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Smart devices are commonly used in multi-user scenarios, such as shared household devices and shared corporate 
devices for front-line workers. A multi-user device requires both identification and authentication to defend 
against unauthorized access and distinguish between legitimate users in real-time, especially when multiple 
users participate in the same session. Although implicit authentication (IA) has been proposed to provide 
continuous and transparent authentication throughout a session, most existing IA solutions are optimized for 
single-user scenarios. The challenges of designing multi-user IA systems include fusing multiple modalities for 
good accuracy, segmenting and labeling behavioral data while authenticating, and adapting IA models to new 
users and new incoming data. We propose SHRIMPS, an evaluation framework to support IA researchers in the 
design of multi-user, multi-modal IA systems. SHRIMPS allows the evaluation of multi-user IA solutions that 
incorporate multiple modalities and supports adding new users and automatically labeling new incoming data 
for model updating. SHRIMPS supports different score fusion strategies, including a novel score fusion strategy 
based on Dempster-Shafer (D-S) theory to improve accuracy with considering uncertainties among different 
IA mechanisms. SHRIMPS enables composing tasks with public datasets to evaluate and compare different IA 
schemes. We present and evaluate two sample use cases to showcase how SHRIMPS helps address practical 
design questions of multi-user, multi-modal IA systems. The evaluation results show that D-S theory based score 
fusion methods can effectively reject attackers and detect user switches for the multi-user scenario in real-time.
1. Introduction

Smart devices play a significant part in people’s daily life. Since peo-
ple are increasingly relying on smart devices to access personal and 
corporate data, the demand for security and usability drives the evo-
lution of user authentication mechanisms. Researchers have introduced 
more usable authentication mechanisms, such as fingerprint and face 
recognition, to replace passwords. However, these authentication mech-
anisms only authenticate a user once for unlocking and fail to provide 
protection afterwards. Behavioral biometrics based implicit authentica-
tion (IA) (Jakobsson et al., 2009; Frank et al., 2012; Bo et al., 2014) is 
a promising technology that provides continuous and transparent pro-
tection by leveraging distinct users’ behaviors. Most existing IA systems 
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(Khan et al., 2014a; Crawford et al., 2013) are designed for a single 
user. With the expansion of usage scenarios, multi-user shared devices 
have become common, including shared household devices (Matthews 
et al., 2016; Al-Ameen et al., 2021) and mobile devices for front-line 
and medical workers (Microsoft Azure, 2023; Draffin et al., 2013). It 
is important to design an IA framework that secures sensitive data on 
shared smart devices in multi-user scenarios.

A multi-user IA system needs to identify a user in addition to re-
jecting imposters. A single behavioral biometric is insufficient to ensure 
good identification accuracy due to data unavailability or poor qual-
ity (Gofman et al., 2016). Existing studies (Vhaduri and Poellabauer, 
2019; Hintze et al., 2019; Abuhamad et al., 2020) have shown that 
multi-modal authentication systems provide more accurate and robust 
Available online 10 November 2023
0167-4048/© 2023 Elsevier Ltd. All rights reserved.

1 Present address: Huawei Technologies Canada Co., Ltd., 300 Hagey Blvd, Waterl

https://doi.org/10.1016/j.cose.2023.103594
Received 18 April 2023; Received in revised form 5 October 2023; Accepted 8 Nove
oo, N2L 0A4, ON, Canada.

mber 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:urs.hengartner@uwaterloo.ca
https://doi.org/10.1016/j.cose.2023.103594
https://doi.org/10.1016/j.cose.2023.103594
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103594&domain=pdf


J. Chen, U. Hengartner and H. Khan

performance in comparison to single-modal systems. However, little ef-
fort has been made to design a multi-modal multi-user IA system.

Multi-user, multi-modal IA requires careful consideration as it is not 
a simple extension of a binary classification problem into a multi-class 
one. The challenges include: 1) Heterogeneous authenticators. Authentica-
tors based on different behavioral biometrics provide different coverage 
(e.g., gait data is only available when a user is walking) and accuracy. A 
critical problem is how to organize different authenticators and aggre-
gate their results to provide accurate identification and authentication 
for multiple users. 2) Real-time detection of user switches. It is common 
that the current user of an unlocked smart device changes to another 
valid user without an explicit account switch (Matthews et al., 2016; 
Al-Ameen et al., 2021). The system should recognize the valid user af-
ter a user switch in addition to rejecting attackers. 3) New users and 
data. IA mechanisms may experience accuracy degradation over time 
(Frank et al., 2012; Zheng et al., 2014; Chauhan et al., 2020). Existing 
single-user IA systems (Bo et al., 2014; Khan et al., 2014a) only need 
to update the device owner’s IA models. However, for a multi-user sys-
tem, we need to consider both new users and new data. Adding a new 
user requires updating the existing models in the system to distinguish 
the new user from existing users. When the system processes new in-
coming data, it should label it with the correct corresponding user. 4) 
User data imbalance. Some users (e.g., device owners) are more likely 
to have more training data compared to other valid users. When new 
users are added to the system, their training data is much less than ex-
isting users’. As a result, the system may have low accuracy for users 
with less training data. This user data imbalance also exacerbates the 
performance differences among various authenticators.

We propose SHRIMPS,2 a novel IA evaluation framework that can 
model configurations where multiple modalities are used to provide 
transparent and continuous identification and authentication in multi-
user systems. Our focus is on designing a general framework that helps 
security developers and researchers combine existing and new IA mech-
anisms to evaluate the accuracy of multi-user identification and authen-
tication.

SHRIMPS is targeted at evaluating multi-user, multi-modal IA sys-
tems. Supporting multiple users and multiple modalities has already 
been studied in the context of multi-user, multi-modal biometric authen-
tication systems (Ross and Jain, 2004; Oloyede and Hancke, 2016; Jing 
et al., 2018; Toli and Preneel, 2015). However, these systems are usu-
ally based on explicit authentication, where users are asked to take 
an explicit authentication action (e.g., putting their finger on a fin-
gerprint reader, or placing their face in front of a camera). Therefore, 
some of the challenges faced by multi-user, multi-modal IA systems, 
like real-time detection of user switches, usually do not occur in multi-
user, multi-modal biometric systems. However, other challenges, like 
heterogeneous authenticators, are similar, and solutions proposed for 
multi-user, multi-modal biometric systems may also apply to multi-user, 
multi-modal IA systems. Evaluating this applicability is not the focus of 
this paper. In our evaluation (see § 6), we configure different IA en-
vironments and use different state-of-the-art IA, modality fusion, and 
model updating algorithms to demonstrate the versatility of SHRIMPS. 
We acknowledge that our chosen algorithms may not necessarily be the 
best ones. We support researchers interested in evaluating additional 
algorithms by making the SHRIMPS framework available open source.

SHRIMPS is a simulation-based IA evaluation framework for evalu-
ating multi-user, multi-modal IA systems. Such systems should not only 
be evaluated with SHRIMPS, but also with other tools, like user stud-
ies. However, user studies can be expensive, both in terms of time and 
money. SHRIMPS can be used by security developers and researchers 
for weeding out candidate configurations of multi-user, multi-modal IA 
systems that are unlikely to result in good performance in practice and 
2
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for determining more promising configurations. These configurations 
can then be evaluated in user studies.

User studies can be performed in the lab or in the field. Field-based 
user studies are usually adopted for evaluating usability under practical 
settings. However, it is hard to capture unauthorized access and device 
theft in a natural setting (Hintze et al., 2019). In general, it is challeng-
ing to conduct user studies for multi-user scenarios (e.g., controlling the 
conditions for legitimate users and attackers). To trade off, trace-based 
evaluation is a good option for conducting tasks using real-world public 
datasets, which is the approach pursued by SHRIMPS.

By providing a framework, SHRIMPS allows IA researchers to fo-
cus on a particular research problem, like implementing a proposed IA 
algorithm and comparing it to existing algorithms (hopefully) already 
implemented in SHRIMPS, the proper hyperparameter tuning of an IA 
algorithm, or the proper division of data into training and test sets. 
SHRIMPS helps streamline this work. Other, often tedious tasks, like 
parsing input data or dealing with imbalanced data, are automatically 
taken care of by SHRIMPS.

Finally, another advantage of SHRIMPS is that it enables easier 
reproducibility of research results by other researchers. For example, 
researchers proposing a new IA algorithm can implement and configure 
this algorithm in SHRIMPS and release the implementation and config-
uration. Since SHRIMPS is open source, anyone can use the released 
information to reproduce the results and improve on them.

The contributions of our work include:

• SHRIMPS is the first multi-user, multi-modal IA evaluation frame-
work for shared smart devices. The framework can detect unau-
thorized access from strangers and identify the current user from a 
group of valid users.

• The framework supports model updating with new data and users 
to ensure high accuracy for multiple users across sessions. It can au-
tomatically segment and label the newly collected behavioral data 
based on authentication results and user feedback.

