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Abstract—Nowadays smartphones come embedded with mul-
tiple motion sensors, such as an accelerometer, a gyroscope
and an orientation sensor. With these sensors, apps can gather
more information and therefore provide end users with more
functionality. However, these sensors also introduce the potential
risk of leaking a user’s private information because apps can
access these sensors without requiring security permissions. By
monitoring a device’s motion, a malicious app may be able to infer
sensitive information about the owner of the device. For example,
related work has shown that sensitive information entered by
a user on a device’s touchscreen, such as numerical PINs or
passwords, can be inferred from accelerometer and gyroscope
data.

In this paper, we study these motion-based keystroke inference
attacks to determine what information they need to succeed.
Based on this study, we propose two novel approaches to defend
against keystroke inference attacks: 1) Reducing sensor data
accuracy; 2) Random keyboard layout generation. We present
the design and the implementation of these two defences on the
Android platform and show how they significantly reduce the
accuracy of keystroke inference attacks. We also conduct multiple
user studies to evaluate the usability and feasibility of these two
defences. Finally, we determine the impact of the defences on
apps that have legitimate reasons to access motion sensors and
show that the impact is negligible.

I. INTRODUCTION

Almost all of the smartphones shipped today include a
number of sensors, such as an accelerometer, a gyroscope, an
orientation sensor, a barometer, or rotational vector sensors.
All these sensors provide raw data with high precision and
accuracy. The data collected from these sensors can be put to
a number of uses. Monitoring three-dimensional device move-
ment or positioning, monitoring changes in the environment
near a device, or motion-based commands are a few examples.

The data collected by these sensors is not treated as
sensitive data by Android, iOS, and Blackberry. Third-party
apps across all three platforms are allowed to access the sensor
readings without any security permission requirements.

Since smartphones are shipped with numerous embedded
sensors, concerns have been raised about the ways in which
unrestricted access to sensor readings poses a potential threat
to a user’s private information. The keyboard is the most
widely used input device today. Lots of sensitive information,
such as passwords or credit card numbers, are typed using
a keyboard. Most of the smartphones today do not have
a physical keyboard. The user is instead provided with an
on-screen software keyboard. Traditional keyloggers face an

obstacle because all operating systems allow only those apps
to read keystrokes that are active and have the focus on the
screen. As a result, new ways have been devised to overcome
this obstacle and infer the keystrokes that a user makes on the
device.

Several researchers [9][10][12][15][16][17] have shown
how motion-based side-channel attacks can be used to infer
the keys typed by a user. For example, Xu et al. [17] present
TapLogger, which uses data collected from the accelerometer
and the orientation sensor to infer a user’s input. By observing
the relation between tap events and the motion change of a
device, TapLogger is able to infer a user’s input, namely a
numerical PIN or a password, with high probability.

In this work, we present two defences against motion-
based keystroke inference attacks. Our work is based on two
observations. First, the attacks make use of accelerometer data
to segment between key strokes before they infer the type of
key stroke. We present a method to alter the accelerometer
readings just before they are passed to third-party apps to
ensure that a key stroke event is not detected by the attacker.
Second, the attacks work under the assumption that a particular
key is always displayed in a certain position on the screen.
Our second defence approach is to use a randomized keyboard
layout that is different from a traditional keyboard layout in
the sense that each key is in a different position every time
the keyboard is displayed on-screen.

For the first defence mechanism, the modified accelerome-
ter readings, we examine the impact of these modifications
on key stroke detection. We also perform a user study to
document whether a user is able to perceive any difference in
apps that use the accelerometer after these changes are made.
We present our second defence mechanism, the randomized
keyboard layout app, to users to determine the balance of
usability and security that a user desires to achieve. Finally,
we evaluate whether an app that needs the accelerometer for
legitimate purposes is affected by these changes.

The rest of this paper is organized as follows: Section 2
provides some fundamental information about Android and the
related sensors. Section 3 follows with a brief presentation
of some existing motion-based keystroke inference attacks.
Section 4 demonstrates our defences in details and Section 5
gives our implementation details. In Section 6, we evaluate our
defences and present the results and analysis. Some limitations
are mentioned in Section 7. We come up with some possible
future work in Section 8 and conclude in Section 9.
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<Key android:keyLabel="a" />
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</Keyboard>

Fig. 1: A sample keyboard layout file.

