviour or general user statistics. In this
work, we are concerned with using context detection to adapt
the behaviour of various applications the user interacts with.
We focus primarily on adapting the behaviour of implicit
authentication frameworks.

Context detection as a whole is an extremely wide field, not
limited to mobile devices or standard sensors. In this section,
we will look at a number of existing works in context detection

https://github.com/mattrafuse/PUPy

that focus on context detection using standard mobile phone
sensors, focusing mainly on the security of the context.

Ramakrishnan et al. [16] aim to provide a context-based
approach to locking the device, based on the use of a policy-
driven framework in their PRISM framework. This focus on
using policies to guide unlocking is similar to the approach
taken in our system, where rules are used to govern the actions
taken by listening applications when changes in context are
taken. However our approach uses developer defined rules to
interpret the core values of the framework, providing more
flexibility in how the values are used.

Gupta et al. [6] provide an important basis for part of the
theoretical framework we build in this work. Their approach of
detecting nearby devices and developing a sense of familiarity
with them is integral to the calculation of our context values,
and therefore in determining context. We build upon future
work mentioned in their paper—that of marking unclassified
contexts as safe, instead of unsafe (i.e., an optimistic ap-
proach). Due to the close nature of the two frameworks, further
comparisons between PUPy and the system proposed by Gupta
et al. will be made later on.

Another framework to build off the concepts developed
by Gupta et al. is ConXSense, developed by Miettinen et
al. [17]. ConXSense controls the use of the lock screen based
on the context the device and owner find themselves in. It
accomplishes this through collection of context data using
device sensors, and through this data detecting the location
and social context of the user. This, on its surface, is very
similar to PUPy; however, it is how this data is used where the
approaches sharply differ. They categorize contexts (location
and WiFi based) into private, work or public contexts, either
safe or unsafe, as opposed to the continuous approach used in
PUPy.

C. Implicit Authentication and Context Detection

While context detection and implicit authentication alone
are interesting fields, combining the two can lead to interesting
results. While we do not investigate using various types of
implicit authentication depending on context in this paper,
one of the primary goals of PUPy is to allow that sort of
functionality.

Wójtowicz and Joachimiak [8] investigate combining con-
text detection and biometric authentication in order to provide
a more accurate authentication system. Their work tends to
focus on aspects of the device and user to extrapolate context
information, instead of using sensors to directly learn about
the context. This user and device focused approach to context
detection is contrasted by PUPy, which focuses on learning
about the context by collecting information on the environment
the device is in.

The CORMORANT framework devised by Hintze et al. [7]
is closely related structurally to our system. The modular
approach devised by Hintze et al. translates well to the
theoretical approach we use in this work. However, while
the application is structurally similar, the aims and results are
very different. CORMORANT focuses on using cross-device

authentication to achieve their goals. They aim to provide
continuous authentication across all devices by providing
different methods of authentication across many devices, and
sharing authentication results between them. They determine
what device to use for authentication based on the user’s
context. While we are also interested in different methods of
authentication through our functionality modules, our focus is
in the area of context detection for authentication. Instead of
authenticating the user, we aim to determine if authentication
is necessary at all. Hintze et al. start to investigate this idea
through their risk estimation plugin, but use extremely coarse
statistics (such as the national crime rate or time of day) to
determine risk. We take a more advanced approach to risk
estimation, using realtime data of the context to determine
risk.

IV. SYSTEM DESIGN

In this section, we will discuss the theoretical design of
the framework underlying PUPy. We will first outline the
threat model we operate under, followed by a discussion of
the theoretical framework.

A. Adversary Model

Our adversary model does not include protection from
adversaries that are aware of the system. This includes ad-
versaries using strategies to confuse the system into reporting
falsified results, such as tampering with Bluetooth, voice or
similar signals sensed by the device. Some existing works
investigate such attacks, showing they are possible and can
often be counteracted [18], [19]. We consider this out of scope
for our adversary models. We also assume there is no malware
or other applications installed on the device that, accidentally
or purposefully, impact the performance of the system. We
assume that Bluetooth is always enabled.

For authentication, the adversary takes the form of a person
unknown to the owner who can physically access the device.
The adversary can be malicious, honest-but-curious or clue-
less, though we focus mainly on the malicious case. Their
aim is to unlock the device. The goal of the system is to
refuse access to the adversary, while providing a convenient
user experience for the owner. This adversary model will be
the main model we use to evaluate the system in Section VI.

For theft, the adversary takes the form of a person unknown
to the owner who can physically access the device. The
adversary is malicious, aiming to remove the device from the
care of the owner permanently (that is, to steal it). The goal
of the system is to either alert the owner to a theft that is in
progress, or stop the theft (via an alarm or other deterrent).

For loss, there is no adversary. At least, there is no adversary
other than the owner’s own memory. The goal of the system
is to alert the owner to potential loss of their device.

B. Theoretical Framework

This section will outline what aspects of the device context
we track in PUPy, and how we track these aspects based on
device sensor data. We introduce the three values that track

our chosen aspects. Finally, we will outline the equations for
calculating these values, and how they interact.