• SHRIMPS supports different existing score fusion strategies. In ad-
dition, considering the performance differences among different 
modalities, we propose a Dempster-Shafer (D-S) theory (Sentz et 
al., 2002) based score fusion strategy to combine the authentication 
scores from multiple modalities for different users and incorporate 
it into SHRIMPS.

• SHRIMPS runs in a simulation environment. The environment sup-
ports easy and flexible construction of simulation tasks using public 
datasets, which benefits other researchers for evaluating their IA 
schemes in a multi-user setting.

• We conduct extensive simulation tasks to show that SHRIMPS can 
be used for evaluating different scenarios. For example, we show 
that D-S theory based score fusion achieves both low false accep-
tance rate and low false rejection/identification rate. Besides, we 
demonstrate multi-user multi-modal IA configurations that are able 
to detect user switches and identify the new user with low detec-
tion latency. Our comprehensive evaluation shows that with the 
help of SHRIMPS it is also possible to realize configurations that 
handle new users well and automatically label new incoming data 
for model updating.

• We release our implementation of SHRIMPS in open-source for 
other security researchers and developers.3

2. Related work

As our work investigates the design of multi-user, multi-modal im-
plicit authentication schemes, we discuss related works on these two 
aspects. Besides, as SHRIMPS is designed for evaluating multi-user IA 

3 https://github .com /cryspuwaterloo /jiayi _thesis _code /tree /main /shrimps /
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systems, we also summarize the evaluation methods adopted by existing 
studies.

2.1. Multi-user implicit authentication

Implicit authentication (IA) transparently authenticates a user’s 
identity to improve the security and usability of user authentication. 
IA leverages users’ distinct device usage or behavioral patterns to dis-
tinguish a user from others in a non-intrusive way. On the one hand, IA 
provides an additional authentication factor to supplement explicit au-
thentication mechanisms. Many IA mechanisms can continuously verify 
a user’s identity in the background during device usage. For example, 
an attacker may launch a shoulder surfing attack to obtain the PIN code 
to unlock a device. Behavioral biometrics based IA mechanisms can still 
block the attacker from accessing the device by comparing the attack-
er’s touch patterns or keystroke dynamics to the device owner’s. On 
the other hand, IA helps reduce unnecessary explicit authentication re-
quests for alleviating a user’s burden faced by user authentication.

Researchers have investigated various behavioral biometrics for IA, 
including touch (Frank et al., 2012; Bo et al., 2014; Zheng et al., 2014), 
gait (Derawi et al., 2010; Zou et al., 2020), keystroke (Lamiche et al., 
2019), etc. Although most of them regard the IA problem as a binary 
or one-class classification problem (Gupta et al., 2019), a few studies 
conducted preliminary explorations of multi-user scenarios recently. 
Ehatisham-ul Haq et al. (2018) leveraged physical activity patterns 
to identify the device owner and secondary users who have partial 
access to the device. Zou et al. (2020) used Deep Neural Networks 
(DNN) to conduct gait-based multi-user identification and authentica-
tion separately. However, in practice, the system is expected to detect 
unauthorized access and track user switches in real-time. In comparison, 
SHRIMPS handles both tasks simultaneously without training additional 
models. ContAuth (Chauhan et al., 2020) adopted iCaRL (Rebuffi et 
al., 2017) and EWC (Kirkpatrick et al., 2017) to address the incre-
mental learning problem for DNN-based single-modal IA mechanisms 
to improve cross-session performance for multi-user scenarios. In com-
parison, SHRIMPS considers auto-labeling and further improves identi-
fication accuracy by incorporating multiple IA mechanisms. DriverAuth 
(Gupta et al., 2019) is a multi-user and multi-modal authentication solu-
tion for ride-sharing platforms. However, DriverAuth performs implicit 
authentication only at the beginning of a ride, while SHRIMPS targets 
multi-user, multi-modal IA for general purposes and supports continu-
ous authentication.

2.2. Multi-modal authentication

Most existing work on multi-modal authentication, with the excep-
tion of DriverAuth (Gupta et al., 2019) (see above), has focused on 
single-user scenarios. Combining multiple behavioral biometrics en-
ables IA to identify a user’s identity with high confidence and lowers 
the chance of spoofing attacks. Abuhamad et al. (2020) classified the fu-
sion methods into three levels: feature-level (Vhaduri and Poellabauer, 
2019; Lamiche et al., 2019; Gupta et al., 2019), algorithm/score-level 
(Crawford et al., 2013; Hintze et al., 2019; Buriro et al., 2015; Saeva-
nee et al., 2015), and decision-level (Fridman et al., 2015). Crawford 
et al. (2013) proposed a score-level weighted average fusion method 
that gives more weight to more recent detection scores. Buriro et al. 
(2015) calculated the weight based on the classifier performance for 
their weighted average fusion method. Vhaduri and Poellabauer (2019)
designed a multi-modal solution for wearable devices with feature-level 
fusion of step counts, heart rate, calorie burn and metabolic equivalent 
of task. Smith-Creasey and Rajarajan (2019) adopted the Dempster-
Shafer theory based score fusion for single-user scenarios. Our work 
extends the application of the D-S theory to cover multi-user scenarios. 
Shrestha et al. (2019) proposed ZEMFA to extract gait features from 
multiple devices to perform zero-effort authentication. CORMORANT 
3
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authentication for single-user cross-device scenarios. It proposed two 
weighted score threshold fusion methods and a Kalman filter based 
score fusion method to fuse the authentication score from different de-
vices. We compare the Kalman filter based fusion to our D-S theory 
based method. The evaluation results show that our approach outper-
forms the Kalman filter based method in terms of low false identification 
rate and false acceptance rate.

In summary, compared to existing studies, SHRIMPS provides the 
architecture and workflow of a multi-user IA system with considering 
user switches in mid-session, model updating with new data and users, 
and score fusion from multiple modalities. These challenges were not 
fully covered in existing systems and solutions.

2.3. Evaluating IA systems

Since IA is usually regarded as a classification problem, many exist-
ing IA studies (Frank et al., 2012; Bo et al., 2014; Abuhamad et al., 
2020; Zou et al., 2020; Ehatisham-ul Haq et al., 2018; Khan et al., 
2014b) evaluated their proposed schemes by determining common met-
rics, such as AUC, EER, FAR, or FRR, in an offline setting. Sugrim et al. 
(2019) found that such an evaluation is inadequate to show how the sys-
tem performs outside ideal conditions. Eberz et al. (2017) used the Gini 
Coefficient to quantify the systematic errors and we adopt it to measure 
the error distribution change among different methods. Although re-
searchers have evaluated their authentication systems with lab or field 
studies (Riva et al., 2012; Hayashi et al., 2013), it is inefficient to collect 
sufficient data for unauthorized access. To trade off, generating traces 
from public datasets for real-world scenarios has been used to evalu-
ate a (single-user) IA system (Hintze et al., 2019). Besides, since an IA 
system needs to update its model from time to time, it is important to 
observe its performance over time (Chauhan et al., 2020). SHRIMPS fills 
the gap in evaluating multi-user IA systems by providing an evaluation 
framework that operates on real-world data. It enables IA researchers 
to build a multi-user IA system and compose trace-based tasks.

2.4. Multi-user, multi-modal biometric systems

Whereas research on multi-user, multi-modal IA systems is relatively 
recent, research on multi-user, multi-modal biometric authentication 
systems has been well established (Ross and Jain, 2004; Oloyede and 
Hancke, 2016; Jing et al., 2018; Toli and Preneel, 2015). Some of 
the problems studied in this existing research, like fusing modalities 
(Oloyede and Hancke, 2016; Jing et al., 2018; Ross and Jain, 2003; 
Dinca and Hancke, 2017; Ryu et al., 2021) or model (i.e., template) 
updating (Rattani et al., 2009; Pisani et al., 2019), also occur in multi-
user, multi-modal IA systems. Therefore, solutions proposed for these 
systems may also be applicable to multi-user, multi-modal IA systems. 
Whereas studying this applicability is outside of the scope of this pa-
per, the SHRIMPS framework can be a useful tool for undertaking such 
a study.

3. Problem and modeling

In this section, we formulate the multi-user, multi-modal IA problem 
and provide the threat model.

3.1. Authentication model

3.1.1. Definitions and assumptions

In a multi-user IA system, two or more users are allowed to access 
a device. We define a user who is registered and has full or partial ac-
cess to the device as a legitimate user. We define a session as the period 
of user-device interaction that starts from when the device is unlocked 
with explicit authentication, such as a PIN, to when the device is locked. 
The IA system continuously identifies the current user and verifies their 

identity throughout a session. As a consequence of failed authentication, 
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the system locks the device and asks for explicit authentication. Inspired 
by recent device/account sharing studies (Matthews et al., 2016; Al-
Ameen et al., 2021; Marques et al., 2019), we consider multiple users 
sharing the same smart device, and therefore, participating in the same

session alternatingly, where there may be more than one legitimate user 
during a session. We assume that there is only one user interacting with 
the device at any moment. For example, a shared tablet is running a 
kiosk app for medical staff to look up and process patients’ data. A 
session starts when a medical worker turns on the tablet, and any legit-
imate medical worker can access the device afterwards. A session ends 
when the tablet is turned off or detects unauthorized access. It requires 
continuously and implicitly (re-)identifying the new user from all other 
legitimate users in real-time during a session.