II. TECHNICAL BACKGROUND
A. Keyboard Input on Smartphones

As stated earlier, most of the smartphones today do not
have a physical keyboard. This means that a software keyboard
displayed on the touchscreen is used instead as a user interface
on a smartphone. Every tap event on the screen is understood
by the smartphone OS as the coordinates of the position on the
screen where the user tapped. The user input is then inferred
using the known coordinates and knowledge of the app view
currently being displayed on the screen. User input using the
keyboard can be viewed as a series of tap events where each
tap event with coordinates within the boundary of a displayed
button represents a tap on that particular button. The layout
used for text input is the standard QWERTY layout across
all platforms. The other used layouts, such as the lock screen
keypad, are public knowledge and uniform.

Android provides protection against traditional keyloggers
by restricting access to the coordinate information of the tap
events. Only the view that is focused and being displayed on
the screen is capable of receiving the tap events and the related
coordinate information [1]. A keylogger that runs as a third-
party app in the background is not allowed access to this data
and thus cannot infer where the tap event took place based
on this data. However, any app can receive raw data from
motion sensors (e.g. accelerometer, gyroscope) because this
data is not treated as sensitive by the OS. The objective of
motion-based keystroke inference attacks is to infer user input
without any knowledge of coordinate data available to the app
view and only on the basis of raw motion sensor data resulting
from motion changes of the smartphone due to tapping on the
touchscreen.

B. Keyboard in Android

A keyboard in Android consists of rows of keys. The public
class Keyboard, which extends the class Object, loads an
XML description of a keyboard and stores the attributes of
the keys [2]. The XML description is stored in a layout file
that looks like the snippet of code in Figure 1. The layout file
contains the XML attributes listed in Table I.

Each attribute in Table I defines how the on-screen key-
board is to be displayed. The class Keyboard.Key describes
the position and characteristics of a single key on the keyboard.

TABLE I: XML attributes of the keyboard layout file.

Attribute Name
android:horizontalGap
android:keyHeight

Description

default horizontal gap between keys
default height of a key, in pixels or
percentage of display height

default width of a key, in pixels or
percentage of display width

default vertical gap between rows of
keys

android:keyWidth

android:verticalGap

The static class Keyboard.Row is a container for keys on
the keyboard.

C. Sensors in Android

The Android platform provides support for three categories
of sensors [3]:

e  Motion Sensors: This category includes accelerome-
ters, gravity sensors, gyroscopes, and rotational vector
sensors. They are used for measuring acceleration and
rotational forces along the X, y and z axis.

e Environmental Sensors: Sensors such as barometers,
photometers, thermometers measure environmental
factors such as the temperature, pressure, or humidity.

e  Position Sensors: Orientation sensors and magnetome-
ters measure the physical position of the mobile de-
vice.

Sensors are either hardware-based or software-based.
Hardware-based sensors are physical components embedded
into the device and derive their data by measuring environ-
mental parameters. Software-based sensors, on the other hand,
derive their data from the on-board hardware-based sensors.
For example, the (deprecated) software-based orientation sen-
sor derives its measurements from accelerometer data.

The Android sensor framework comprises of several
classes and interfaces that enable a developer to perform
sensor-related tasks. Among these, acquiring raw sensor data
and registering sensor event listeners that monitor changes in
sensor readings are the ones that are significant in the context
of using sensor data for inferring user input. Namely, the sensor
framework consists of the following classes and interfaces [3]:

e SensorManager This class is used to create an
instance of a sensor service. It provides the methods
for registering sensor event listeners and acquiring
orientation information among others.

e Sensor: This class is used to create an instance of
a particular sensor and includes methods to determine
that sensor’s capabilities.

e SensorEvent: This class creates a sensor event
object that provides information about a sensor event.
Sensor event objects consist of the following pieces:
the raw sensor data, the type of sensor that generated
the event, the accuracy of the data, and the timestamp
for the event.

e SensorEventListener: This interface provides
two methods onAccuracyChanged() and
onSensorChanged () that receive sensor events
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Fig. 2: Android sensors framework [8].
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Fig. 3: Accelerometer and orientation sensor [17].

when the sensor accuracy changes and the sensor
values change, respectively.

