
Avoiding Privacy Violations Caused by Context-Sensitive Services

Urs Hengartner

University of Waterloo

uhengart@cs.uwaterloo.ca

Peter Steenkiste

Carnegie Mellon University

prs@cs.cmu.edu

Abstract

The increasing availability of information about people’s

context makes it possible to deploy context-sensitive ser-

vices, where access to resources provided or managed by

a service is limited depending on a person’s context. For

example, a location-based service can require an individ-

ual to be at a particular location in order to let the indi-

vidual use a printer or learn her friends’ location. How-

ever, constraining access to a resource based on confiden-

tial information about a person’s context could result in

privacy violations. For instance, if access is constrained

based on a person’s location, granting or rejecting access

will provide information about this person’s location and

could violate the person’s privacy. We introduce an access-

control algorithm that avoids privacy violations caused by

context-sensitive services. Our algorithm exploits the con-

cepts of access-rights graphs, which represent all the infor-

mation that needs to be collected in order to make a context-

sensitive access decision. Moreover, we introduce hidden

constraints, which keep some of this information secret and

thus allow for more flexible access control. We present

a distributed, certificate-based access-control architecture

for context-sensitive services that avoids privacy violations,

a sample implementation, and a performance evaluation.

1. Introduction

The increasing numbers of networked devices (e.g., cell-

phones or handhelds) that individuals are carrying and of

networked sensors (e.g., cameras) let more context-sensitive

information about people become electronically available.

This trend enables the deployment of context-sensitive ser-

vices, where access to resources provided or managed by a

service depends on a person’s context. For instance, many

pervasive computing projects provide location-based ser-

vices, where a resource is available to an individual only if

the individual is at a particular location [1, 4, 5, 8, 13, 14].

For example, a user of a buddy service could allow her

friends to learn her location only if they are nearby. Sim-

ilarly, the administrator of a service managing devices (e.g.,

a projector or a printer) in a meeting room could decide

to let only people in the room access these devices. How-

ever, the deployment of context-sensitive services poses se-

rious privacy challenges. Namely, we must ensure that these

services do not leak confidential information about an indi-

vidual’s context to unauthorized entities. In this paper, we

show how to avoid such privacy violations.

Let us demonstrate how a naı̈ve implementation of

context-sensitive access decisions to resources can lead to

privacy violations. In our first example, confidential infor-

mation leaks to a service that provides information. As-

sume that Alice lets people see her current calendar entry

only if they stand in front of her office, that is, she im-

poses a context-sensitive constraint. A cellphone service

provides people’s location information, and a centralized

calendar system offers Alice’s calendar information. Given

this setup, when Bob asks the calendar service for Alice’s

calendar entry, the calendar service could learn Bob’s lo-

cation while making an access decision, either by querying

the location service directly or by being told by a third entity

that the constraint imposed by Alice is fulfilled. Therefore,

Bob’s location information could leak to the calendar ser-

vice (i.e., to the organization running this service), and his

privacy could be violated.

In the second example, confidential information leaks to

a person who is granted access to some other information.

Assume that Alice allows people to access her calendar en-

try if she is in her office. Therefore, if somebody can re-

trieve this entry, he will also learn that Alice is in her office.

A person planning on breaking into Alice’s house would

happily take advantage of this information leak.

In our third example, confidential information leaks to a

person who grants other people access to her information.

Assume that Alice grants herself access to her calendar en-

try constrained to Bob being at a particular location. When

the calendar system grants Alice access to her entry, she will

learn Bob’s location, which could be an information leak.

Related work has largely ignored privacy violations

caused by context-sensitive services. Avoiding these vio-

lations is a complex problem, especially when constraints

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

are recursive (e.g., “Alice says that Bob can access her cal-

endar when she is in her office.” and “Alice says that Bob

can access her location when she is not busy.”). As a result,

in our first contribution, we present a systematic investiga-

tion of information leaks caused by context-sensitive ser-

vices so that we understand all the opportunities for infor-

mation leaks. Our second contribution is a set of algorithms

to avoid information leaks caused by context-sensitive ser-

vices. In particular, our algorithms include:

Access-rights graphs. We introduce algorithms for build-

ing and resolving access-rights graphs. These graphs

represent all the information that will have to be col-

lected in order to ensure the satisfaction of constraints

associated with a resource. Furthermore, we present an

access-control algorithm that, based on access-rights

graphs, resolves constraints and avoids information

leaks.

Hidden constraints. We propose hidden constraints,

which make it possible to implement more flexible

constraints by keeping constraint specifications secret.

Furthermore, hidden constraints lead to a more

simplified access-control algorithm.

Finally, we present a distributed, certificate-based

access-control architecture that exploits these algorithms

in order to provide context-sensitive services that do not

leak confidential information, an example implementation

of this architecture, and a performance evaluation.

We start by introducing our system model (Section 2).