We use C to represent a particular real-world context, and
Cn to represent the nth occurrence of that real-world context.
The context consists of a feature vector, where each value is a
value between 0 and 1, representing some part of the context.
This feature vector consists of three values:

1) Privacy. The measure of how private the context is,
based on the number of nearby people detected. A value
of 0 is very public, while 1 is very private. We denote
the privacy of Cn by P(Cn).

2) Unfamiliarity. The measure of how unfamiliar the
context is, based on the number of unfamiliar people
detected. A value of 0 is very familiar, while 1 is
unfamiliar. We denote the unfamiliarity of Cn by U(Cn).

3) Proximity. The measure of how close the device is to
the owner. A value of 0 is being very far, while 1 is very
close. We denote the proximity at Cn by D(Cn).

Privacy allows modules to adapt their behaviour based on
the privacy of a given context. By itself, it can be used
by modules to respond to contexts where the owner is in
a crowded location, or those where the owner is alone. In
addition to the standalone case, the combination of privacy
and unfamiliarity can provide helpful insights into the current
context. In general, using the values together vastly improves
usefulness and the amount of information one can gather about
the context.

Unfamiliarity allows modules to adapt their behaviour based
on the number of unfamiliar people nearby. The clearest use
case is when determining how threatening the current context
is. It is a fair assumption that a large number of unfamiliar
people nearby is a more threatening context than one without
any unfamiliar people. This translates to helping us adapt
our behaviour based on the threat level of the context. In
more threatening contexts, authentication methods demanding
a stronger level of certainty can be enabled, and a device theft
module can be prepared for potential theft.

Unfamiliarity can be made more useful through the use
of privacy alongside it. For example, imagine two scenarios.
In both, unfamiliarity is hovering around .25. In the first
scenario, privacy is relatively high, at .75, while in the second
scenario, it is very low. In the first scenario, the context is
significantly more private, implying that it is likely the owner
is surrounded with a few unfamiliar people—perhaps they
are meeting for the first time. Since there are only a few
people around, perhaps we can continue to use weaker forms
of authentication, despite there being some unfamiliar people
nearby. It is fairly easy for the owner to keep track of the few
unfamiliar people nearby, without many other people to track.
In the second scenario, the owner is in a public setting. But the
low value of unfamiliarity implies that most of the people in
the context are familiar—perhaps this is a workplace. In this
case, the combination of some small number of unfamiliar
people with a fairly public setting may prompt the use of
stronger authentication methods, or activation of a device theft
module.

Proximity allows access to the proximity of the device,
so we can adapt our behaviour. Combining proximity with
privacy and unfamiliarity allows us to get a sense of whether
it is a problem when proximity decreases. By itself, proximity
cannot distinguish between the case where the owner leaves
their device behind in their home, and in a crowded coffee
shop. By using privacy and unfamiliarity, such a difference
can be determined.

There are three stages to the calculation and usage of
these values, with each stage being completed by a particular
type of module. The first step in this process is gathering
information about the context the device is in, and providing
some information about a particular part of the context. This
step will be completed by input modules. The second step is
the aggregation step, which is completed by the context engine.
The context engine takes the estimates provided by the range
of input modules installed and aggregates them into the three
values above. In the third step, functionality modules will take
the values as calculated by the context engine and use them
to adapt to the current context.

1) Privacy: We will now examine the procedure for calcu-
lating privacy based on input module data. The set P denotes
the set of values returned by the input modules reflecting the
number of people in the current context. Each pi(Cx) ∈ P is
an estimate of the number of people nearby, which is weighted
based on the confidence the module has in its estimate (in order
to account for accuracy, etc.), denoted by wi ∈WP . This gives
us the following equation for the number of people, estimated
across all applicable input modules:

L(Cn) =
∑

i∈1...|P |

pi(Cn)wi∑
WP

(1)

We then convert this unbounded number of people into the
instantaneous privacy value, P(Cn):

P(Cn) = 1−
α
1− 1

L(Cn)

C
αC

= 1− α
− 1
L(Cn)

C (2)

αC controls how quickly the value decays. αC can be set to
different values in different locations, allowing us to use it
to express different levels of trust in different areas. αC is
discussed more thoroughly in Section IV-B4. WP is currently
not used (i.e., all modules have wi = 1) in our implementation
or evaluation, due to either relying on a single module, or
having similar accuracy across modules.

This formulation means that P(Cn) starts at 1 when the
device owner is alone, and decays as the number of peo-
ple increases. This fact is part of what makes the system
optimistic—as long as the input modules cannot detect anyone
nearby, we assume the owner is alone, rather than that we are
in an unsafe context.

2) Unfamiliarity: We will now examine the procedure for
calculating the unfamiliarity of a context. In order to calculate
this, we will need to use a measure of familiarity. For this, we
will build upon the work of Gupta et al., using their method
of instantaneous familiarity [6].

We first define device familiarity for a device d as follows:

Fd(d,Cn) = αF ∗ occ(d,Cn) + (1− αF) ∗ Fd(d,Cn−1) (3)

where

occ(d,Cn) =

1 if d is observed in Cn

0 if d is not observed in Cn, and
(n−Nlast) > N0

Fd(d,Cn−1) otherwise

where N0 controls how many observations pass before they
are disregarded, and Nlast (defaulting to 0) is the ordinal
number representing the last sample of C in which d was seen.
αF is a suitably chosen constant, controlling how quickly the
system learns. In our implementation and evaluation, a value
of αF = .05 is used. The structure of this method ensures that
Fd(d,Cn) is a value between 0 and 1.