Figure 2 shows an overview of the Android sensors
framework. The control flows from an app that registers an
EventListener with the SensorManager towards the
drivers that collect raw data from the sensors. The data flows
from these device drivers to the app. There is no restriction
on who can register a listener and receive this raw data. This
information is not treated as sensitive and thus exposes a user
to malicious apps that try to infer keystrokes.

Figure 3 illustrates readings from the accelerometer and
the orientation sensor on the Android platform.

III. MOTION-BASED KEYSTROKE INFERENCE ATTACKS

Several researchers [9][10][12][15][16][17] have shown
how motion-based side-channel attacks can be used to infer the
keys typed by a user. The general approach of these existing
motion-based keystroke inference attacks is similar. Basically,
an attack consists of two steps. The first step is tap detection,
that is, finding the start and end of a user tap in the sensor data.
The second step is tap inference, that is, inferring the pressed
key based on the sensor readings in that period. Most of the
existing attacks focus on the second step. They execute this
step by extracting features from the sensor readings and using
machine learning techniques to infer the key. More details
about each existing attack are given in Section VIIL. In the
remainder of this section, we focus on TapLogger.

Xu et al. [17] give the design and implementation of
TapLogger, a Trojan app that infers a user’s typed numerical
PINs and passwords by using data from the accelerometer
and the orientation sensor. Because this paper provides details
about both tap detection and tap inference and because we also
managed to get part of the source code from the authors, we
use TapLogger to illustrate the design of an app that executes
a motion-based keystroke inference attack.

TapLogger works in two modes: Training mode and log-
ging mode.

In the training mode, readings of the accelerometer and
the orientation sensor are used to generate a user interaction
pattern. In this mode, the user interacts with the TapLogger
app and TapLogger legitimately receives the tap events and
their coordinates. These coordinates along with the raw sensor
data are the input that TapLogger uses to generate the user
interaction pattern. In this mode, for each tap event TapLogger
records the coordinates, the timestamp of the beginning and
end of a tap event and obviously the raw sensor data from the
accelerometer and the orientation sensor.

In the logging mode, a user is interacting with an app
that requires the user to enter sensitive information, such as
passwords or PINs, using the on-screen keyboard. TapLogger
registers a listener with the SensorManager and receives
the sensor readings. These readings along with the interaction
pattern developed in the training mode are used to infer the
user input without actually receiving coordinates for the tap
events.

Unfortunately, the source code we got from the authors
contains only the code for tap detection and for logging
sensor data. No code for tap inference, that is, training,
feature extraction, or classification, is included. Therefore,
we implemented these components ourselves based on the
description in the paper. However, we failed to get accuracy
results in the range of the results reported in the paper based on
this implementation. Therefore, we had to find other features.
These features include (see Figure 4):

e F1: Maximal value during the tap
e  F2: Minimal value during the tap
e F3: The index of the maximal value
e F4: The index of the minimal value

e F5: The difference between the last and the first value

All features apply to both pitch (y-axis) and roll (z-axis)
data. The reason we do not use the x-axis value is because its
relation to the type of tapped key is limited.

To evaluate our implementation, we use probability predic-
tion provided by 1ibSVM [6] and determine the top 1 inference
and the top 4 inferences, which are the most probable inferred
key stroke and the four most probable inferred key strokes,
respectively. When evaluating the new features on a number
pad (three rows and four columns), we manage to achieve 50%
accuracy for the top 1 inference (i.e., in 50% of the cases
the inferred key corresponds to the actually tapped key) and
more than 80% accuracy for the top 4 inferences (i.e., the
top 4 inferred keys contain the actually tapped key in 80%
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Fig. 4: Features of orientation data for tap inference.

of the cases). Note that the focus of this evaluation is on tap
inference, not tap detection, so we assume that tap detection
is perfect and use the actual touch events to detect the start
and end time of a tap.

Our tap inference code is publicly available.'