We then focus on a restricted set of constraints and dis-

cuss information leaks that these constraints could cause

and how to avoid these leaks (Section 3). Based on this

discussion, we then drop the restrictions on constraints and

introduce access-rights graphs (Section 4) and hidden con-

straints (Section 5). Finally, we present our access-control

architecture (Section 6) and measure its performance (Sec-

tion 7).

2. System Model

In this section, we describe the system model that we

will use for studying privacy violations caused by context-

sensitive access control. In particular, we introduce (con-

strained) access rights and client-based access control and

present our security model.

2.1. Access Rights and Constraints

For simplicity reasons, we assume that the resources of-

fered or managed by a context-sensitive service consist of

confidential information (e.g., the location of an individ-

ual’s friends or a person’s calendar entry). It is straight-

forward to apply our algorithms to a service that manages

physical devices, such as a printer or a projector.

For an entity to be granted access to confidential infor-

mation, there must be an access right authorizing this ac-

cess. An access right consists of four parts: An issuer issu-

ing the access right, a subject being given access, informa-

tion to which access is granted, and a tuple of constraints

that must be satisfied for the subject to get access to the in-

formation. Either the subject or the tuple of constraints can

be omitted from the access right. Each piece of information

has an owner, who is responsible for issuing access rights to

this information. For example, Alice issues access rights to

her activity information.

We assume that a constraint consists of information and

of a set of permitted values. The constraint is satisfied if the

current value of its information equals one of the values in

the set. A tuple of constraints attached to an access right

is satisfied if each constraint in the tuple is satisfied. We

observe that many sensible constraints in pervasive com-

puting involve information about the context of a person. A

person’s context can include, for example, the current time,

her current activity, or her current location. In addition, a

constraint is typically about the person that either is granted

an access right (e.g., “Alice grants Bob access to her calen-

dar if he is in his office.”) or grants an access right (e.g.,

“Alice grants Bob access to her calendar if she is in her of-

fice.”), but not about third entities. Therefore, we are mainly

interested in constraints that deal with context-sensitive in-

formation about the first two entities (though our presented

solution is powerful enough to support constraints involv-

ing third entities). We focus on context-sensitive constraints

that are confidential (e.g., a person’s location or activity, but

not the current time) and that have dynamic values, which

makes it infeasible to check the satisfaction of a constraint

upon the specification of an access right.

2.2. Client-Based Access Control

We will study information leaks for the following sce-

nario: A client wants to retrieve information provided by

a service. We use the terms primary information and pri-

mary service for referring to this information and service,

respectively. The client’s access right to the primary infor-

mation has a tuple of constraints. We call the information

listed in the constraints constraint information and the ser-

vices offering it constraint services. Note that for different

requests, the same information can be either primary or con-

straint information, and a service can be either the primary

or a constraint service. Here, we assume that, for a partic-

ular type of information, there is only one service that pro-

vides this type of information. We discuss the more general

case in the extended version of this paper [10, Chapter 5].

There are multiple approaches to deploy access control

in this scenario. We concentrate on client-based access con-

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Figure 1. Client-based access control. The client sends a proof of access to the constraint service

to retrieve an assurance for the constraint information. Next, the client sends a proof of access,

including the assurance, to the primary service to access the primary information. (Numbers indicate

order of events.)

trol [3, 11], where the client needs to prove to the primary

service that the client is authorized to access the primary

information. The service makes the final access decision

by validating this proof of access. The proof contains the

client’s access right to the primary information and con-

firms that each of the constraints in the access right is satis-

fied. We use the term assurance for such a confirmation.

Therefore, before the client can contact the primary ser-

vice, the client needs to retrieve assurances. In particular,

for each constraint in the client’s access right to the primary

information, the client has to build a proof of access for

the constraint information, contact the corresponding con-

straint service, and have it issue an assurance. We illustrate

client-based access control in Figure 1. Both access rights

and assurances can be represented as digital certificates. If

the client’s access rights to the constraint information were

also constrained, the client recursively would have to re-

trieve assurances for the constraints in these access rights

beforehand.

The advantage of client-based access control is the lack

of a centralized entity making access decisions (i.e., a sin-

gle point of failure). Furthermore, by assigning parts of

the access-control load (i.e., constraint resolution) to the

client, the approach reduces the load on the primary ser-

vice. We study approaches that employ a centralized entity

or that have a service resolve constraints in the extended

version [10, Chapter 5], where we observe that similar pri-

vacy violations can occur in all approaches.

A constraint service returning an assurance indicates for

how long it expects the corresponding constraint to remain

satisfied. The primary service should return primary infor-

mation only within this time window. (We assume reason-

ably synchronized clocks.) While it is possible that a con-

straint service errs and that a constraint does become invalid

within the indicated window, we believe that our approach

is sufficient for context-sensitive constraints. For example,

individuals move at a finite speed, which limits the possi-

ble change in their location within a (short) time window.