Using this definition of device familiarity, we go on to define
instantaneous familiarity:

F(Cn) =
1

|DCn |
∑

d∈DCn

Fd(d,Cn) (4)

where DCn is the set of devices in the context Cn. This
defines instantaneous familiarity as the average familiarity of
all devices in Cn. Since this is the average of values between
0 and 1, the overall average will be between 0 and 1.

We will now build upon the existing theoretical work we
have described so far, and expand on this concept in a novel
method that converts this previously pessimistic measure to
an optimistic approach. To accomplish this, we calculate the
novel value we name device unfamiliarity, denoted as U(Cn).
First, we define the following equation:

U(Cn) = L(Cn) ∗ (1−F(Cn)) (5)

This equation takes the number of people detected (L(Cn),
from Equation 1), and multiplies this by the inverse of the
instantaneous familiarity of the context (since F(Cn) ∈ [0, 1]).
This gives us an estimate for the number of unfamiliar people
nearby. Our assumption is that each nearby person carries a
mobile device, like a smartphone, with them.

We then use the similar conversion as in Equation 2 to
convert this unbounded number to a value between 0 and 1:

U(Cn) =
α
1− 1

U(Cn)

C
αC

= 1− α
− 1
U(Cn)

C (6)

thus giving us our final equation for calculating unfamiliarity.
As mentioned, we can modify αC to control the rate at which
U(Cn) increases. In a similar manner to P(Cn), U(Cn) is a
value between 0 and 1. However, unlike P(Cn), U(Cn) starts
at 0 when the device owner is alone, and grows as the number
of unfamiliar people increases. So unlike P(Cn), unfamiliarity
starts at 0 and increases. The reason for this discrepancy is that
changes in privacy and unfamiliarity mean different things. As
privacy changes from its default, we move from high privacy
to low privacy. In contrast, as unfamiliarity changes, we move
from low unfamiliarity to high unfamiliarity.

3) Proximity: We will now examine the procedure for
calculating the strength of the relationship between the owner
and the device based on input module data. Each ri(Cx) ∈ R
is an estimate of the distance, which is weighted based on
the confidence the module has in its estimate (in order to
account for accuracy, etc.), denoted by wi ∈ WR. This gives
us the following equation for the distance, estimated across all
applicable input modules:

d(Cn) =
∑

i∈1...|R|

ri(Cn)wi∑
WR

(7)

We then convert this unbounded distance value into proximity,
D(Cn):

D(Cn) =

{
1 d(Cn) ≤ αd

1− α
− 1
d(Cn)−αd
D d(Cn) > αd

(8)

This allows the relationship to be strong while the device
is in close proximity to the owner via αd, and we can use
αD to decide how quickly the relationship decays as distance
increases. Unlike the previous two, we do not want proximity
to change in different contexts, so these two values will be
set based on experimentation and will not change after being
set. WR is currently not used (i.e., all modules have wi = 1)
in our implementation or evaluation, due to either relying on
a single module, or having similar accuracy across modules.
Similarly to P(Cn), D(Cn) starts at 1 when the device is close
to the owner, and decays as distance increases.

4) Context Familiarity: Both of the equations for privacy
and unfamiliarity have a value governing how quickly the
value changes based on changes to the environment, denoted
as αC . We call αC the Context Familiarity value, which will
track the familiarity of the context we are in rather than the
people or devices in it. The context will currently be limited
to location, but can easily be expanded to other types through
functionality modules with a small amount of work.

There is the potential to use context familiarity as a way
to incorporate functionality similar to that of the familiarity
system into the context engine. There are a few attributes
context familiarity should exhibit:

1) Slow growth
2) Trivial to calculate
3) High value in familiar contexts, low value in unfamiliar

contexts
This approach allows us to build in some tolerance for a certain
number of unfamiliar devices in historically familiar locations,
such as your home and apartment, or a frequent coffee shop.

In order to gather historical data on a context, it is necessary
to track instances of this context. Using the number of times
a given context has been detected, we can change context
familiarity to be more forgiving. As the user is in that context
more and more frequently, context familiarity grows larger,
causing the device to feel more “comfortable” in that context.
The value of context familiarity for the context C at the nth
visit could be calculated as:

αC = 2 + n (9)

The use of αC in Equations 2 and 6 causes pathological
behaviour when it is set to 1, and below 3 it decays too
rapidly to be useful. Therefore, αC has a default value of
3 for all contexts. As contexts are encountered more and
more frequently, this value will continue to increase; how-
ever, we cannot increase this value forever, since sufficiently
large values of αC completely disable the system, which is
undesirable. In order to maintain functionality in frequently
visited contexts, αC will be capped at 200.

5) Functionality Modules: In order for these values to
actually interface with functionality modules, we will use a
set of rules provided by the developer to decide when the
functionality modules should be notified. For the purposes of
evaluation and experimentation, three functionality modules
have been implemented as outlined in Section V. An example
set of rules governing them is outlined in Table II.