3.1.2. Problem formulation

The multi-user IA problem is a multi-class classification problem. 
We denote the legitimate user set as  + = {𝑢0, 𝑢1, … , 𝑢𝑛−1}, where 𝑛 is 
the number of legitimate users, user 𝑢0 is the primary user (i.e., owner) 
of the device, and users 𝑢𝑖, 𝑖 > 0 are secondary users. We define a null 
user or attacker as a user who is not registered and has no access to the 
device, which is denoted as 𝑢−1. The whole user space for a multi-user 
authentication system is defined as  = + ∪ {𝑢−1}.

For accurate identification and authentication, the system adopts 
multiple IA mechanisms (i.e., authenticators). The basic workflow of 
each authenticator is to extract features from sensor measurements and 
perform multi-class classification. An authenticator can be described 
as a function 𝒔 = 𝑀(𝒇 ), where 𝒔 = {𝑠−1, 𝑠0, 𝑠1, … , 𝑠𝑢−1} represents the 
normalized scores of all instances in  , and 𝒇 is the feature vec-
tor. Then, each authenticator obtains a series of feature vectors with 
timestamps {(𝑡0, 𝒇 0), (𝑡1, 𝒇 1), … , (𝑡𝑘, 𝒇𝑘)} and generates a series of score 
vectors {(𝑡0, 𝒔0), (𝑡1, 𝒔1), … , (𝑡𝑘, 𝒔𝑘)} accordingly, where 𝑘 is the number 
of the classification times performed within a given period. The system 
then identifies the user and decides whether to lock the device. Thus, 
the multi-user, multi-modal IA problem is about combining different 
authenticators to obtain who is the most likely user.

3.2. Threat model

For multi-user IA, possible attackers include strangers and legitimate 
users. A stranger attacker is physically close to the device and attempts 
to access sensitive resources, which is a lunchtime attack (Kaczmarek et 
al., 2018). A legitimate user attacker may intentionally or accidentally 
access the previous legitimate user’s resources. For both cases, the au-
thentication system should reject their access and de-authenticate the 
current user. We assume attackers do not have or know the victim’s 
credentials (e.g., password, PIN) for explicit authentication. We also 
assume the device and its operating system are trusted, and attack-
ers cannot install malicious apps or tamper with the system services 
(e.g., modifying sensor inputs). Since our work focuses on a general 
multi-user IA framework, mimicry attacks (Khan et al., 2018) that tar-
get specific behavioral biometrics are out of the scope of our paper. 
Nevertheless, we test the system under the scenario where the accuracy 
of one authenticator is significantly lower than other authenticators (see 
§ 6.2.3).

4. Multi-user IA

SHRIMPS first addresses the multi-user IA problem in § 3.1.2 from 
the following three aspects: 1) a general extension strategy to extend 
existing binary or one-class IA algorithms into multi-user, 2) a score 
fusion method to combine multiple modalities, and 3) new incoming 
data and user enrollment for model updating.

4.1. Multi-user identification

A multi-user IA model is an 𝑛 + 1-class classifier for a system with 𝑛
4

legitimate users 𝑢𝑖 with 0 ≤ 𝑖 < 𝑛, where negative instances (i.e., im-
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posters) are denoted 𝑢−1 (see § 3.1.2). Thus, we need an imposter 
training set to provide negative training data. In SHRIMPS, the imposter 
training set is sampled from multiple randomusers, which are different 
from the legitimate users and the users pretending to be imposters later 
during model testing, to represent a “general” user’s behavioral biomet-
rics.

Besides, the machine learning technique adopted by a multi-user IA 
system should support multi-class classification. If a multi-class IA clas-
sification algorithm is available, SHRIMPS can directly take advantage 
of it. For binary classification algorithms, SHRIMPS adopts the generic 
“one-vs-the-rest” strategy to extend their models into multi-class clas-
sifiers: 1) For each class 𝑢𝑖, we construct a training set with labeling 
𝑢𝑖 as positive class and all other classes as negative class. 2) We train 
𝑛 sub-classifiers for all 𝑛 classes using the training sets constructed in 
step 1. 3) For authentication, the authenticator calculates the normal-
ized scores of the positive classes from all sub-classifiers and constructs 
a score vector as the output. SHRIMPS also supports one-class classifi-
cation algorithms, which it extends for multi-class classification in the 
same way as binary classification algorithms. Recent IA research com-
paring one-class to binary classifiers (Giovanini et al., 2022; Özlem Incel 
et al., 2021; Wang et al., 2023; Ray-Dowling et al., 2022; Georgiev et 
al., 2022b; Vhaduri et al., 2021; Cheung and Vhaduri, 2020) has con-
sistently shown that binary classifiers perform better. Binary classifiers 
have the disadvantage that they require negative training data, which 
one-class classifiers do not.

Multi-user scenarios also result in the user data imbalance problem, 
where we have different amounts of training data for different users. 
For example, a multi-user system may collect more training data for the 
owner compared to the other users since the owner usually spends more 
time doing various activities with the device. Thus, we need to balance 
the training data by resampling techniques, including downsampling 
the data for the majority classes and oversampling the minority classes 
(e.g., SMOTE (Chawla et al., 2002)). But the resampling techniques can-
not fully address the accuracy degradation problem (Fernández et al., 
2018). We still need to consider the accuracy imbalance among differ-
ent users for decision making. We elaborate on this challenge as a part 
of the score fusion strategy in § 4.2.

To achieve multi-user identification, SHRIMPS handles the gener-
ation of balanced training data from a user’s historical data and the 
imposter training set, and provides a generic wrapper to extend exist-
ing IA mechanisms into multi-class classification (see § 5.1.1).

4.2. Multi-modal score fusion

We fuse the results of multiple authenticators at score-level to pro-
vide accurate identification for multiple users since it allows each 
modality to work separately. SHRIMPS is designed to support various 
score fusion methods to aggregate the results from multiple modalities 
to make decisions. However, the scores produced by different modali-
ties may have different implications such as the likelihood of each user, 
the similarity to a user’s behavioral profile, etc. Also, it is necessary 
to take the uncertainty of each modality into account. Thus, calculat-
ing the average score is not sufficient. In SHRIMPS, we also adopt the 
Dempster-Shafer theory (Sentz et al., 2002) for score fusion since it 
is proposed to combine evidence (i.e., scores) from different sources 
(i.e., modalities) with uncertainty, which is usually applied for sensor 
fusion problems (Wu et al., 2002). Smith-Creasey and Rajarajan (2019)
adopted a D-S theory based score fusion method for multi-modal IA 
schemes in the single-user scenario. In our study, we explore the multi-
user D-S theory based score fusion method by decomposing the problem 
into 𝑛 + 1 binary cases.

For 𝑢𝑖 ∈  , there are two mutually exclusive states: positive 𝑆𝑖

and negative �̄�𝑖. The frame of discernment Ω𝑖 is defined as Ω𝑖 =
{𝑆𝑖, �̄�𝑖}. All subsets in the power set 2Ω𝑖 = {∅, {𝑆𝑖}, {�̄�𝑖}, Ω𝑖} are as-
signed a basic belief mass within [0, 1], denoted by 𝑚, where 𝑚(∅) = 0, ∑
𝐴∈2Ω𝑖 𝑚(𝐴) = 1. For an authenticator 𝑀 that outputs a score vec-
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tor 𝒔 = {𝑠−1, 𝑠0, 𝑠1, … , 𝑠𝑛−1}, we define its uncertainty on each class 
(i.e., user) as 𝒗 = {𝑣−1, 𝑣0, 𝑣1, … , 𝑣𝑛−1}. For each class, we construct the 
masses attributed for all hypotheses in 2Ω𝑖 as:

𝑚(∅) = 0,𝑚({𝑆𝑖}) = (1 − 𝑣𝑖)𝑠𝑖,

𝑚({�̄�𝑖}) = (1 − 𝑣𝑖)(1 − 𝑠𝑖),𝑚(Ω𝑖) = 𝑣𝑖.

To combine the masses of hypothesis 𝐴 = {𝑃𝑖} from two authenticators 
𝑀𝑝 and 𝑀𝑞 (the belief functions are denoted by 𝑚𝑝 and 𝑚𝑞 , respec-
tively), we use Dempster’s rule of combination to calculate its joint mass 
as

𝑚(𝐴) =𝑚𝑝(𝐴)⊕𝑚𝑞(𝐴) =
∑

𝐵∩𝐶=𝐴≠∅𝑚𝑝(𝐵)𝑚𝑞(𝐶)
1 −

∑
𝐵∩𝐶=∅𝑚𝑝(𝐵)𝑚𝑞(𝐶)

.