IV. DESIGN OF DEFENCES

As described in the previous section, a motion-based
keystroke inference attack generally consists of two phases:
tap detection and tap inference. Intuitively, if we can block
either of these two phases, it is possible to defend against such
attacks. We now present two defences, the first one targeting
tap detection, the second one targeting tap inference.

A. Reducing the Accuracy of Sensor Data

1) Approach: The first defence is based on reducing the
accuracy of sensor data given to apps that request this data. The
reduction must be of a granularity such that apps that legiti-
mately access this data preserve their usefulness but malicious
apps that try to execute a motion-based keystroke inference
attack will fail to execute this attack. This defence could
be used against the tap detection phase or the tap inference
phase of the attack. Of course, successful tap detection is a
requirement for tap inference so if tap detection fails, the entire
motion-based keystroke inference attack will fail.

As it turns out, applying the defence to tap inference
would be harder than applying it to tap detection since dif-
ferent researchers have managed to infer taps from different
sensors. Therefore, a comprehensive defence would have to
reduce the accuracy of multiple sensors. Again, for each
sensor we would also have to ensure that apps that have
legitimate access to the sensor remain useful. On the other
hand, tap detection generally is based only on data from the
accelerometer. Namely, when closely examining the source
code for the only two pieces of related work for which we
managed to get access to source code, TouchLogger [11]
and TapLogger [17], we noticed that both of them use the
accelerometer for tap detection. In addition, ACCessory [16]
and Aviv et al. [10] exclusively use the accelerometer for
their motion-based keystroke inference attacks. Therefore, a
defence based on reducing the accuracy of sensor data during
tap detection needs to take only the accelerometer into account.

As mentioned before, TapLogger is the most detailed
when it comes to describing tap detection. Namely, TapLogger
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Fig. 5: Features of acceleration data for tap detection [17].

detects a tap based on change of acceleration, as shown
in Figure 5. The extracted features, P4, ..., P5, characterize
the change of the square sum of the acceleration in three
directions, SqSum. The change of SqSum is always in a
small range during tapping. Therefore, if we can hide these
small changes from an app, a malicious app can no longer
detect a tap. On the other hand, large changes will not be
hidden from an app, so apps that have legitimate access to
acceleration data should continue to work.

The scenario described above assumes that the device is
relatively stable while the user is tapping on it. However,
when the device is not stable, for example, because the user
is walking while tapping, the change of the square sum will
likely not be in this small range so our defence will not hide
the changes from an app. However, the amount of noise caused
by the device not being stable will drown out the small changes
from tapping so tap detection will fail.

Note that applying the idea of hiding small changes from
apps to sensors other than the accelerometer may be difficult.
For example, small changes reported from the orientation
sensor can have a big impact on apps that legitimately use
this sensor because the base is also low.

2) Challenges: This approach needs modifications at the
kernel level, thus it becomes harder to be widely deployed.

Reducing the accuracy may introduce usability issues.
Some apps that use the accelerometer for legitimate reasons
may require very high accuracy in sensor readings. As a result,
these apps may not work well with our defence modifications.
It is hard to set the degree of reduction such that we can de-
fend against motion-based keystroke inference attacks without
affecting other apps. We will evaluate this issue in our user
studies.

B. Random Keyboard Layout Generation

1) Approach: During the tap inference phase of a motion-
based keystroke inference attack, the attacker tries to infer the
position of a tap on the screen. The actual pressed key can then
easily be learned since the layout of the keyboard is typically
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public and therefore known to the attacker. The idea behind
our second defence is to hide this layout information from the
attacker by randomizing the keyboard layout.

2) Challenges: Fundamentally, a random keyboard layout
is just a form of substitution cipher, which is vulnerable
to frequency analysis attacks. Some confidential content that
users input in their mobile devices, such as passwords, may
be short and irregular, which makes them less vulnerable
to frequency analysis attacks. However, frequency analysis
attacks are definitely a concern for other types of sensitive
input, such as a confidential email or text message. To defend
against frequency analysis attacks, we need to shuffle the
keyboard layout again and again to avoid using the same
substitution “key” for a long time.