Instead of a window-based approach, it is also possible to

timestamp requests. However, such an approach raises sev-

eral implementation challenges [10, Chapter 5].

2.3. Security Model

In our security model, services that provide confidential

information implement the access-control algorithms de-

scribed in this paper. The goal of an attacker is to learn

confidential information that the attacker is not authorized

to access. In order to achieve this goal, an attacker can

choose between the following actions: An attacker can send

requests to a service and observe their fate. A request is

either denied or granted access. In the latter case, the at-

tacker will see the requested information. Alternatively, an

attacker can set up services and observe requests reaching

such a service. An attacker can also issue (constrained) ac-

cess rights to information owned by the attacker and snoop

network traffic. Attackers can collude.

We do not examine other attacks, such as traffic-analysis

or statistical-inference attacks or attacks based on the phys-

ical observation of a person.

3. Constraints and Information Leaks

In this section, we define information leaks, as studied in

this paper, and discuss how they can occur in client-based

access control and how to avoid them.

3.1. Definition

When a single entity or multiple, colluding entities are

familiar both with a constraint specification in an access

right and with the outcome of a request exploiting this ac-

cess right, they can infer some knowledge about the con-

straint information listed in the specification. If the single

entity and all of the colluding entities, respectively, are not

authorized to access this knowledge, there will be an infor-

mation leak. (If any of the colluding entities is authorized,

there will not be a leak, since the authorized entity could

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

always proxy for the unauthorized entities.) In particular,

the leaked knowledge reveals either that the current value

of the constraint information is in the set of values listed in

the constraint specification or that the current value is not in

this set. We assume that the range of values that constraint

information can have is publicly known. Therefore, both

cases leak a set of possible current values. If the leaked set

contains only one element, the current value leaks, and there

is an exact compromise. If the leaked set contains more than

one element, there is still a partial compromise, since the set

is smaller than the range of values that the constraint infor-

mation can have.

3.2. Client-Based Access Control

For information leaks to occur, an entity needs to know

the constraint specifications in an access right. The follow-

ing entities know the constraint specifications in the client’s

access right to the primary information: the issuer of the ac-

cess right, the client, and the primary service. Let us discuss

for each entity how to prevent information from leaking to

the entity. For now, we assume that access rights to con-

straint information are not constrained.

Client: Client-based access control makes the client

build proofs of access for the constraint information in the

client’s access right, as shown in Figure 1. Without these

proofs, the client will not be able to retrieve assurances from

the constraint services. Therefore, confidential knowledge

about constraint information cannot leak to the client.

Primary service: The primary service could learn con-

fidential knowledge about constraint information from a

proof of access received from the client since the proof

also lists assurances, in addition to the client’s access right.

Therefore, the client must validate that the primary service

has access to the constraint information before sending the

proof to the service. (Since the client’s access rights to the

constraint information are not constrained, the client does

not need to perform this check when sending a proof of ac-

cess to a constraint service.) In case the client is not willing

to perform this validation, its access rights should be re-

voked.

Issuer: The issuer of the client’s access right to the pri-

mary information could collude with the client or the pri-

mary service to learn confidential knowledge about con-

straint information in the access right. However, since we

ensure that both candidates have access to this knowledge,

as mentioned above, this is not an information leak.

Access rights to constraint information can recursively

be constrained, which makes avoiding information leaks

more difficult. For simplicity reasons, let us assume that

there is only one level of recursion, that is, if an entity has

a constrained access right to constraint information, the en-

tity’s access rights to the constraint information in that ac-

cess right are not constrained. (We discuss the more general

case in Section 4.) As discussed above, the client needs to

ensure that the primary service has access rights to the con-

straint information in the client’s access right to the primary

information. If the service’s access rights are constrained,

the client has to validate these constraints. Namely, the

client has to retrieve constraint information from a con-

straint service, using access rights issued to the client. If

such an access right was constrained and its issuer colluded

with the primary service, the issuer would know that when-

ever the primary service is contacted, the constraints in this

access right are satisfied and the issuer could derive confi-

dential knowledge about constraint information in the ac-

cess right. We can avoid this leak by requiring the client

to ensure that the issuer of an access right has access to

constraint information in the access right before using the

access right in a proof of access.

In client-based access control, access rights are repre-

sented as digital certificates. We have not discussed where

an entity that is granted an access right stores the corre-

sponding certificate. The entity could store access rights in

a publicly accessible database and retrieve them from this

database when building proofs of access. However, if ac-

cess rights were stored in such a database, the primary ser-

vice could exploit the information leak just described with-

out having to collude with the issuer of an access right. This

observation suggests not to store access rights in a publicly

accessible database.