V. IMPLEMENTATION

Device Sensors

GPS Wi-Fi Bluetooth Accelerometer

Input Modules

Bluetooth Module
Privacy

Unfamiliarity

Activity Module
Proximity

Location Module
Privacy

Unfamiliarity

Proximity Module
Proximity

Context Engine

Privacy Aggregator Unfamiliarity Aggregator Proximity Aggregator

Context Familiarity
Module

Rules Module

Functionality Modules

Authentication Module
Privacy

Unfamiliarity

Device Theft
Unfamiliarity

Proximity

Device Loss
Privacy

Unfamiliarity

Fig. 1. System diagram of PUPy’s Android implementation.

In this section, we will describe the Android implementation
of PUPy, including the implemented structure and the specific
purpose of each module. Figure 1 shows a general outline
of the system. There are four main parts—the hardware
sensors and OS that handles interfacing with the hardware, the
input modules that produce estimates for any combination of
privacy, unfamiliarity and proximity based on that sensor data,
the context engine that aggregates the estimates and tracks the
familiarity of a given context, and the functionality modules
that act upon the resulting values.

The structure of the system leans heavily on COR-
MORANT [7], [20], a cross-device authentication system that
is built upon a modular system well suited to our needs. The
source code for CORMORANT formed the starting point for
this implementation. In the course of implementing PUPy,
many parts of the framework were rewritten, or just removed
wholesale. At a high level, three large changes were made.

First, we removed the cross-device aspect of CORMORANT
given this work focuses on authentication for a single device.
Second, we changed the calculations done in the core of
the CORMORANT system, replacing CORMORANT’s con-
fidence/risk values with the values outlined in Section IV-B.
Finally, we built into the system a location-based context iden-
tification system, to track the current location-based context
the owner is in.

In Section V-A, we will outline the currently implemented
input modules. In Section V-B, we will examine the core of
the system, the context engine, that implements most of the
theoretical underpinnings of the system previously discussed.
In Section V-C, we will discuss the current implementation of
the functionality modules.

A. Input Modules

The first step of the system is to collect sensor data from
the device, and use it to calculate an estimate for one or more
of the values. We emphasize that all our implemented input
modules are proofs of concept whose main purpose is to allow
us to test whether our framework works correctly on Android;
they are not meant for testing the efficacy of the framework.

1) Bluetooth Application: The Bluetooth application is the
main module for estimating privacy and unfamiliarity. It
conducts periodic Bluetooth scans, using this information to
generate an estimate for L(Cn) (estimate of the total number
of people in the context) and U(Cn) (estimate of the total
number of unfamiliar people in the context) from Equations 1
and 5 from Section IV-B. This means there are two main
purposes of the application, estimating the total number of
people and the total number of unfamiliar people.

When reporting a value for L(Cn), that value is obtained
by counting the number of nearby Bluetooth devices, filtering
out Bluetooth devices not tied to a particular user (mainly IoT
devices). In order to track the number of unfamiliar people
U(Cn), we must calculate F(Cn) from Equation 4. We do
this using the same basic approach as Gupta et al. [6], by
storing previous Bluetooth scans, and calculating a device
familiarity value for each device seen. The average of this
gives us F(Cn), from which we can calculate U(Cn) as in
Equation 5.

Due to growing interest in privacy among device users, man-
ufacturers are more frequently implementing measures that
make tracking devices across time and space more difficult.
This makes identifying (un)familiar devices more challenging.
It also poses an ethical question for our framework—given that
these devices do not want to be tracked, should we be tracking
them? While we do not use the identification information for
any nefarious purposes, the question remains. For now we
have decided to leave this an open question, focusing instead
on testing the framework assuming devices can be tracked.

2) Activity Application: The activity application
is the primary method of estimating proximity. It
relies mainly on accelerometer data and Google’s
ActivityRecognitionClient. Depending on the
type of activity the user is engaged in, a different value is

TABLE I
THE MAPPING FOR ACTIVITY TO DISTANCE ESTIMATE USED BY THE

ACTIVITY APPLICATION.

Activity Distance Estimate
Walking 0 metres
Running 0 metres
On Foot 0 metres

On Bicycle 0 metres
In Vehicle 2 metres

Still (Not on person) 5 metres

reported to the context engine. In this case, the estimate is the
value for d(Cn) (estimate of the distance in metres between
the owner and device) in Equation 7.

In Table I, we show the mapping between the current
activity the user is engaging in and the corresponding distance
estimate. This is obviously a fairly inaccurate manner of
estimating distance, but the point of the proof of concept
application is only to give us an estimate to test with.

3) Location Application: The location application is similar
to the Bluetooth application, in that it also estimates L(Cn)
and U(Cn), and thus shares the same two purposes. However,
it obtains that estimate another way. The location application
keeps track of specific locations the user visits frequently, and
reports a higher value for L(Cn) and U(Cn) when not in
proximity to those specified locations.