Besides, with the random keyboard layout, users cannot
type as fast as usual because the keys are not where they
are on a regular keyboard. Therefore, there is a trade-off
between usability and confidentiality. To evaluate the degree
of influence on the typing speed, we also conduct a user study.

C. Other Possible Defences

There are quite a few possible countermeasures men-
tioned in other papers, like lowering the sampling rate of
sensors [10][15][16], adding permissions for using the sensor
data [15][16], denying access to sensors while the user is
inputting sensitive data [10][15], vetting apps that access
sensor data [10], or using a leather or rubber case that absorbs
the device motion [15].

We considered using an approach based on lowering the
sampling rate of a sensor instead of reducing its accuracy,
but decided against it due to observations made in earlier
work [15], indicating that lowering the sampling rate would
greatly affect the usefulness of apps with legitimate reasons to
access a sensor.

Some of the proposed methods require a good understand-
ing of security from users, which is not necessarily the case.
Namely, adding permissions for using the sensor data would
require users to read and understand an app’s permission dialog
before installing it, which may not happen in practice [13][14].

Denying access to sensors while the user is inputting
sensitive data has the potential to break some apps. For
example, a pedometer app would break if a user entered text
while walking.

Vetting apps that access sensor data may work for some
platforms that are already based on vetting, like i0S, but does
not work for platforms without a formal vetting process, like
Android. Of course, a vetting-based approach would fail for
rooted devices, where users decide themselves which apps to
install.

Using a special case protects only the subset of the users
that bother acquiring such a case, whereas we are looking for
a solution from which all users can benefit without having to
go through additional expenses.

Our proposed two defences are relatively easy to deploy.
Reducing the accuracy does require a kernel change (as would
lowering the sampling rate), but no changes to apps are
required (as would introducing new permissions). Similarly,

no changes to apps are required for the randomized keyboard
layout. Currently, a user who wants to benefit from this defence
only needs to install the corresponding input method and
switch to it when inputting sensitive information, which is very
easy in Android. Therefore, this defence has the advantage that,
as opposed to most other proposed defences, it can be used
by security-conscious users right away. Of course, the defence
may become integrated with a phone platform over time.

Our defences require no or very little security understand-
ing from users. The first defence is always enabled, regardless
of a user’s actions. Similarly, a randomized keyboard layout
could be used for any user input. However, for usability
reasons, we suggest that a mobile phone platform uses such a
layout only when passwords or PINs are entered. In addition,
the platform could give the user the option to switch to a
randomized layout while entering other types of sensitive text.

V. IMPLEMENTATION

We implemented our two defences on the Android platform
because Android is a very popular platform for mobile devices
and is also easy to use by app developers. Besides, reducing
the accuracy of sensor data involves some modifications to
the kernel. Android, which is open source, is therefore a good
choice for implementing a prototype.

A. Reducing the Accuracy of Sensor Data

To lower the accuracy of sensor data, we have to make
some modifications to the Android operating system. Sensor
data is sent to a device, and the JNI component will read the
data from the device file, just as in the basic Linux kernel. In
the Java part, the SensorManager class will call the native
function provided by JNI to get the sensor data. When an app
registers a listener, the SensorManager will save it to a list.
Every time a sensor event occurs, it will pack the data into a
sensor event object and apply the event handler defined by a
developer in the listener to the object.

We added some code just before the handler function is
called. For an accelerometer event, the sensor event object will
contain three values, which represent the acceleration in three
directions. As mentioned in Section IV-A, TapLogger uses the
change of the square sum of these three values to detect a tap.
We observe that for a normal tap, the square sum is always in
the range of (80, 130)m?/s%, so for every event in this range,
we will maintain the direction of the acceleration but set its
square sum to a constant value, namely, 9.8 * 9.8m? /s*. Thus
TapLogger will fail to detect almost all taps.

For simplicity, we lower the accuracy of sensor data for all
apps requesting this data. In a more sophisticated solution, we
could lower the accuracy only for background apps but leave
it unchanged for the foreground app.