To ensure that constraint information does not leak to an

issuer of an access right or to a service, as mentioned above,

the client needs to know the issuer’s and the service’s access

rights to this information, respectively. However, if access

rights are not publicly available, the client will not easily

be able to learn about these access rights and thus might

not be able to ask the primary service for the primary infor-

mation. We can solve this conflict by keeping the types of

constraints listed in an access right restricted. A restricted

constraint in an access right is a constraint whose informa-

tion is restricted to information about the subject or the is-

suer of the access right. (As mentioned in Section 2.1, we

expect this to be the most useful case in pervasive comput-

ing anyway.) Here, if a constraint in an access right granted

to the client involves the client, the client itself can decide

whether it wants the issuer of the access right or a service

to have access to the constraint information. If a constraint

involves the issuer of the access right, the issuer automati-

cally has access to the constraint information. In terms of

services having access to this information, the issuer could

inform the client of these services when issuing the access

right to the client. Apart from keeping constraints restricted,

another option are hidden constraints, which prevent a ser-

vice from learning the constraint specification in the first

place (see Section 5).

In summary, the client must ensure that the primary ser-

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

vice has access to the constraint information in the client’s

access right for the primary information and that the issuer

of an access right has access to the constraint information

in the access right. Furthermore, access rights should not

be publicly available and constraints should be restricted

else the client’s chances for successfully completing the out-

lined steps to avoid information leaks (and thus accessing

the primary information) decrease.

4. Access-Rights Graphs

In the previous section, we have seen that even if we

require some access rights to be unconstrained, access con-

trol is already difficult. Let us now discuss the general case,

where any access right can be constrained and where access

control thus becomes even more complex. To increase the

client’s chances to complete access control, we require that

access rights are not publicly available (i.e., only the subject

and issuer of an access right initially know the contents of

the access right).

4.1. Design

Our access-control algorithm for the general case ex-

ploits access-rights graphs. Such a graph captures relation-

ships between access rights and constraints on them, allows

for easy detection of potential problems, like information

leaks, loops, or conflicting constraints, and simplifies reso-

lution of constraints.

An access-rights graph is built for particular information

in terms of an entity’s access rights. The graph represents

the conditions under which this entity has access to the in-

formation. The edges and nodes of the graph are derived

from the entity’s access rights. In particular, a node in the

graph represents information, and the edges outgoing from

a node denote the constraints on an access right to the infor-

mation in the node. An edge has a set of values attached to

it, meaning that the information in the node that the edge is

pointing to is constrained to the values in the set. If an ac-

cess right to information is unconstrained, the correspond-

ing node has an outgoing edge that goes back to the node

and that is marked with “∗”; such a node cannot have more

than one outgoing edge. We call the node containing the

information for which the graph is built root node. Figure 2

shows an example of an access-rights graph. We use the

scheme “Alice.location” for representing information in the

graph. The first part (i.e., “Alice”) denotes the owner of the

information. The second part (i.e., “location”) corresponds

to the type of information.

We call an access-rights graph conflict-free if for nodes

with multiple incoming edges, the intersection of the sets

of values attached to these edges is not empty. Figure 3

shows an example of a graph with a conflict. There could

Figure 2. Access-rights graph. The graph is

for information A.x in terms of an entity’s ac-

cess rights. In particular, the entity has ac-

cess rights to A.x constrained to B.y = s and

C.z = t, to B.y constrained to D.w = u, to C.z

constrained to C.z ∈ {r, t}, and to D.w in an

unconstrained way.

Figure 3. Access rights graphs with conflict.

The graph has conflicting constraints on D.w.

be multiple graphs for the same information in terms of an

entity’s access rights if the entity had multiple access rights

to this information, but with different constraints on them.

The entity whose access rights are used for building an

access-rights graph has access to the information in the root

node if 1) each node has at least one outgoing edge (i.e.,

there is an access right to the information in the node), 2)

the graph is conflict-free, and 3) the current value of the

information in each node is listed in each of the node’s in-

coming edges.

Assuming that an entity’s access rights are locally avail-

able, building a conflict-free access rights graph out of these

access rights is a completely local step and straightforward.

We present the pseudocode in the extended version [10,

Chapter 5]. Ensuring that each constraint is satisfied re-

quires traversal of the graph and contacting remote services

that offer the information in a node. We call this graph

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

traversal resolution.

Access-rights graphs can become arbitrarily complex.

At present, we expect them to be rather simple for practical

scenarios, such as the graph in Figure 2. This expectation is

based on two observations: First, people typically specify

access rights in a manual way, which tends to lead to simple

access rights, having no or only a few, broad constraints.

Second, the amount of context information that is currently

available about people and that can be used to constrain

access is still rather limited. However, both observations

probably will no longer hold in the future. For example, if

users let electronic agents manage access rights on their be-

half, access rights will become more complicated and can

involve more and narrower constraints. Also, the amount of

information available about people is steadily increasing.