The location application works in two steps. First, the
user sets locations they deem sufficiently safe. Second, the
application calculates the distance between all defined safe
locations and the user’s current location, finds the minimum
distance and calculates the estimates pi(CN) for P(Cn) and
ui(CN) for U(Cn) via the following equations:

pi(Cn) = distance (m)/50

ui(Cn) = distance (m)/75

These values are then reported to the context engine.
4) Proximity Application: The final input module is another

proximity application, which is built around the device’s
proximity sensor. It uses the proximity sensor to detect if the
device is currently in the user’s pocket, and reports a low
distance (0 metres) if it is. If it is not, it reports a higher
distance (5 metres), since it is likely not on person. It reports
one of these two values as ri(Cn) to the context engine.

B. Context Engine

The context engine combines the estimates obtained from
the input modules, using the processes outlined in Sec-
tion IV-B. It then provides the aggregated values to the
functionality modules. The context engine forms the core of
PUPy. Alongside the main modules shown in Figure 1, there
is a fair amount of supporting code. Overall, the structure of
the code can be broken down into five sections, which we will
discuss next.

1) User Interface: The user interface is mainly used to list
active input modules, and give the user a way of seeing the
estimate provided by each module. The user interface allows
the user to access the configuration activities (if they exist) for
these input modules. It is also the method through which the
context engine asks for its required permissions.

2) Plugin Manager: The plugin manager is the part of the
context engine through which the engine communicates with
the input and functionality modules. To that end, it handles
all inter-app communication and the adding and removing of
active input/functionality modules. When a new module is
registered, it provides to the plugin manager information that
allows the context engine to interface with the new module.
There may be multiple entries in the plugin manager for each
input module installed, if the module reports estimates for
multiple values.

3) Aggregator Modules: The aggregator modules aggregate
the estimates from the input modules.

The privacy aggregator takes all estimates pi(Cn) from the
privacy input modules and combines them as per Equation 1.
It then takes the estimate for context familiarity αC from the
context familiarity module and calculates P(Cn) as defined in
Equation 2.

The unfamiliarity aggregator is implemented in a slightly
different way than the theoretical basis outlined in Sec-
tion IV-B2. Instead of reusing the value L(Cn) and multiplying
it by (1−F(Cn)) as shown in Equation 5, we instead aggregate
individual estimates ui(Cn) ∈ V and use them to calculate
U(Cn):

U(Cn) =
∑

i∈1...|V |

ui(Cn)wi∑
WU

WU is currently not used (i.e., all modules have wi = 1)
in our implementation. The theoretical approach is not com-
pletely removed—recall it is used by the Bluetooth module as
described in Section V-A1. This method allows for alternative
means of estimating the number of unfamiliar people, making
the context engine more adaptable.

The proximity aggregator takes all estimates ri(Cn) for the
distance between the device and user and aggregates them
into the value d(Cn) as in Equation 7. The proximity module
deviates from the other two approaches, in that it does not
take any data from the context familiarity module. Instead,
αD (which handles the decay rate of D(Cn)) is static, set to
2. In addition, the proximity cutoff αd is also static, set to 1.
These static values are used as in Equation 8 to obtain the
calculated value D(Cn).

4) Context Familiarity Module: The context familiarity
module is the module that tracks the device’s familiarity with
a particular context. Currently only locational contexts are
supported, but eventually this could be expanded. This module
keeps track of the context familiarity value αC for every
context visited, and increments that value on repeated visits
to track as the device’s familiarity with the context increases.
This value is provided to the privacy and unfamiliarity aggre-
gators.

TABLE II
EXAMPLE RULES TO GOVERN THE THREE IMPLEMENTED MODULES.

Rule Action
Authentication Module

P(Cn)− U(Cn) < .1 Enable Authentication Module
P(Cn)− U(Cn) ≥ .1 Disable Authentication Module
P(Cn)− U(Cn) < −.4 Start High Alert
P(Cn)− U(Cn) ≥ −.4 End High Alert

Device Theft Module
U(Cn) > .5 ∧ D(Cn) < .9 Enable Device Theft Module
U(Cn) ≤ .1 ∨ D(Cn) ≥ 1 Disable Device Theft Module
U(Cn) > .5 ∧ D(Cn) ≤ .2 Start Audible Alarm

Device Loss Module
D(Cn) ≤ .75 Enable Device Loss Module
D(Cn) > .85 Disable Device Loss Module
D(Cn) < .3 ∧ P(Cn) < .5 Send Lost Device Notification

5) Rule Module: The rule module forms the interface
between the aggregators and the functionality modules. Each
functionality module defines a set of rules, taking the form
of a rule that takes up to three inputs—P(Cn), U(Cn) and
D(Cn). These rules allow the functionality module to react
to changes in the context as necessary. At fixed intervals, the
rules module sends a message with the new values of P(Cn),
U(Cn) and D(Cn) to all registered functionality modules, so
they may check these values against the rules they set, and
adapt accordingly.

C. Functionality Modules

In order to give a sense of how the context values could be
used, three basic modules were implemented—authentication,
device loss, and device theft. We will examine each of these
functionality modules in this section. All three functionality
modules are basic implementations, as they are mainly a proof
of concept for feasibility of the context engine.