B. Random Keyboard Layout Generation

For the generation of a random keyboard layout, we
develop a new input method app, which is based on the official
example app given by Google. A normal input method app will
first load the layout specified in an XML file and then generate
an inner representation of this layout, which is actually an array
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Fig. 6: Implementation of random keyboard layout.

of keys. Each key object will contain the position, the size, and
the corresponding keycode.

To achieve our goal, we have to solve a few problems.
First, we need to randomly permute the keys. Because the
keys near the boundary of the keyboard are slightly different
from other keys in the XML layout file (they have different
attributes), instead of generating a random XML file and
loading it, we shuffle the array of keys only after loading the
XML file. Additionally, in this way we need to load the XML
file only once and introduce negligible overhead. The random
permutation of an array is quite easy. For every element, we
pick an element after it randomly and swap the two elements.

Second, because we do not want to use the same substi-
tution continuously, which would be vulnerable to frequency
analysis attacks, we generate a different random layout every
time the keyboard pops up. In particular, we analyzed the
workflow of the input method service and then added the
permutation operation to the function that shows the keyboard.

Figures 6a and 6b show an example of what the user will
see when using a random keyboard layout.

VI. EVALUATIONS
A. Impact of Accuracy Reduction on Tap Detection

In our first experiment, we determine the impact of reduc-
ing the accuracy of the accelerometer data on tap detection.
We have a user enter 300 keystrokes on an unmodified Nexus
One device and on a Nexus One device that reduces accuracy.
For tap detection, we use the source code received from the
authors of TapLogger.

For the unmodified device, 120 keystrokes are detected
and 60 false positives are found. For the modified device,
50 keystrokes are detected and 8 false positives are found.
Therefore, our defence increases the detection rate more than
50%.

We find that the taps that are still detected in spite of our
defence are those where the user applies more force, therefore

their square sum of the acceleration is not in the range that
we suppress. It is possible to enlarge this range at the cost of
affecting apps that legitimately use accelerometer data.

For our current choice of parameters, only about one out
of six taps will be detected. This significantly increases the
attacker’s challenge when it comes to trying to infer a user’s
password or PIN. Similarly, we expect that it becomes much
harder to infer the content of an email or SMS message if
only one sixth of the content is available and where the still
available content may have been inferred incorrectly due to
the accuracy limits of tap inference. Studying the difficulty of
inferring this kind of content is future work.

B. Impact of Accuracy Reduction on Other Apps

In the next two experiments, we investigate the impact of
reducing the accuracy of the accelerometer data on two apps
that legitimately access the accelerometer.

1) Experiment 1: We conducted a study on ten Android
users from our university. The participants were required to
have basic comfort with touchscreens and motion gaming.
The participants were required to play three stages of “Crazy
Labyrinth 3D” [5] on an unmodified Nexus One device and on
a modified Nexus One device. The participants had no knowl-
edge about the different operating systems on the devices. A
device was chosen randomly in the beginning and the devices
were alternated after successful completion of every stage.
Completion time for each stage was recorded for both devices.
The purpose of this study is to gauge the effect of reducing
the accuracy on apps that require sensor data. Inaccurate sensor
readings may lead to malfunctioning in such apps and hence
we wanted to analyze the behaviour of such apps on our
modified Android system. Crazy Labyrinth 3D was chosen
due to its complete dependence on the motion of the device
so any fluctuations in sensor readings would directly affect the
gameplay. Table II shows the results.

Although we modify the absolute value of the acceleration,
we maintain the direction. We believe that the game mainly
uses the direction to set the move of the ball. The interesting
observation is that users took more time to complete the three
stages on the unmodified device than on the modified device.
This difference can be attributed to the fact that lower sensor
accuracy must have also reduced the noise in the readings
hence giving users better control over the movement of the
ball in the game.

The participants then answered a small questionnaire re-
garding their experience on the two devices. Namely, the
participants were required to give their device preference based
on their gameplay experience.

From Table III, we find that most of the users were either
not able to spot any difference between the devices or preferred
the modified device over the unmodified one.

2) Experiment 2: We also test how our kernel modification
affects a step counting app. We choose Pedometer [7], a
well known step counting app. We run this app on both
the unmodified and modified devices and walk 100 steps.
Figures 7a and 7b show the result. From these two pictures, we
can see that there are only two steps difference between these
two devices and we can confidently claim that this modification
will not affect step counting apps.