4.2. Client-Based Access Control

Let us now discuss how we employ access-rights graphs

in client-based access control. Here, the client must build

proofs of access for the primary and constraint informa-

tion. In particular, the client builds a conflict-free access-

rights graph for the primary information in terms of its ac-

cess rights and assembles proofs for the nodes in the graph

while resolving this graph. In addition, the client must en-

sure that no confidential knowledge about constraint infor-

mation leaks to a service receiving a proof of access or to

an issuer of an access right. Therefore, for each node in the

graph, the client builds additional access-rights graphs for

the information in the nodes pointed to by that node. These

graphs are either in terms of the access rights of the service

offering the information in that node or in terms of the ac-

cess rights of the issuer of the access right associated with

that node. In particular, the client implements the algorithm

shown in Figure 4. To make it easier for the client to build

access-rights graphs in terms of a service’s or issuer’s access

rights, constraints in an access right should be restricted, as

defined in Section 3.2.

While resolving an access-rights graph, the client needs

to build proofs of access. When contacting a constraint ser-

vice, the client might receive an assurance stating that a con-

straint is satisfied. Once it has received assurances for all

the nodes that a node is pointing to, it can build a proof of

access for the information in this node and contact the cor-

responding constraint (or primary) service. For example, in

the graph shown in Figure 2, the client first retrieves an as-

surance for D.w = u from the constraint service offering

D.w, using its access right as a proof of access. The client

then uses this assurance and its access right to B.y to build a

proof of access for getting an assurance for B.y = s. Simi-

larly, it gets an assurance for C.x = t. These two assurances

and the access right to A.x allow the client to build a proof

of access for A.x. The service offering A.x validates the

proof and returns the current value of A.x.

Proof building becomes difficult for conflict-free access-

rights graphs with loops involving more than one node,

since there is no obvious node at which a client can start

resolution. There are multiple ways to deal with such cases.

If the information of all the nodes in the loop was offered by

the same service, a client could have this service resolve the

loop. If multiple services offered this information, a client

could contact some of these services and ask them to resolve

the constraints on its behalf. This option requires trust re-

lationships between the services so that they can exchange

constraint information. None of this constraint information

must leak to the client unless all the constraints are satisfied.

5. Hidden Constraints

In this section, we introduce the concept of hidden con-

straints and apply it to client-based access control.

5.1. Design

In our scenario, the client can access the primary infor-

mation only if both the client and the primary service have

access to the constraint information in the client’s access

right to the primary information. In practice, this require-

ment could lead to owners of constraint information grant-

ing the primary service access to the information to ensure

that the client can access the primary information. This ap-

proach is problematic since intruders into the service could

exploit the service’s access rights. Alternatively, if an owner

of information is not willing to grant the primary service ac-

cess, the client will not be able to access the primary infor-

mation. For example, assume that Alice uses a service for

providing important information about her and that Bob has

no trust relationship with this service. Alice grants Bob an

access right to the information, given that he is at a partic-

ular location. Bob is now in a dilemma: Either he releases

his location to the untrusted service in his proof of access or

he cannot learn Alice’s information.

We now propose a solution that increases the number of

cases where the client can access the primary information

and that does not require owners of constraint information

to issue access rights to the primary service. Our solution

exploits hidden constraints. According to our definition of

an information leak in Section 3.1, an entity must know the

constraint specification in an access right in order to be able

to derive confidential knowledge when observing requests

exploiting this access right. However, if a constraint spec-

ification is hidden from the entity, observing requests will

not allow the entity to infer this confidential knowledge. In

our example above, Alice can issue the access right such

that the constraint in the access right remains hidden from

the location service. Therefore, the service cannot learn the

specification from the proof of access and will not be able

to learn Bob’s location.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

// Return true if entity has access to information at given value.

boolean can access(Entity entity, Information information, Value value) {
Set graphs = conflict-free access-rights graphs with at least one outgoing edge per node for

information in terms of entity’s access rights. If value != null and information in root node

of a graph is constrained to particular values of this information, value must be contained in these values.

while (graphs.notEmpty()) {
Graph graph = graphs.remove();

if (is resolvable(graph)) return true;

}
return false;

}

// Return true if the constraints in the access-rights graph are satisfied and if there are no information leaks.

boolean is resolvable(Graph graph) {
// Gather nodes that can be resolved.

Set readySet = all nodes in graph with no outgoing edges other than an edge to itself;

while (readySet.notEmpty()) {
Node node = readySet.remove();

Information information = node.get information();

Value value = retrieve signed statement containing current value of information from constraint

service, using access right associated with node and previously gathered assurances;

if (value is not listed in all incoming edges of node) return false;

// We now have an assurance for the node. Next, ensure that issuer of an access right and services receiving

// access right in proof of access can access constraint information in the access right.

parents = nodes with an outgoing edge to node;

while (parents.notEmpty()) {
Node parent = parents.remove();

Entity owner = parent.get information().get owner();

if (!(can access(owner, information, value))) return false;

Entity service = service offering parent.get information();

if (!(can access(service, information, value))) return false; (*)

if (all nodes with incoming edge from parent have been removed from readySet)

readySet.add(parent);

}
}
return true;

}

Figure 4. Access-control algorithm. Access control consist of building a conflict-free access-rights

graph and of resolving this graph. In addition, access control must recursively ensure that issuers

of access rights and services receiving proofs of access can access constraint information.