The combined belief Bel({𝑆𝑖}) =
∑

𝐴|𝐴⊆{𝑆𝑖}𝑚(𝐴) = 𝑚({𝑆𝑖}) is the fused 
score for 𝑢𝑖 from multiple authenticators.

We determine the uncertainty 𝒗 of each authenticator by their model 
accuracy based on the following observations: 1) An authenticator may 
have a better accuracy detecting certain classes compared to others. 2) 
Different authenticators may have different accuracy for the same class. 
Intuitively, a higher accuracy on a certain user 𝑢𝑖 should contribute 
to a lower uncertainty 𝑣𝑖. In our work, the system leaves 10% of the 
collected data out of the training data for each authenticator to con-
struct their validation sets. Then, it evaluates all IA models with their 
corresponding validation sets at each model training or updating. The 
accuracy metrics include the per-user area under the receiver operating 
characteristic curve (AUROC) and equal error rate (EER), the threshold 
for the equal false acceptance rate and false rejection rate of each user. 
We adopt two uncertainty functions based on either AUROC or EER. 
Given the authenticator 𝑀 and the target user 𝑢𝑖, the uncertainty is:

𝑣AUC
𝑀,𝑖

=min(0,1 −AUROC𝑀,𝑖), (1)

𝑣EER
𝑀,𝑖

=max(1,2 ∗ EER𝑀,𝑖). (2)

Assume there are 𝑘 authenticators  = {𝑀0, 𝑀1, … , 𝑀𝑘−1}, and the 
average score vector of all authenticators is denoted as {�̄�0, ̄𝒔1, … , ̄𝒔𝑘−1}. 
We use the D-S theory to merge the average score vectors of all au-
thenticators. For each class, we obtain the fused score for each user 
�̂�𝑖 =𝑚0({𝑆𝑖}) ⊕𝑚1({𝑆𝑖}) ⊕… ⊕𝑚𝑘−1({𝑆𝑖}), 𝑖 ∈ {−1, 0, 1, … , 𝑢 −1}. Finally, 
we choose the most likely user by res = argmax

𝑖∈{−1,0,1,…,𝑢−1}
�̂�𝑖 as the current 

user.
In addition to score fusion based on Dempster-Shafer theory, 

SHRIMPS also supports other fusion methods, such as average and 
weighted average. This demonstrates that SHRIMPS supports both 
simple and complex fusion strategies. Due to its open-source nature, 
SHRIMPS can also be used for evaluating other score fusion methods 
proposed in earlier work, including fusion methods proposed for multi-
modal biometric authentication (Oloyede and Hancke, 2016; Jing et al., 
2018; Ross and Jain, 2003; Dinca and Hancke, 2017; Ryu et al., 2021). 
Such an analysis is outside of the scope of this paper.

4.3. New incoming data and users

In practice, IA models are not constant: 1) When a new user is 
added to the system (i.e., user enrollment), IA models need to be up-
dated to identify the new user as a new class. The new user needs to 
complete tasks or use the device for a period of time so that the sys-
tem can collect and label behavioral data for initial model training. In 
a deployed system, user enrollment would be initiated by an admin-
istrator. In SHRIMPS, user enrollment is indicated in the storyboard 
underlying the evaluated IA scheme (see § 5.2.2). 2) IA mechanisms 
require model updating with new incoming data to mitigate accuracy 
degradation over time. During normal device usage, the system is also 
collecting biometric data while authenticating and identifying the user. 
5

Unlike user enrollment, the system does not always know the ground 
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truth of the current user’s identity. Thus, we need to address the follow-
ing problems:

4.3.1. Auto labeling

The common labeling strategy of single-user IA systems (Khan et 
al., 2014a; Crawford et al., 2013) is to label all incoming data as the 
owner’s if no attack is detected. However, for multi-user systems, a 
piece of behavioral data may involve several users given possible user 
switches. Thus, the system needs to split the data into segments, where 
each segment contains only one user’s usage data. Then, it finds out 
the corresponding user for each segment. Although external signals 
(e.g., screen-on/off) may imply user switches and indicate the start 
and end moments of a segment, they are insufficient to cover all user 
switches in a shared session. A multi-user IA system can continuously 
identify the current user and provide coarse-grained segmentation—
knowing who is using the device during which segment. However, the 
time taken to collect sufficient data for decision-making is not negligible 
(evaluated in § 6). If a user switch is detected based on identification re-
sults without the help of external signals, the system discards the data 
collected during a time period (e.g., maximum detection latency) be-
fore the detected user switch since its ownership is uncertain. For the 
remaining data, the system labels the pre-switch part as the former user 
and the post-switch part as the latter user.

4.3.2. Model updating

User enrollment and new incoming data correspond to class incre-
mental learning and data incremental learning, respectively. There are 
three types of model updating strategies. 1) Full retraining is applicable 
for all IA mechanisms. Models are retrained with all new and historical 
data. However, it occupies the most space; 2) Partial fitting is applicable 
for implementing data incremental learning to specific machine learn-
ing techniques, such as SGD-based techniques (Moctezuma et al., 2019) 
and Naive Bayes classifiers. They can update a trained model with new 
data without keeping the historical data. 3) Incremental learning tech-

niques are applicable for DNN-based IA mechanisms (Zou et al., 2020; 
Shin et al., 2017). ContAuth uses EWC (Kirkpatrick et al., 2017) and 
iCaRL (Rebuffi et al., 2017) to update a model without storing all his-
torical data. In SHRIMPS, we determine the suitable model updating 
strategy based on the IA mechanisms: we apply iCaRL for DNN-based 
IA mechanisms (since Chauhan et al. (2020) show that it is superior to 
EWS); for other IA mechanisms, we adopt full retraining for class/data 
incremental learning or partial fitting for data incremental learning.

SHRIMPS simplifies the comparison of existing model updating 
strategies for adaptive IA systems (Chauhan et al., 2020; Shen et al., 
2023; Giovanini et al., 2022). Moreover, we observe that various tem-
plate update methods have been developed for adaptive biometric sys-
tems (Rattani et al., 2009; Pisani et al., 2019). As in the case of existing 
fusion algorithms for biometric systems, SRIMPS makes it possible to 
study whether existing template update algorithms can also be used for 
adaptive IA systems. Such an analysis is outside of the scope of this 
paper.

SHRIMPS handles user enrollment and new incoming user in two 
steps: automatically segmenting and labeling the collected data, and 
updating IA models for all authenticators with appropriate strategies. 
Besides, it listens to the user’s feedback to correct falsely labeled data. 
We describe the detailed workflow in § 5.1.2.

5. The SHRIMPS evaluation framework

In this section, we propose a multi-user, multi-modal IA evaluation 
framework, SHRIMPS, which consists of a multi-user IA system and an 

evaluation environment.
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Fig. 1. Architecture of the SHRIMPS framework.
5.1. Multi-user IA system

We abstract the main components and behaviors of a multi-user IA 
system for shared smart devices, including user management, model 
training and updating, sensor data processing, and authentication.

5.1.1. Architecture

Fig. 1 shows the architecture of a multi-user IA system, which com-
prises of four modules: the scheduler, the authenticators, the aggrega-
tor, and the storage.

Scheduler receives sensor events and external signals, and coordinates 
authenticators and the storage module. The scheduler receives and 
caches the incoming sensor events in the sensor buffer. The authentica-
tor controller is responsible for activating authenticators and invoking 
authentication or model training. Whenever there is sufficient sensor 
data, the authenticator controller activates that authenticator and dis-
patches the required sensor data. The scheduler also maintains a set of 
event listeners to receive and process external signals for auto label-
ing, model updating, and error handling (see § 5.1.2). External signals, 
such as screen-off, imply the end of a session or a possible user switch, 
resulting in clearing cached data, data segmentation and resetting the 
authentication status of the system. Besides, user feedback that occurs 
after an erroneous rejection or user switch decision is an important sig-
nal for error handling. In response, the scheduler fixes wrong labels of 
the cached data and sets the authentication status as authenticated.

Authenticators are responsible for providing the essential functions, 
including feature extraction, model training, and classification. Re-
searchers can provide their own IA mechanisms by specifying these 
essential functions. If a provided IA mechanism is based on binary or 
one-class classification, SHRIMPS applies the multi-user extension intro-
duced in § 4.1. For each authenticator, the feature extraction function 
takes raw sensor data as input and produces feature vectors as output. 
The authentication function feeds the feature vectors to the trained IA 
models to calculate the authentication scores. The model training func-
tion takes two sets of labeled feature vectors as input for training and 
testing, respectively. Internally, the model training function can further 
sample a subset of the training dataset for validation, which is usually 
used for tuning the hyperparameters of IA models. The testing dataset 
is used to pre-evaluate the accuracy of an authenticator. An authentica-
tor needs to store the pre-evaluation results for the certainty calculation 
of multi-modal fusion.