1) Authentication: The authentication module aims to en-
able or disable authentication of the device based on the
reported values for P(Cn) and U(Cn). The module allows
us to test how the additional context data could influence the
behaviour of an authentication module, and see when and how
the module would enable and disable explicit authentication.
Currently, this module is fairly simple, and does not perform
any actual authentication, relying only on the context data
calculated by PUPy. Instead, the authentication module per-
forms two actions, following the example rules outlined in
Table II. It changes the state of a persistent notification stating
whether the module is engaged or disengaged, depending
on the variation between P(Cn) and U(Cn), and sends a
notification declaring the start and end of high alert mode. If
the module is disengaged, this corresponds to no authentication
whatsoever. If the module is engaged, we would use implicit
authentication. Finally, if the module is in high alert, the
authentication module would require explicit authentication.

The presented sample rules for the authentication module
are based on the logic that when enabling and disabling
the module, the presence of unfamiliar people should be
the primary factor in the decision. However, in more private
locations, the number of unfamiliar people can be higher.

When moving the authentication module into high alert (i.e.
requiring explicit authentication), we care if a large fraction
of people in the current context are unfamiliar.

2) Device Theft: The purpose of the device theft module is
to detect when the device is being stolen by an adversary, and
prevent the theft—either by notifying the owner or sounding
an alarm to discourage the thief. This is specific to contexts
where theft is more likely, so the system should only enable
when unfamiliar people are nearby. To this end, it relies on the
context engine’s estimates of U(Cn) and D(Cn). The device
theft module simply enables or disables itself (via persistent
notifications), and starts an audible alarm if the device is too
distant, following rules as outlined in Table II.

The presented sample rules for the device theft module are
based on the logic that if there are unfamiliar people around,
and the device is not on person, we should enable the device
theft module. When the context changes to a safer one, it can
be safely disabled. When the distance between the owner and
device is too large, it is likely the device is being stolen, and
an audible alarm should sound.

3) Device Loss: The device loss module aims to notify
the owner when they are likely unintentionally leaving the
device behind when leaving a context. Since purposefully
leaving the device behind is more likely in private contexts,
the module limits itself to more public contexts. It thus relies
on estimates for P(Cn) and D(Cn) from the context engine
to make decisions. The device loss module simply enables
or disables itself (via persistent notifications), and sends a
priority notification if the device is too distant, following rules
as outlined in Table II.

The presented sample rules for the device loss module are
based on the logic that the device loss module should be
enabled when the user is fairly far away, and if it was left
behind in a public area, it should attempt to notify the owner.

VI. EVALUATION

In order to evaluate the efficacy of PUPy, we take an
approach shared by previous works [6], [7], using an existing
dataset to evaluate our system.

A. Dataset

For running evaluations of the system, we rely on the MDC
Dataset. The MDC Dataset [9] is a large dataset based on
the Lausanne Data Collection Campaign [21]. The dataset
is comprised of data collected from nearly 200 participants.
The dataset crucially includes location, network and Bluetooth
data, all data points that are useful when calculating values for
context familiarity, privacy and unfamiliarity. Inferences on
user behaviour based on acceleration data are also available,
which we use to estimate proximity.

The vast quantities of data collected allows in-depth analysis
of how PUPy would function in the real world, and it or
similar datasets have been used by similar projects in the
past to simulate long-term usage of such systems [6], [7]. It
is also used by Gupta et al. to test their familiarity system,
a work whose contributions formed an important part of the

TABLE III
PER-PARTICIPANT STATISTICS ON THE MDC DATASET.

Mean Standard Deviation Median
Overall Time 358 days 149 days 374 days

Proximity Time 194 days 94 days 206 days
Safe Visit Time 171 days 91 days 159 days
Authentications 11,882 8,523 10,025

theoretical framework of PUPy. It also used a viral marketing
approach to recruit participants. This approach ensured that
many of the participants regularly interacted with each other,
meaning that we would have a solid basis for learning what
devices are familiar.

In order to gain a better understanding of the sort of
data the dataset contains and how much there is, we can
look to Table III. This table shows some statistics on the
average timespan of each user in the dataset. In order for the
proximity calculations to work, it is necessary that proximity
data is also included—often, that data does not span the entire
length of a user’s timespan. A subset of the users in the
dataset labelled their current context periodically throughout
the experiment. Similar to Gupta et al, we use these labels to
extrapolate the ground truth data about the safety of a context
for our evaluation later on. The final statistic of interest is the
number of detected authentications. To calculate the number of
detected authentications, application usage logs from the MDC
dataset were used. We assume that an authentication happens
when application usage takes place 310 seconds after the last
usage. This number is based on the work of Harbach et al. [3],
which shows that on average, users use their device for 70
seconds, with a standard deviation of 240 seconds. We assume
the user must reauthenticate if the device has not been used
for more than one standard deviation from the average. These
authentications are what form the backbone of our evaluations.
By comparing the classification of a given authentication to the
ground truth context, we can get a sense of if the system is
properly classifying contexts.

B. Quantitative Analysis

In this section, we will look at various metrics and statistics,
to see how the amount of data and length of use impacts
the result of our system. We will then look at a number of
performance statistics, which will allow us to evaluate the
efficacy of PUPy.