Note that hidden constraints do not hide the existence of

a constraint in an access right from an entity, they hide only

its specification. Furthermore, hiding a constraint specifica-

tion from an entity does not mean that the entity can never

learn the specification. If the entity had access to the con-

straint information in the specification, it could learn the

specification by observing the system. However, this is not

an information leak, since the entity has access to the con-

straint information.

5.2. Client-Based Access Control

A constraint specification consists of constraint informa-

tion, a set of permitted values, and the identity of the con-

straint service responsible for acknowledging constraint sat-

isfaction. Let us now explore which parts of a constraint

specification we can hide from which entity in client-based

access control. (Obviously, we cannot keep the constraint

specifications in an access right secret from the issuer of the

access right.)

We can hide a constraint specification entirely from a

service. Namely, a service is not interested in this specifica-

tion; it wants to know only whether the corresponding con-

straint is satisfied. To support this feature, the issuer of an

access right needs to associate a constraint with the access

right such that a service cannot learn the constraint specifi-

cation when looking at the access right or at an assurance

in a proof of access. However, the client building this proof

remains able to gather assurances for the constraint. We

present an implementation of this concept based on digital

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Figure 5. Proof-building architecture. The

access-rights–graph component interacts

with the access-rights repository for building

a graph and with service stubs for resolution

of the graph.

certificates in Section 6.2. Such a hidden constraint prevents

confidential knowledge from leaking to a service. Namely,

hidden constraints eliminate the check marked with (*) in

the access-control algorithm in Figure 4.

It is not possible to hide a constraint specification en-

tirely from the client since the client must know the identity

of the constraint service responsible for resolving the con-

straint. We can hide only the constraint information and

the set of permitted values from the client. (For example,

the issuer of an access right encrypts the two items with

the public key of the responsible constraint service.) How-

ever, depending on the type of constraint information or ser-

vice, knowing the constraint service might allow the client

to deduce the type of constraint information (e.g., when a

constraint service provides only one type of information),

the owner of the constraint information (e.g., when a con-

straint service provides only one individual’s information),

or even the value of the constraint information (e.g., when

a constraint service has limited coverage, such as a location

service covering only one building). Due to these reasons,

our access-control architecture presented in the next sec-

tion supports hiding constraints only from a service, but not

from the client.

6. Architecture

We now present a client-based access-control architec-

ture that supports access rights with context-sensitive con-

straints. We give an overview of our architecture and take a

closer look at the implementation of hidden constraints.

6.1. Architecture

Figure 5 gives an overview of the client’s components in-

volved in proof building. The access-rights–graph compo-

nent is responsible for building and resolving access-rights

graphs. This component retrieves required access rights

from the access-rights repository and implements the al-

gorithm given in Figure 4. While resolving a graph, the

component asks service stubs to get an assurance (for nodes

other than the root node) or the value of the information

(for the root node). A service stub knows how to interact

with a service. We use extended SPKI/SDSI digital certifi-

cates [7] for expressing access rights and assurances. We

give some example statements in the extended version of

this paper [10, Chapter 5].

6.2. Hidden Constraints

We now discuss how we hide constraints from services.

Here, the issuer of a constrained access right includes only a

reference to the constraint specification in the access right,

but not the actual specification. There are multiple ways to

implement such a scheme. We discuss an approach based

on digital certificates in this paper and another one based on

one-way chains in the extended version [10, Chapter 5].

The issuer includes a public key, H , in an access right,

where H serves as a reference to a constraint specification.

This public key will also be used for validating assurances

signed with the corresponding private key, H−1. The issuer

of an access right should generate H and H−1. To avoid in-

formation gathering based on correlation, the issuer should

not re-use H in different access rights. The constraint spec-

ification referred to by H is also defined by the issuer and

consists of the following parts:

Constraint definition. This part lists the constraint infor-

mation and a set of permitted values.
Signing key. The signing key corresponds to private key

H−1. It is encrypted with the public key of a constraint

service, S.1 By choosing this encryption key, the issuer

of the access right and of the constraint specification

picks the constraint service that provides the constraint

information.
Validation key. The validation key corresponds to public

key H .
Public key of service. This part lists the public key of the

constraint service, S.
Integrity data. This data ensures the integrity of the con-

straint specification. We use a cryptographic hash of

the constraint specification (excluding signing key and

integrity data) and encrypt this hash together with the

signing key.