The training set generation function is responsible for generating 
training and testing data for the authenticator. The function loads the 
history feature data of each user in the training storage and samples 
negative training data from the imposter training set. All the fetched 
data is used to construct a labeled dataset. It is optional to apply resam-
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pling techniques to produce a balanced dataset (i.e., all classes have the 
same data size). The processed data is divided into two parts in a con-
figurable ratio for training and testing, respectively, which is provided 
for the model training function.

Aggregator collects and fuses authentication scores. Since scores from 
various authenticators arrive at the aggregator asynchronously, our 
strategy is to let the aggregator cache the recent score vectors within 
a specified time interval and fuse the scores based on the steps in § 4.2
(note: the multi-user also supports other score fusion methods such as 
average and weighted average). The cache is cleared at the session end 
or a user switch through final decisions or external signals. In addi-
tion, we adopt a (𝑚, 𝑛)-sliding window: If at least 𝑚 out of 𝑛 results are 
the same, the aggregator adopts that result as the final decision; other-
wise, it waits for more scores to make decisions. There are three types 
of decisions: accepting the user as the identified one, rejecting the user, 
and detecting a user change from one to another. Accordingly, there 
are three types of false decisions: 1) false acceptance (FA): the system 
falsely accepts an attacker, 2) false rejection (FR): the system falsely re-
jects a valid user, and 3) false identification (FI): the system identifies a 
valid user as another. We explore error handling in the next subsection.

5.1.2. Multi-user IA system workflow

We present the workflow of a multi-user IA system performing the 
following operations:

User Enrollment & Removal. SHRIMPS support user enrollment and 
removal events as external signals. For user enrollment, the system does 
not conduct authentication and only collects behavioral data for the 
new user. A piece of labeled behavioral data is directly added into 
the training storage. Model training is triggered as follows: authentica-
tors fetch the training data from the storage, generate training datasets, 
and train their models. The models and their pre-evaluation reports are 
stored in the storage. User removal requires indicating the target user. 
SHRIMPS supports the following two options for removing a user: 1) 
If the system stores users’ historic behavioral data, authenticators fully 
retrain IA models with all data except for the removed user. 2) If an 
IA model consists of several per-user classifiers, the system can remove 
that user’s classifier. Their behavioral data is also removed from the 
training storage and excluded from any future model updating.

Authentication. The authentication system continuously collects sen-
sor data in the scheduler. Once the authenticator controller detects 
sufficient data for a certain modality, it calls the corresponding authen-
ticator with the cached sensor data. The authenticators extract features, 
load the saved model from the storage, and then conduct classification 
to obtain score vectors. Score vectors from different authenticators are 
sent to the aggregator for score fusing. Finally, the system determines 
whether to accept or reject the current user based on the fused score.

Model updating. SHRIMPS takes both external signals and identifi-

cation results to segment and label the data automatically and dy-
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Fig. 2. Evaluation framework.
namically. Whenever the scheduler receives an external signal or the 
aggregator detects a user switch, SHRIMPS labels the collected data 
as a segment with the previously identified user and stores them in 
the training storage. It can automatically correct the misclassified data 
points of individual authenticators based on the overall decisions. For 
example, if a single data point is 𝑢−1 (i.e., attacker) and the overall deci-
sion is acceptance, the system will fix the label of this single data point. 
If the device mistakenly locks the user out, it can correct the detection 
as well as the labels for cached features based on the user’s feedback 
(see error handling below). Once sufficient new data is collected, the 
authenticators update the models for the existing users based on their 
data incremental learning strategy (see § 4.3).

Error Processing. Error processing of an IA system takes the following 
measures based on the error types: 1) False acceptance may temporar-
ily expose the device to an attacker. Since the system is continuously 
authenticating the user, it will stop the attacker whenever a rejection 
decision is made. 2) False rejection leads to explicit authentication. If 
SHRIMPS receives a legitimate user’s feedback (i.e., the user has passed 
EA), it can correct the labels of the collected features and update the IA 
models. 3) False identification is not as obvious as the other two errors. 
Immediate user feedback is not guaranteed if there is no mandatory EA 
to verify a user’s identity. Nevertheless, we can handle false identifi-
cation using the following strategy: if the system detects frequent user 
switches within a short time (e.g., the user has changed more than two 
times in five consecutive decisions), it will issue a rejection decision and 
a request for identity confirmation. Once the system receives the user’s 
feedback, it will correct the labels accordingly.

5.2. Evaluation framework

5.2.1. Motivation

Evaluating a multi-user IA system requires testing under various con-
ditions. It involves measuring accuracy with different user numbers and 
training data sizes, and detection latency for identifying a user after 
a user switch. As an IA system updates its models with new incom-
ing data and users, it is also necessary to track the overtime accuracy 
change considering the impact of auto labeling. Moreover, a false deci-
sion may have different implications for continuous authentication: For 
example, a user is more sensitive to false rejections since they interrupt 
device usage, while an individual false acceptance is tolerable as long 
as the system rejects an attacker within a reasonable time. A real-world 
user study is usually adopted for evaluating usability under practical 
settings. However, it is hard to capture unauthorized access and device 
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theft (Hintze et al., 2019). Specifically, it is challenging to conduct user 
studies for multi-user scenarios (e.g., controlling the conditions for le-
gitimate users and attackers). To trade off, trace-based evaluation is a 
good option for conducting tasks using real-world public datasets.

SHRIMPS enables researchers to stitch together data from public 
datasets and easily compose evaluation tasks based on specific require-
ments without falling into two common evaluation pitfalls (Georgiev 
et al., 2022a): 1) Non-contiguous training data selection, and 2) at-
tacker data in training. It supports external signals, enrollment and 
user feedback (i.e., reactions to decisions). Besides, we introduce both 
decision-level and session-level metrics to compare different strategies 
and understand the practical performance of the system.

5.2.2. Evaluation process

As shown in Fig. 2, the evaluation process is divided into three 
stages. We introduce the components of the evaluation framework and 
their functions at each stage:

Setup. Researchers determine the data source. A data provider manages 
the connection to a public dataset, parses raw sensor data, and pro-
vides an interface for data retrieval. Internally, a user’s data is stored 
in blocks, where each block contains sensor data of a user collected 
over a continuous period of time. It ensures contiguous data selection 
in chronological order, and no data in the training data blocks will ap-
pear in the evaluation tasks. The actor generator fetches a complete 
list of users via a data provider and randomly selects a specified num-
ber of actors from the list. There are three actor types: legitimate users, 
trainers, and attackers. As defined in § 3.1, legitimate users should be 
enrolled in and identified by the IA system. Trainers provide negative 
training data to construct an imposter training set. Attackers attempt 
to access the device and should be blocked by the system. SHRIMPS 
ensures the attackers’ data will not be used in the model training of 
legitimate users.

Initialization. The initialization stage determines the initial system sta-
tus. An enrollment script is required to determine which legitimate 
users have enrolled and how much training data has been collected for 
each user. The enrollment data generator parses the enrollment script 
and fetches training data via the data provider. Then, SHRIMPS instan-
tiates the multi-user IA system, and adds the specified legitimated users 
and their training data for the initial model training. Multiple instances 
that adopt different schemes can co-exist in the same environment so 
that we can compare different schemes with the same conditions and 
inputs.

Evaluation. We introduce a storyboard to help researchers quickly de-

sign evaluation tasks. A storyboard lists one or a series of data blocks 
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with specifying the actor, the selection criteria (e.g., activity, location), 
and the duration. It provides the ground truth of data segmentation. 
To describe a session with the participation of multiple users, one can 
concatenate multiple data blocks of different actors. External signals, 
such as “screen off” and “screen on”, can be added in between two 
data blocks to mark the start and end of a session. Besides, SHRIMPS 
supports adding user enrollment events during an evaluation task. We 
show simplified storyboards in § 6.

According to the storyboard, SHRIMPS can fetch the matched sen-
sor data and automatically generate a timeline comprised of a series of 
events in chronological order. The timeline automatically adjusts the 
sensor event timestamps of each block to ensure that the new times-
tamps of every two consecutive blocks are coherent. Assume that a new 
block with 𝑚 events, sess = {(𝑡0, 𝑑𝑎𝑡𝑎0), (𝑡1, 𝑑𝑎𝑡𝑎1), … , (𝑡𝑚−1, 𝑑𝑎𝑡𝑎𝑚−1)}, is 
appended to a timeline, where the last event timestamp of the timeline 
is 𝑇 . The new timestamps are adjusted as follows: 𝑡′

𝑖
= 𝑡𝑖 − 𝑡0 +𝑇 +Δ𝑡, 𝑖 =

0, 1, … , 𝑚 − 1, where Δ𝑡 is the customized interval between two seg-
ments. The presenter is responsible for processing the timeline and 
communicating with the instances: While passing each event to the in-
stances, it also receives and answers their decisions. If a false decision is 
made, the presenter records it and produces a user’s feedback for correc-
tion. After traversing the entire timeline, SHRIMPS saves all scores and 
decisions. The result analytics module generates the metrics by compar-
ing each decision with the ground truth provided by the timeline.