TABLE II: Time taken for playing games.

Stage 1 (sec)

Stage 2 (sec) Stage 3 (sec)

Participants 1o Red T Modified | Unmodified | Modified | Unmodified | Modified

I 7.143 7170 7402 5179 8529 7178
2 6374 7.944 5448 7,630 11417 10.072
3 5767 9441 5567 5215 7.981 6.056
7 3345 5347 5412 7551 7.064 6.101
5 937 5344 6.032 552 8.934 5221
6 7834 6.185 6.567 6.765 10.256 8126
7 7453 7.165 7.190 5324 11327 7479
8 5336 6.437 6.982 5115 8537 7462
9 7134 5784 6.952 5564 8247 6225
10 6.132 7155 6.547 7126 8147 9478

Mean 6578 6.497 6414 5488 9.04 7348

TABLE III: Questionnaire.
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Fig. 7: Step counting result.

C. Impact of Random Keyboard Layout on Input Time

In this experiment, we determine how a random keyboard
layout affects the time to enter input. We used the same
ten participants as in the earlier experiment to answer this
question. The participants were required to type the following
two messages:

e Message 1: This is a message. I would like to type
the message.
e  Message 2: thisismypassword123

The subjects first typed these two messages on the normal
keyboard layout and then on a randomized keyboard layout.
Their time to enter the messages was recorded. Capitalization

was not required, however, users were required to use punc-
tuation. The purpose of this experiment is to determine the
feasibility and usability of a randomized keyboard layout for
a regular user. While Message 1 is similar to our everyday
SMS/Email text with spaces and punctuation, Message 2
represents passwords and other sensitive information, where
white spaces are generally not necessary and a combination of
characters and numbers is required.

As we can see from Table IV, the time for typing the
message with a randomized keyboard layout is almost twice
the time than the time taken with the regular one. We also
observe that the difference between the mean typing times
of Message 2 for the modified and the unmodified device is
18 seconds whereas in case of Message 2 it is 39 seconds.
The time difference is proportional to the length of the typed
messages. Based on these results, a randomized keyboard
layout is feasible for short messages where security is really
important, like a password, but we do not suggest the use
of a randomized keyboard layout for long messages. Instead,
a solution where the user is given the option to temporarily
use a randomized keyboard layout while entering sensitive
information, like a credit card number, as part of a long
message is more attractive.

At the end of the experiment, we informed the participants
about the purpose of the experiment and about motion-based
keystroke inference attacks. We also asked the participants
whether they were willing to use a randomized keyboard layout
as a defence against these attacks. All participants indicated
that they were willing to use a randomized keyboard layout
while inputting sensitive information.

VII. LIMITATIONS

Even though reducing the accuracy of sensor data and
randomizing the keyboard provide effective protection against



TABLE IV: Time taken for typing messages.

.. Message 1 (mm:ss) Message 2 (mm:ss)
Participants Regular g Randomized | Regular g Randomized
1 00:28 01:01 00:10 00:25
2 00:27 00:47 00:09 00:21
3 00:24 01:13 00:11 00:25
4 00:18 01:28 00:09 00:38
5 00:23 01:06 00:07 00:32
6 00:20 00:49 00:10 00:25
7 00:22 00:59 00:11 00:28
8 00:20 00:53 00:10 00:27
9 00:21 00:57 00:11 00:24
10 00:19 01:07 00:10 00:30
Mean 00:23 01:02 00:10 00:28

keystroke inference attacks, there are some limitations to our
defences.

First, the defences were only checked for one game (i.e.,
Crazy Labyrinth 3D) and one app (i.e., Pedometer). There may
be apps in the Android market that require more precise and
accurate sensor readings than these two apps.

Second, the number of users in our experiments was rather
small. Results based on a small user set may not reveal the
user experience and perception in their entirety.

Third, the accuracy reduction of the sensor data may
depend on the size of the device screen. For example, our
chosen parameters may not be sufficient to protect against a
keystroke inference attack on devices with a large screen since
the key area is larger and the resulting modified readings may
still point to the same characters.