PUPy can benefit in two ways from having a large amount
of time and data to learn from when determining the context.
First, there is unfamiliarity, which learns what devices are
familiar and which are not over time. Second, there is context
familiarity, which increases as contexts are routinely visited.
To examine the impact time has on the performance of the
system, we will look at a number of metrics, starting with the
success ratio, which is defined as follows:

ADISABLED

ATOTAL
× 100

where ADISABLED is the number of authentications when
the authentication module was disabled so far, and ATOTAL

0 10000 20000 30000 40000 50000
Total Number of Authentications

0

20

40

60

80

100

Su
cc

es
s R

at
io

 (%
)

Fig. 2. The cumulative success rate of the system in disabling authentications
compared to the total number of authentications.

TABLE IV
STATISTICS OUTLINING THE PERFORMANCE OF PUPY.

Mean Standard Deviation Median
Success Ratio 0.772 0.09 0.80
Total Highlights 24.70 43.59 8.00
Auth Time 52 days 44 days 46 days
Auth Ratio 0.15 0.11 0.13
Theft Time 29 days 25 days 23 days
Theft Ratio 0.17 0.20 0.14
Loss Time 69 days 51 days 56 days
Loss Ratio 0.38 0.26 0.35
High αC 27.56 15.91 25.00
Medium αC 43.50 29.30 36.00

is the total number of authentications so far. Figure 2 plots the
cumulative success ratio over time. As the system learns, we
would expect this ratio to increase, as more and more unlocks
do not require an explicit authentication. That is exactly
what we see—as the number of authentications increases, the
success ratio also increases, eventually stabilizing around 80%.

Next, we will break down some overall performance statis-
tics of how PUPy performs. First, we present the success
ratio, as defined above. As shown in Table IV, this ratio
was 0.772 on average, corresponding to a 77.2% reduction in
explicit authentication requests. Despite PUPy being mainly a
context detection framework and not directly authenticating
the user, PUPy compares nicely to a number of existing
authentication-focused works. Progressive authentication [11]
saw a reduction of 42%. CORMORANT [7] was able to
achieve a reduction of 97.82%, but requires a much larger
framework overall—it combines authentication data from mul-
tiple devices, and requires the application to be installed on
all devices. ConXSense [17] achieves similar performance to
us, relaxing security in roughly 70% of contexts.

The next statistic of interest is the total number of high-
lighted contexts that the user encounters on average. High-
lighted contexts are contexts in which there is a large gap
between P(Cn) and 1 − U(Cn). If a context has entirely
unfamiliar devices, P(Cn) must be equal to 1 − U(Cn). If
P(Cn) 6= 1 − U(Cn), it tells us that F(Cn) > 0. When
there is a large gap, F(Cn) is likely very high, and thus we
are surrounded by a large number of familiar people. This
sort of event, when privacy is very low but unfamiliarity is

also low, is where the additional context data our system
provides allows for functionality modules to better adapt to
the context. Therefore, we keep an eye out in our calculations
for such situations. The users encountered 25 such contexts
on average (with standard deviation 44) where the privacy
and unfamiliarity values diverged, showing us that our system
provided better context information in these contexts.

Looking at the amount of time each of the three modules
were enabled and their corresponding ratios, we see that
the device loss module was by far the most active module,
activated roughly 38% of the time. This makes sense, as it
has the most general rules governing it. On the other hand,
the authentication and theft modules were only enabled 15%
and 17% of the time, respectively.

The final metrics of interest are the number of locations
that, by the end of the timespan, had high and medium
context familiarity values, as discussed in Section IV-B. This
denotes the number of places the user visited over their
timespan with enough frequency to increase context familiarity
beyond 175 for high familiarity locations, and 100 for medium
familiarity locations. On average, 27 locations are marked
as high familiarity, and 43 contexts are marked as medium
familiarity.

VII. CONCLUSION AND FUTURE WORK

We proposed, implemented and evaluated a novel context
detection framework called PUPy that breaks with existing
works in several ways: wider applicability, better accuracy
through aggregating multiple data sources, and taking a funda-
mentally optimistic approach to context detection to improve
the user experience. We outlined the theoretical framework
underlying PUPy and created an implementation of the frame-
work on Android. Finally, we evaluated the framework based
on an existing dataset. The framework showed significant
promise in improving the user experience by significantly
reducing the number of explicit authentications.

In terms of future work, the functionality modules are
currently rudimentary and could be expanded. Due to the
COVID-19 pandemic, performing a user study and soliciting
feedback was not possible.

ACKNOWLEDGMENTS

This work benefitted from the use of the CrySP RIPPLE
Facility at the University of Waterloo. (Portions of) the re-
search in this paper used the MDC Database made available by
Idiap Research Institute, Switzerland and owned by Nokia. We
gratefully acknowledge the support of the Waterloo-Huawei
Joint Innovation Laboratory for funding this research.

REFERENCES

[1] Y. Albayram, M. M. H. Khan, T. Jensen, and N. Nguyen, ““...better to
use a lock screen than to worry about saving a few seconds of time”:
Effect of fear appeal in the context of smartphone locking behavior,” in
13th Symposium on Usable Privacy and Security (SOUPS 2017), 2017,
pp. 49–63.

[2] S. Egelman, S. Jain, R. S. Portnoff, K. Liao, S. Consolvo, and D. Wagner,
“Are you ready to lock? Understanding user motivations for smartphone
locking behaviors,” in 21st ACM Conference on Computer and Commu-
nications Security (CCS 2014), 2014, pp. 750–761.