Measures & Metrics. Multi-user IA systems are evaluated at two levels: 
decision-level and session-level. At decision-level, we use three basic 
metrics: false acceptance rate (FAR) is the proportion of the acceptance 
decisions among all decisions made on an attacker, and false rejection 
rate (FRR) and false identification rate (FIR) are calculated as the pro-
portion of FRs or FIs among all decisions made on a legitimate user, 
respectively. Eberz et al. (2017) propose the Gini coefficient (GC) to an-
alyze the error rate distribution among users and quantify systematic 
errors. A high Gini coefficient means that errors are concentrated in a 
small group of users. SHRIMPS uses GC to supplement decision-level 
FAR, FRR, and FIR for analyzing error distribution. Session-level met-
rics aim to help understand the practical impact of false decisions on 
the whole session. We define session-level errors based on the follow-
ing criteria: 1) False acceptance: the system fails to reject an attacker 
within a specific time period (i.e., valid attack window). 2) False rejec-
tion: the system makes at least one decision to reject a valid user during 
the whole session. 3) False identification: the system makes at least one

false identification during the whole session. For user switches where 
the user changes from one to another without any external signals, we 
allow the system to take a specific delay (i.e., uninformed switch win-
dow) before making the correct decision. During this period, any false 
identification is ignored since it does not block the user.

Accordingly, we define session-level FAR, FRR, and FIR by dividing 
the corresponding error number by the total session number. In addi-
tion, we record the moment 𝑡𝑑 of the first correct decision to measure 
the detection latency, which is calculated by subtracting the starting 
timestamp of the session 𝑡0 from 𝑡𝑑 .

5.3. Evaluation workflow

IA researchers can use SHRIMPS to design and evaluate multi-
user IA schemes according to the following steps: The first step is to 
build the multi-user IA system, including adding authenticators, spec-
ifying the score fusion strategy, and adjusting the auto labeling and 
model updating behaviors. Researchers can choose to add their own 
IA mechanisms/score fusion strategies or use the built-in ones pro-
vided by SHRIMPS. The second step is to connect to a data source 
and generate actors. Researchers need to provide the source dataset 
and its data provider. SHRIMPS includes example data providers for 
the HMOG dataset (Sitová et al., 2015), the BB-MAS dataset (Belman 
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et al., 2019), the IDNet dataset (Gadaleta and Rossi, 2018), and the 
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Touchalytics dataset (Frank et al., 2012). Actor generation requires a 
random seed and the numbers of each actor type. The third step is to 
design an enrollment script and a storyboard. Then, SHRIMPS can run 
the evaluation task and output the raw results accordingly. Based on 
the external signals in the storyboard, the result analyzer can segment 
the evaluation results into sessions and produce the per-session results 
automatically.

6. Sample use cases

In this section, we present two sample use cases that use SHRIMPS 
to design trace-based tasks and evaluate multi-user IA schemes.

6.1. Common setup

IA mechanisms. Both use cases use the same set of behavioral bio-
metrics for their multi-user IA schemes. For demonstration, we choose 
touch-based and gait-based IA mechanisms and use SHRIMPS to adapt 
state-of-the-art algorithms to multi-user identification: 1) touch-based 
IA uses 28 touch-related features based on the feature extraction algo-
rithm of Touchalytics (Frank et al., 2012), and SHRIMPS enables the 
multi-class classification following the extension strategy in § 4.1. 2) 
gait-based IA adopts a CNN+LSTM-based gait identification algorithm 
(Zou et al., 2020), which already supports multi-user identification. For 
the gait authenticator, the sampling rate of motion sensors is set to 
50 Hz. The authenticator extracts gaits from a 1024-sample segment 
and is set to perform authentication every 512 samples (=10.24 s). 
Thus, every two consecutive segments have 50% overlap.

SHRIMPS handles training data generation for each authenticator. 
We adopt the same data balancing settings: using SMOTE to oversample 
minority classes and ensuring that all classes (including the negative 
class) have the same training size. Note that SHRIMPS also supports 
researchers to compare different balancing methods and parameters to 
find the best settings.

Data source. In the evaluation, we use the following public datasets:

1. HMOG (Sitová et al., 2015): accelerometer data, gyroscope data, 
and touch events from 100 users performing reading, writing, and 
map navigation tasks. Each task lasts about 5–15 minutes. Our use 
cases focus on the reading and walking tasks since gait and touch 
data are available simultaneously for them.

2. BB-MAS (Belman et al., 2019): accelerometer data, gyroscope 
data, and touch events from 117 users. Each user completed a 25-
minute typing task and a 10-minute walking task. Note: users did 
not perform any touch events while walking.

3. IDNet (Gadaleta and Rossi, 2018): accelerometer data and gyro-
scope data from 50 users performing 5-minute gait tasks.

4. Touchalytics (Frank et al., 2012): touch events from 41 users. 
Each user completed 3–4 web browsing tasks and 2–3 game tasks. 
Different from BB-MAS, the touch events are mainly vertical and 
horizontal swipes.

For all datasets, we select ten users as trainers to provide behavioral 
data for the negative class. SHRIMPS excludes these users from the legit-
imate user and attacker selections, ensuring no overlap between trainers 
and attackers to avoid the attacker-data-in-training pitfall. The eval-
uation datasets should include multiple users, sufficient cross-session 
sensor data for each user, and multiple modalities. Since only the HMOG 
dataset meets all requirements, our sample use cases use only it for most 
of the evaluations.

Compared to HMOG, BB-MAS does not provide cross-session gait 
data (i.e., only one 10-minute task for a user), while Touchalytics only 
provides touch data and IDNet only provides gait data. To address the 
lack of multi-modal public datasets, a compromise solution adopted by 

existing studies (Hintze et al., 2019; Gupta et al., 2019, 2022; Lopes 
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Silva et al., 2019) is to fuse multiple datasets for different modali-
ties that are independent of each other and rely on different sensors 
(e.g., touch and gait). Therefore, we fuse the IDNet dataset and the 
BB-MAS (or Touchalytics) datasets as follows: 1) We map the 14 users 
who provided three or more tasks from IDNet to 14 users randomly se-
lected from BB-MAS (or Touchalytics). 2) We randomly select ten other 
users from both datasets to provide data for the negative class. 3) For 
data fusion, we use each IDNet motion data block as a basis and ex-
tract the BB-MAS (or Touchalytics) touch events in the same duration. 
4) We adjust the timestamps of the touch events to align them to those 
of the motion data. We acknowledge the limitation that merged user 
behavioral data may not be realistic. However, the fused dataset is only 
used to test the accuracy gain of different fusing methods for the multi-
modal scenario where an authenticator is failing. It also demonstrates 
that SHRIMPS supports various public datasets.

6.2. Use case 1: fusion method comparison

A multi-user IA system is expected to identify each legitimate user 
and reject imposters under different settings. SHRIMPS enables IA re-
searchers to compare different IA schemes and choose the best one 
in terms of accuracy and detection latency. Specifically, a multi-user 
system should detect user switches, which are common in household 
sharing (Matthews et al., 2016; Al-Ameen et al., 2021). Also, an attacker 
may grab the device from the owner, causing a sudden user change.

In this use case, we address the following questions:

1. How does adopting multiple modalities benefit multi-user IA 
compared to single modality solutions?

2. What score fusion method provides the highest overall ac-
curacy considering false acceptance rate and false rejection 
rate?

3. Is it necessary to set the maximum user size for a multi-user 
IA system?

4. How fast and accurately can a multi-user IA system capture 
an uninformed user switch during a shared session?

We first explain what fusion methods we add to SHRIMPS. Then we 
describe the evaluation tasks that we execute in the framework.

6.2.1. Fusion methods

We tested different score fusion methods and compared them to sin-
gle modalities to examine how they balance FAR, FRR, and FIR. The 
two baseline methods include single-modal gait-based IA and single-
modal touch-based IA. The most widely used score fusion method is 
average-based fusion. Moreover, weighted average methods also take 
the authenticator’s performance into consideration. To compare D-S 
theory based methods to the average-based methods, we apply the per-
user AUCs and EERs as the weights for the average-based methods.