VIII. RELATED WORK

Several papers have studied the practicality of motion-
based keystroke inference attacks. We have discussed TapLog-
ger [17] in Section III already. TapLogger uses the accelerom-
eter for tap detection and the accelerometer and the orientation
sensor for tap inference. The authors use k-means clustering
for inferring numerical PINs and SVM for inferring passwords.

TouchLogger [11] utilizes data collected only from the
orientation sensor to correctly infer more than 70% of the keys
typed on a number-only on-screen keyboard. The authors use
a probability density function for classification.

Accessory [16] uses the accelerometer for both tap de-
tection and tap inference. 46 features and various machine-
learning algorithms are used for classification. The presented
attack can be applied to both a 6*10 keyboard and a QWERTY
keyboard. It can achieve 24.5% accuracy for the 60 keyboard
mode and guess 6 of 99 6-alphabets passwords in 4.5 trials on
average.

Aviv et al. [10] also exclusively use the accelerometer.
Their attacks pay much attention to the machine learning part
and they use logistic regression and hidden Markov models.
They test their attacks on a number-only keyboard and a pattern
lock and achieve 43% and 73% accuracy, respectively, when
sitting.

Cai and Chen [12] use both the accelerometer and the
gyroscope. They do significant pre-processing on their data
and their attack works on both alphabet keyboard and number
pads. They can achieve 35% and 55% accuracy, respectively.

a]sls[sle]1]z]7]o]o

Fig. 8: An example randomized banking keyboard [4].

TapPrints [15] also uses both the accelerometer and the
gyroscope to infer a key. Their attack relies on 273 features
and an ensemble of machine-learning classifiers. They achieve
90% accuracy for icons and 80% for alphabets.

Al-Haiqi et al. [9] compare the results when using different
motion sensors (rotation vector, accelerometer, gyroscope, and
orientation sensor) and argue that the gyroscope can achieve
the best accuracy.

A randomized keyboard layout cannot only be used to
defend against motion-based keystroke inference attacks. Some
banking apps include a simple randomized keyboard to defend
against keylogging attacks. Figure 8 gives an example.

IX. FUTURE WORK

An alternative approach to reducing the accuracy of sensor
data may be reducing its sampling rate (see Section IV-C.
We have simulated this approach using our gathered data and
find that when halving the sampling rate, the top 4 inference
accuracy will decrease to 33%, which is just as good as
random guess. However, as mentioned in Section IV-C, other
researchers have significant concerns about the negative impact
of this approach on other apps so we need to run additional
experiments to investigate these concerns.

As mentioned in Section I'V-B, displaying a random key-
board layout is basically a substitution cipher, which is vul-
nerable to frequency analysis attack. We need to find a good



frequency to shuffle the layout. It is a trade off between us-
ability and security. We also need to investigate the possibility
of limiting the amount of randomization. For example, we
could shuffle a key only with keys in its proximity to keep
the keyboard more familiar to a user.

Our evaluation has shown that the keyboard layout should
not be randomized when long text is entered or it should
be randomized only temporarily while a piece of sensitive
information being part of this text is entered. The latter
approach requires a way for the system to detect when sensitive
information is input or alternately a way for the user to signal
to the system when the user is entering sensitive information.

As mentioned in Section IV-A, existing work uses the
accelerometer for tap detection. We leave it to future work
to study whether other sensors that require no permissions,
such as the gyroscope, could also be used for tap detection.

X. CONCLUSION

With the increasing power of smartphones, attacks on
smartphones also become more powerful. Motion-based
keystroke inference attacks are an example. We propose two
defenses against such attacks. First, we modify the Android
operating system to reduce the accuracy of sensor readings.
Second, we develop a randomized keyboard layout wherein the
numbers and alphabets are randomized whenever the keyboard
pops up. We also conduct a user study on 10 users. We find
that our modifications to Android have no impact on a game
that requires the accelerometer and on a pedometer. Users
even prefer our modified system to the unmodified one. The
randomized keyboard layout significantly increases the time it
takes to enter some input. However, the participants indicate
that they are willing to use such a layout while inputting
sensitive information.
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