[3] M. Harbach, A. De Luca, N. Malkin, and S. Egelman, “Keep on lockin’
in the free world: A multi-national comparison of smartphone locking,”
in ACM Conference on Human Factors in Computing Systems (CHI
2016), 2016, pp. 4823–4827.

[4] M. Harbach, A. D. Luca, and M. Smith, “It’s a hard lock life: A field
study of smartphone (un)locking behavior and risk perception,” in 10th
Symposium On Usable Privacy and Security (SOUPS 2014), 2014, pp.
213–230.

[5] M. Conti and C. Lal, “Context-based co-presence detection techniques:
A survey,” Computers & Security, vol. 88, pp. 0167–4048, 2020.

[6] A. Gupta, M. Miettinen, N. Asokan, and M. Nagy, “Intuitive security
policy configuration in mobile devices using context profiling,” in
International Conference on Privacy, Security, Risk and Trust, 2012,
pp. 471–480.

[7] D. Hintze, M. Füller, S. Scholz, R. D. Findling, M. Muaaz, P. Kapfer,
E. Koch, and R. Mayrhofer, “CORMORANT: Ubiquitous risk-aware
multi-modal biometric authentication across mobile devices,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT 2017), vol. 3, no. 3, pp. 85:1–85:23, 2019.

[8] A. Wójtowicz and K. Joachimiak, “Model for adaptable context-based
biometric authentication for mobile devices,” Personal and Ubiquitous
Computing, vol. 20, no. 2, pp. 195–207, 2016.

[9] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T. M. T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “From big smartphone data to
worldwide research: The mobile data challenge,” Pervasive and Mobile
Computing, vol. 9, no. 6, pp. 752–771, 2012.

[10] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in International Conference on Infor-
mation Security (ISC 2010), 2010, pp. 99–113.

[11] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos, “Progressive
authentication: deciding when to authenticate on mobile phones,” in 21st
USENIX Security Symposium, 2012.

[12] C. Bo, L. Zhang, X.-Y. Li, Q. Huang, and Y. Wang, “Silentsense: Silent
user identification via touch and movement behavioral biometrics,”
in 19th Annual International Conference on Mobile Computing &
Networking (MobiCom 2013), 2013, pp. 187–190.

[13] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” IEEE Transactions on Information Forensics
and Security, vol. 8, no. 1, pp. 136–148, 2013.

[14] G. Cola, M. Avvenuti, F. Musso, and A. Vecchio, “Gait-based authenti-
cation using a wrist-worn device,” in 13th International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services
(MOBIQUITOUS 2016), 2016, pp. 208–217.

[15] A. Studer and A. Perrig, “Mobile user location-specific encryption
(MULE): Using your office as your password,” in 3rd ACM Conference
on Wireless Network Security (WiSec 2010), 2010, pp. 151–162.

[16] A. Ramakrishnan, J. Tombal, D. Preuveneers, and Y. Berbers, “PRISM:
Policy-driven risk-based implicit locking for improving the security of
mobile end-user devices,” in 13th International Conference on Advances
in Mobile Computing and Multimedia (MoMM 2015), 2015, pp. 365–
374.

[17] M. Miettinen, S. Heuser, W. Kronz, A.-R. Sadeghi, and N. Asokan,
“ConXsense - Automated context classification for context-aware ac-
cess control,” in 9th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2014), 2014, pp. 293–304.

[18] B. Shrestha, N. Saxena, H. T. T. Truong, and N. Asokan, “Sensor-based
proximity detection in the face of active adversaries,” IEEE Transactions
on Mobile Computing, vol. 18, no. 2, pp. 444–457, 2019.

[19] H. Khan, U. Hengartner, and D. Vogel, “Targeted mimicry attacks on
touch input based implicit authentication schemes,” in 14th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys 2016), 2016, pp. 387–398.

[20] D. Hintze, M. Füller, S. Scholz, R. D. Findling, M. Muaaz, P. Kapfer,
W. Nüßer, and R. Mayrhofer, “CORMORANT: On implementing risk-
aware multi-modal biometric cross-device authentication for Android,”
in 17th International Conference on Advances in Mobile Computing &
Multimedia (MoMM 2019), 2019, pp. 117–126.

[21] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila, “To-
wards rich mobile phone datasets: Lausanne data collection campaign,”
Proc. ICPS, Berlin, vol. 68, p. 7, 2010.

	Introduction
	Goals
	Related Work
	Implicit Authentication
	Context Detection
	Implicit Authentication and Context Detection

	System Design
	Adversary Model
	Theoretical Framework
	Privacy
	Unfamiliarity
	Proximity
	Context Familiarity
	Functionality Modules

	Implementation
	Input Modules
	Bluetooth Application
	Activity Application
	Location Application
	Proximity Application

	Context Engine
	User Interface
	Plugin Manager
	Aggregator Modules
	Context Familiarity Module
	Rule Module

	Functionality Modules
	Authentication
	Device Theft
	Device Loss

	Evaluation
	Dataset
	Quantitative Analysis

	Conclusion and Future Work
	References