CORMORANT (Hintze et al., 2019) proposed a Kalman filter based 
score fusion method that is resistant to the noise of detection. We extend 
it into a multi-user fusion method by applying Kalman filter to multi-
user scores for each user with the following settings: 1) Measurement 
uncertainty 𝑅 is determined by the per-user EER, 2) Process uncertainty 
𝑄 = 0.25: a large 𝑄 makes the estimated score emphasize on new scores 
(Hintze et al., 2019) (the selection of 𝑄 is explained in Appendix A). In 
summary, we compared the following methods:

• Touch. Applying the touch authenticator only.
• Gait. Applying the gait authenticator only.
9

• Mean. Calculating the average score of all authenticators.
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• Mean-AUC. Calculating the weighted average score using AUC as 
the factor.

• Mean-EER. Calculating the weighted average score using 1-EER as 
the factor.

• Kalman. Applying Kalman Filter based score fusion.
• DS-AUC. Applying multi-user D-S theory based score fusion with 

the AUC-based uncertainty function (Eq. (1))
• DS-EER. Applying multi-user D-S theory based score fusion with the 

EER-based uncertainty function (Eq. (2))

6.2.2. Evaluation tasks

We design two groups of evaluation tasks to address the above 
questions. Given the limited data amount we use two fused datasets, 
IDNet+BB-MAS and IDNet+Touchalytics, only for the first group and 
adopt different settings for this dataset than for the HMOG dataset.

Group 1 (Accuracy evaluation) tests if the system can reject an at-
tacker in a lunchtime attack and verify the identity of a legitimate user. 
The accuracy evaluation adopts a balanced static setting: there are equal 
numbers of legitimate users 𝑛𝑣 and attackers 𝑛𝑎 in each setup; each le-
gitimate user has a fixed number of data blocks for initial enrollment 
and contributes to one fixed-length block for testing; therefore, there are 
𝑛𝑣+𝑛𝑎 blocks for each setup; we set an external signal between blocks to 
reset the authentication status. For HMOG, we used six enrollment data 
blocks for each user and set the testing block length as three minutes; 
we tried four different actor sizes, 𝑛𝑣 = 𝑛𝑎 = 3, 5, 7, 10 and tested 50 dif-
ferent actor combinations for each actor size. For IDNet+BB-MAS and 
IDNet+Touchalytics, we used two enrollment data blocks for each user 
and set the testing block length as two minutes; we tested 𝑛𝑣 = 𝑛𝑎 = 3
for 25 different actor combinations. In addition, given the length of the 
IDNet motion data blocks is much shorter than HMOG, we also reduce 
the segment size and the detection interval of the gait authenticator to 
512 and 256 samples, respectively.

Group 2 (User switch evaluation) tests how each method detects 
user switches from a legitimate user to another legitimate user or an 
attacker in real-time. There is no external signal that informs the sys-
tem of user switches. We assume that there are three legitimate users 
and three attackers in the task, where each legitimate user has six data 
blocks for initial enrollment. We composed three device sharing events 
and three attack events in the following storyboard: 1) 𝑢0’s block, 𝑢1 ’s 
block, [external signal]; 2) 𝑢0’s block, 𝑢2 ’s block, [external signal]; 3) 
𝑢1 ’s block, 𝑢2 ’s block, [external signal]; 4) 𝑢0’s block, 𝑎0 ’s block, [exter-
nal signal]; 5) 𝑢1’s block, 𝑎1 ’s block, [external signal]; 6) 𝑢2 ’s block, 𝑎2 ’s 
block, [external signal]. 𝑎0,1,2 are three different attackers (i.e., 𝑢−1). 
Each event (i.e., session) consists of two blocks from two different ac-
tors without any external signal in between to describe an uninformed 
user switch. The external signals in the storyboard only mark the end 
of each session.

6.2.3. Result analysis

We provide the result analysis as follows:

Group 1. Fig. 3a shows the results of the first group of evaluation tasks 
on HMOG, which includes the decision-level accuracy distributions of 
all eight methods at 𝑛𝑣 = 𝑛𝑎 = 3. The D-S theory based methods have the 
lowest FAR, FRR, and FIR, which means they can effectively reject at-
tackers with less chance to falsely reject a legitimate user. Table 1 shows 
the GC of each error type (the error distribution curves are presented in 
Appendix C). High GCs on D-S theory based solutions imply that most 
errors were contributed by fewer users after applying the D-S theory 
based solution. The performance of score fusion methods is bounded 
by the fused modalities — The error rate concentrated on the users for 
whom both modalities have low accuracy. Session-level comparisons 
are in Fig. 3b. We find that the impact of FRs and FIs is magnified at 
session-level. Specifically, the touch-based method has a significantly 
high FIR. Among all methods, D-S theory based methods achieve the 

lowest overall false detection rate: FRR (0.13) and FIR (0.03), which 
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Fig. 3. Accuracy evaluation on HMOG. For each setting, the number of legitimate users (𝑛𝑣) and attackers (𝑛𝑎) are equal. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

Table 1

Gini Coefficient of FAR, FRR, and FRR at 𝑛𝑣 = 𝑛𝑎 = 3.

touch gait mean mean-EER mean-AUC kalman DS-EER DS-AUC

GC-FAR 0.70 0.70 0.70 0.66 0.69 0.74 0.78 0.81
GC-FRR 0.89 0.86 0.86 0.89 0.87 0.93 0.93 0.92
GC-FIR 0.91 0.94 0.95 0.95 0.95 0.94 0.98 0.98
means about 84% of the legitimate users’ blocks are error-free. Al-

though Kalman filter based fusion also achieves a low FRR (0.12), its 
FIR is significantly higher (0.10). We measure the latency as shown in 
Fig. 3c. Detection latency is determined by the adopted IA mechanisms: 
the touch authenticator relies on a user’s interaction with the screen, 
and the gait authenticator using the default settings (Zou et al., 2020) 
performs authentication at a low frequency. Both take much time to col-

lect sufficient data for making decisions. Since all multi-modal methods 
are implemented in SHRIMPS with the same configuration, there is no 
significant latency difference. Compared to single modalities, they im-

prove the latency because they receive results from both modalities to 
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make decisions earlier.
Fig. 4 shows the results on IDNet+BBMAS. This evaluation task com-
pares the accuracy gain of different fusion methods when one modality 
performs significantly worse than the other. Due to the task setup, dif-
ferent swipe types (i.e., vertical swipes on the left and right parts of a 
screen and horizontal swipes on the bottom) are not evenly distributed 
in the time series. Consequently, patterns for some swipe types are not 
well learned by the touch based IA, which leads to poor accuracy. From 
Fig. 4a, we can see that the FAR of the touch authenticator was very 
high. However, the D-S theory based solutions still significantly re-
duced the FAR (the session-level FARs of DS-AUC and DS-EER are 0.07) 
compared to the other approaches. Besides, they can also improve the 
FIR. We can draw the same conclusion from the session-level results 

in Fig. 4b. For detection latency, we see the same trend for IDNet+BB-
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Fig. 4. Accuracy evaluation on IDNet+BB-MAS.

Fig. 5. User switch evaluation results.
MAS as for HMOG. However, due to the shorter detection interval and 
earlier touch events, the overall latency for IDNet+BB-MAS is much 
shorter than for HMOG. In IDNet+Touchalytics, the touch-based IA 
had a higher overall accuracy. Except for lower FAR and FRR of the 
touch-based IA and all fusion methods, we observed a similar trend 
to IDNet+BBMAS and HMOG, and therefore, we put the results in Ap-
11

pendix B.
Based on the above results, we can answer questions 1 and 2: 1) 
Multi-modal methods achieve significantly better accuracy and balanc-

ing FAR, FRR, and FIR than single modalities, and 2) Among the tested 
fusion methods, D-S theory based methods have the lowest false detec-

tion rate.

When the legitimate user size is increased to 5, 7, and 10, we observe 

an increase in false decisions for all methods in Figs. 3d, 3e, and 3f. In 
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particular, the FAR rises significantly, which implies that the ability to 
detect attackers is weakened when classifying more classes. Neverthe-
less, DS-AUC can still well balance FAR and FRR/FIR, (FAR: 0.19, FRR: 
0.26, FIR: 0.05, when 𝑢𝑣 is 10). From the result, we can answer the third 
question: it is necessary to control the user size of a system to ensure 
high overall accuracy. IA researchers need to specify a threshold for 
accuracy and test different user sizes to determine the system capacity.

Group 2. Fig. 5a shows the results of the second group of tasks: the 
decision-level results for both pre-switch blocks and post-switch blocks 
are similar to the accuracy evaluation results. For attack events, DS-EER 
has the lowest FAR. However, for sharing activities, we can observe 
an increase in FIR and FRR for the post-switch blocks for all meth-
ods at session-level because of the detection latency — although the 
current user has changed to a different legitimate user, the authentica-
tion system still has no sufficient confidence in identifying this user. In 
Fig. 5b, DS-AUC and mean-EER still have better FRRs (0.19, 0.16) and 
FIRs (0.04, 0.04) compared to the other methods. However, the FAR 
of mean-EER (0.23) is much higher than that of DS-AUC (0.12). The 
high FIR (0.16) of Kalman filter based fusion shows that it is not a good 
option for handling user switches because its noise resistance makes it 
slow in response to sudden score changes. The detection latency results 
in Fig. 5c are similar to the first group of tasks. DS-AUC can provide 
low and stable detection latency (mean=37.7 s, std=10.8).