This constraint specification and the access right contain-

ing reference H to it are used as follows: Their issuer gives

both of them to the client. When building a proof of access,

the client retrieves the identity of the constraint service, S,

from the specification and gives the constraint specification

to S. The service ensures that the current value of the con-

straint information corresponds to one of the permitted val-

ues. It then decrypts the ciphertext in the specification to

1We use an AES-based hybrid encryption scheme and HMAC for in-

tegrity checking.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

get H−1 and to ensure that the specification has not been

tampered with. Next, it uses H−1 to issue an assurance

in the form of a digital certificate. The assurance consists

of the validation key, H , signed with the signing key, H−1.

The signature has a lifetime corresponding to the time frame

during which the constraint service expects the constraint to

remain satisfied.

Next, the client sends the access right, together with the

assurance, to the primary service, which validates the sig-

nature of the access right. For reference H included in the

access right, the service ensures that there is an assurance

covering H and signed with H−1. Note that the service

never sees the actual constraint specification.

A constraint service needs to perform an asymmetric de-

cryption operation, which can be expensive. However, it is

possible for the service to cache decrypted signing keys. In

this way, when the service is asked to issue an assurance

for the same constraint multiple times, it needs to perform a

decryption operation only for the first request.

7. Performance Analysis

We present a performance analysis of our access-control

architecture. Our implementation is in Java and based

on an existing access-control framework for Web environ-

ments [11]. We deploy it in the Aura pervasive computing

environment [9]. SSL [17] provides peer authentication and

confidentiality and integrity of transmitted messages. We

run our measurements on a Pentium IV/2.5 GHz with 1.5

GB of memory, Linux 2.4.20, and Java 1.4.2. Our asymmet-

ric cryptographic operations employ 1024 bit RSA keys.

We study the cost of access control when Alice grants

Bob access to her calendar information under different con-

straints. In the first experiment, Alice grants access only if

she is currently in her office. Alice does not hide this con-

straint. In the second experiment, Alice grants access only

if Bob is currently in his office. Alice hides this constraint.

If Alice did not hide the constraint, Bob would have to re-

veal his location to the calendar service, which he might not

be willing to do and thus would not be able to access Al-

ice’s calendar. The third experiment is identical to the sec-

ond one, but the constraint service caches decrypted signing

keys. Our location service fingers a person’s desktop com-

puter and determines her location based on her activity. Our

calendar service is based on Oracle CorporateTime.

The results for the three experiments are in Table 1.

Overall, the cost caused by access control and issuing assur-

ances is small. For the second experiment, issuing an assur-

ance becomes more expensive since the constraint service

needs to decrypt the ciphertext. However, this additional

cost gives us more flexibility when running access control.

We can reduce this cost by caching decrypted ciphertexts,

as shown in the third experiment.

8. Related Work

Multiple pervasive computing environments support

context-sensitive access control to confidential informa-

tion [1, 4, 8, 13]. Al-Muhtadi et al. [1], Chen et al. [4],

and Gandon and Sadeh [8] each employ centralized rule en-

gines for running access control. None of them discusses

whether and how they address information leaks caused

by constraints. Minami and Kotz [13] present an access-

control architecture where services resolve constraints. Ac-

cess rights are publicly available in their architecture. To be

able to ensure satisfaction of constraints, the primary ser-

vice needs to have access rights to the constraint informa-

tion listed in the client’s access right to the primary informa-

tion. The authors assume that those access rights are never

constrained. This limitation avoids information leaks where

the client exploits publicly available access rights to derive

confidential knowledge about constraint information in the

service’s access rights.

Covington et al. [5, 6], Neumann and Strembeck [15],

and Bacon et al. [2] add context awareness to role-based ac-

cess control. The first two approaches make the assignment

of a permission to a role conditional on the current context;

the third one conditions role activations on the current con-

text. None of the approaches considers information leaks

caused by context-sensitive constraints.

Classic access-control models, such as mandatory ac-

cess control, discretionary access control, or role-based ac-

cess control, have no or very limited support for context-

sensitive access rights to information. This limitation has

been addressed in newer models, such as UCONABC [16]

or GAA API [15]. Both models support context-sensitive

constraints, but there is no discussion of how information

leaks caused by context-sensitive constraints are avoided.

McDaniel [12] discusses various evaluation issues for

constraints in a distributed environment, lists desired secu-

rity properties (e.g., non-repudiation), and reviews different

implementation approaches. He does not discuss informa-

tion leaks caused by constraints.

9. Conclusions and Future Work

We showed that context-sensitive constraints on access

rights can lead to privacy violations and discussed how to

avoid these violations. We also introduced the concepts of

access-rights graphs and hidden constraints. Access-rights

graphs represent the conditions under which access should

be granted. Hidden constraints avoid information leaks by

keeping constraint specifications secret. We presented a dis-

tributed, context-sensitive access-control architecture that

avoids privacy violations. Our implementation and its eval-

uation demonstrate the feasibility of our approach.

Our discussion revealed that access rights should not be

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

Entity Step Non-hidden Hidden Hidden, w/ caching

μ (σ) μ (σ) μ (σ)

Client/constraint service SSL socket creation 50 (3) 50 (3) 50 (3)

Constraint service Deserialization 13 (2) 18 (2) 18 (3)

Constraint service Access control 3 (1) 4 (2) 3 (2)

Constraint service Retrieve location 37 (3) 38 (3) 38 (3)

Constraint service Issue assurance 17 (1) 35 (1) 17 (1)

Client/primary service SSL socket creation 92 (12) 96 (16) 96 (16)

Primary service Deserialization 23 (4) 21 (7) 20 (2)

Primary service Access control 5 (2) 5 (2) 5 (2)

Primary service Retrieve calendar entry 202 (23) 204 (16) 201 (11)

Total 463 (26) 485 (14) 469 (15)

Table 1. Client-response time. Mean and standard deviation of elapsed time for security operations

(in bold) and for other, expensive operations using either non-hidden or hidden constraints (100 runs

each) [ms].

publicly available and that constraints should be kept re-

stricted, otherwise running the access-control algorithm can

become complex. In particular, constraints should involve

either a subject being granted an access right or an entity

issuing an access right.

We are deploying our access-control infrastructure in ad-

ditional services in order to investigate what kind of access

rights and constraints on them users define.

References

[1] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D.

Mickunas. Cerberus: A Context-Aware Security Scheme

for Smart Spaces. In Proceedings of IEEE International

Conference on Pervasive Computing and Communications

(PerCom 2003), pages 489–496, March 2003.

[2] J. Bacon, K. Moody, and W. Yao. A Model of OASIS

Role-Based Access Control and its Support for Active Secu-

rity. ACM Transactions on Information and System Security

(TISSEC), 5(4):492–540, November 2002.

[3] L. Bauer, M. A. Schneider, and E. W. Felten. A General

and Flexible Access-Control System for the Web. In Pro-

ceedings of 11th Usenix Security Symposium, pages 93–108,

August 2002.

[4] H. Chen, T. Finin, and A. Joshi. Semantic Web in the Con-

text Broker Architecture. In Proceedings of 2nd IEEE Inter-

national Conference on Pervasive Computing and Commu-

nications (PerCom 2004), pages 277–286, March 2004.

[5] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A

Context-Aware Security Architecture for Emerging Appli-

cations. In Proceedings of 18th Annual Computer Security

Applications Conference (ACSAC 2002), December 2002.

[6] M. J. Covington, W. Long, S. Srinivasan, A. Dey,

M. Ahamad, and G. Abowd. Securing Context-Aware Ap-

plications Using Environment Roles. In Proceedings of 6th

ACM Symposium on Access Control Models and Technolo-

gies (SACMAT ’01), pages 10–20, May 2001.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,

and T. Ylonen. SPKI Certificate Theory. RFC 2693, Septem-

ber 1999.

[8] F. Gandon and N. Sadeh. A Semantic eWallet to Reconcile

Privacy and Context Awareness. In Proceedings of 2nd In-

ternational Semantic Web Conference (ISWC2003), October

2003.

[9] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.

Project Aura: Towards Distraction-Free Pervasive Comput-

ing. IEEE Pervasive Computing, 1(2):22–31, April-June

2002.

[10] U. Hengartner. Access Control to Information in Per-

vasive Computing Environments. PhD thesis, Computer

Science Department, Carnegie Mellon University, August

2005. Available as Technical Report CMU-CS-05-160.

[11] J. Howell and D. Kotz. End-to-end authorization. In Pro-

ceedings of 4th Symposium on Operating System Design

& Implementation (OSDI 2000), pages 151–164, October

2000.

[12] P. McDaniel. On Context in Authorization Policy. In Pro-

ceedings of 8th ACM Symposium on Access Control Models

and Technologies (SACMAT 2003), pages 80–89, June 2003.

[13] K. Minami and D. Kotz. Secure Context-sensitive Au-

thorization. Journal of Pervasive and Mobile Computing

(PMC), 1(1), March 2005.

[14] G. Myles, A. Friday, and N. Davies. Preserving Privacy in

Environments with Location-Based Applications. Pervasive

Computing, 2(1):56–64, January-March 2003.

[15] G. Neumann and M. Strembeck. An Approach to Engineer

and Enforce Context Constraints in an RBAC Environment.

In Proceedings of 8th ACM Symposium on Access Control

Models and Technologies (SACMAT 2003), pages 65–79,

June 2003.

[16] J. Park and R. Sandhu. The UCONABC Usage Control

Model. ACM Transactions on Information and System Se-

curity (TISSEC), 7(1):128–174, February 2004.

[17] Claymore Systems. PureTLS. http://www.rtfm.

com/puretls/.

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM’06)
0-7695-2518-0/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