The results have shown that D-S theory based fusion methods can 
capture user switches during shared sessions with balancing FAR, FRR, 
and FIR compared to the other methods, which answers the fourth 
question. In addition, the results also imply the importance of exter-
nal signals. If a signal, such as Android’s Screen Pinning signal (Google 
Inc., 2023), may imply a user switch event, the system can then deter-
mine the end of a user’s device use and reset the authentication status. 
Then, a user-switch task can be simplified as an accuracy evaluation 
task, where external signals assist in data segmentation to improve ac-
curacy (see the second use case).

In summary, with the help of SHRIMPS, we were able to answer our 
questions for the first use case. We summarize the answers below.

1. Multi-modal methods achieve significantly better accuracy 
and balancing FAR, FRR and FIR than single modalities.

2. Among the tested fusion methods, D-S theory based methods 
have the lowest false detection rate.

3. It is necessary to control the user size of a system to ensure 
high overall accuracy.

4. D-S theory based fusion methods can provide low and stable 
detection latency for user switches.

6.3. Use case 2: multi-user model updating

Compared to the balanced and static settings adopted in the first 
use case, the second use case considers more factors: First, given that 
the owner usually spends more time with the device and contributes 
more training data than a secondary user, we test how the system han-
dles imbalanced user data. Second, as new incoming data is used for 
model updating and new users are added into the system, the detection 
accuracy of the system may change over time. Third, user feedback to-
wards false decisions may influence the identification and auto labeling 
processes. In addition, a user’s lifting and putting down the device and 
other events may indicate the starting and the end of device usage and 
can be used to segment the data, which are considered as external sig-
nals to the multi-user IA system. The evaluation tasks should address 
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the following questions:
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1. What is the accuracy difference of the system identifying the 
owner and the secondary users?

2. How does new incoming data affect the accuracy of the sys-
tem identifying different users?

3. How does external signals and user feedback benefit data 
segmenting and labeling in term of the overall accuracy?

6.3.1. Comparison strategies

From the first use case, we conclude that the D-S theory based meth-
ods can accurately detect attackers and identify legitimate users. Thus, 
we adopt DS-EER for score fusion. To address the above questions, 
we compare three strategies: 1) baseline: the system only supports user 
enrollment and does not learn from historical data (i.e., no model re-
training after each part); 2) uninformed: the system makes decisions and 
performs auto labeling based on identification results and user feed-
back, and ignores external signals; 3) informed: the system additionally 
uses external signals for detecting a user switch and auto labeling.

6.3.2. Evaluation tasks

For setup, there are three legitimate users: the owner 𝑢0 and the sec-
ondary user 𝑢1 have already enrolled, and a new user 𝑢2 will enroll in 
the system during the task. For initial enrollment, 𝑢0 has three blocks, 
and 𝑢1 only has one. The block length is randomly sampled, ranging 
from two to five minutes based on the high variance reported by Har-
bach et al. (2014). To show the accuracy change over time, we split the 
task into three parts at each model re-training and design the following 
storyboard:

1. (2 blocks): 𝑢0 ’s block, [external signal], 𝑢1’s block, [external signal], 
model retraining;

2. (3 blocks): 𝑢2 ’s enrollment, [external signal], 𝑢0’s block, [external 
signal], 𝑢1’s block, [external signal], 𝑢2’s block, [external signal], 
model retraining;

3. (3 blocks): 𝑢0 ’s block, [external signal], 𝑢1’s block, [external signal], 
𝑢2 ’s block, [external signal].

External signals are only used in the informed strategy, while user 
feedback is used in both the informed and the uninformed strategies: 
External signals indicate device handoff where a legitimate user passes 
the device to another. User feedback indicates the current user has suc-
cessfully passed the explicit authentication, which means the IA system 
made a false rejection. As a result, the evaluation framework will no-
tify the system of the false decision. Model retraining is not applied to 
the baseline strategy. For each part, we measure the accuracy over all 
the blocks within. We repeat the task with 150 different actor combina-
tions.

6.3.3. Result analysis

Table 2 shows the per-user results for each part. In Part 1, we can 
observe that the system had a lower false detection rate at identifying 
the owner than a secondary user when there is not much training data. 
This difference becomes smaller when more training data is available 
for secondary users due to the data balancing strategy, which answers 
the first question.

After 𝑢2 ’s enrollment at the start of Part 2, the system updated all 
IA models. By the end of Part 2, the system experienced significant 
accuracy degradation in identifying 𝑢0 compared to Part 1. However, 
due to score fusion and data balancing, the accuracy of identifying the 
new user is close to identifying 𝑢1. At the end of Part 2, the system 
retained all models with new data collected in Part 2. In Part 3, the 
false decision rate dropped. Compared to the baseline, the FRR and 

FIR of the informed strategy were lower for all users. The results have 



Computers & Security 137 (2024) 103594J. Chen, U. Hengartner and H. Khan

Table 2

Per-part results for use case 2. Three legitimate users: 𝑢0 : primary user; 𝑢1 : secondary user; 
𝑢2 : new legitimate user. False decision rate (FR) is the sum of FRR and FIR.

user Part 1 Part 2 Part 3

FRR FIR FR FRR FIR FR FRR FIR FR

Baseline
𝑢0 0.25 0 0.25 0.43 0.05 0.48 0.48 0.03 0.51
𝑢1 0.47 0 0.47 0.5 0.05 0.55 0.53 0.02 0.55
𝑢2 - - - 0.43 0.03 0.46 0.53 0.02 0.55

Uninformed
𝑢0 0.21 0.01 0.22 0.38 0.11 0.49 0.37 0.10 0.47
𝑢1 0.43 0 0.43 0.37 0.03 0.40 0.43 0.07 0.50
𝑢2 - - - 0.38 0.03 0.41 0.29 0.04 0.33

Informed
𝑢0 0.23 0.01 0.24 0.43 0.04 0.47 0.33 0.03 0.36
𝑢1 0.38 0.01 0.39 0.27 0.02 0.29 0.26 0 0.26
𝑢2 - - - 0.27 0.02 0.29 0.25 0.01 0.26
addressed the second question: model updating can help improve cross-
session accuracy significantly.

To answer the third question, we compare the uninformed and in-
formed strategies across all parts. The results have shown that external 
signals can further improve accuracy because 1) they enabled the sys-
tem to reset the authentication status at a user switch to avoid false 
identification, and 2) they provided precise data segmentation, which 
makes the system correctly label more behavioral features. Despite the 
benefits of improving accuracy, IA researchers also need to consider the 
usability of the system. For example, frequently asking for a user’s feed-
back makes the system hard to use. With SHRIMPS, IA researchers can 
observe the frequency of the external signals and optimize the workflow 
by modifying the auto labeling and model updating mechanisms.

In summary, with the help of SHRIMPS, we were able to answer our 
questions for the second use case. We summarize the answers below.

1. The system had a lower false detection rate at identifying 
the owner than a secondary user when there is not much 
training data. This difference becomes smaller when more 
training data is available for secondary users due to the data 
balancing strategy.

2. Model updating can help improve the cross-session accuracy 
significantly.

3. External signals can further improve accuracy because 1) 
they enabled the system to reset the authentication status at 
a user switch to avoid false identification, and 2) they pro-
vided precise data segmentation, which makes the system 
correctly label more behavioral features.

7. Discussion

Limitations. We list the following limitations of SHRIMPS or sample 
use cases: 1) The design of simulation tasks is restricted by the dataset. 
For example, for HMOG, we limit the length of use case 2 to three 
parts to satisfy the cross-session requirement, which leads to high error 
rate for all strategies. 2) Although SHRIMPS supports simulated user 
feedback, there is still a gap between simulation and user studies in 
usability evaluation. Nevertheless, SHRIMPS can be used for tuning and 
evaluating a multi-user IA system before user studies. 3) Since SHRIMPS 
is a simulation framework, it is not for implementing and developing a 
deployable multi-user IA system on smart devices. However, it can be 
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easily connected with the real systems for parameter tuning.
Applications. We present two use cases to exemplify how SHRIMPS 
helps IA researchers and developers design and evaluate multi-user IA 
schemes. We note that SHRIMPS can be applied in diverse scenarios. 
For example, it is feasible to use the simulation environment to gen-
erate a long simulation task consisting of random sensor data blocks 
and random external signals to test the robustness of a multi-user IA 
scheme. Besides, IA researchers can explore how much training data is 
required for different user types (e.g., owner and secondary users) to 
help balance the per-user accuracy by modifying the training set gener-
ation module.

Multi-user concurrent usage. In our paper, we assume only one user 
operating the device at the same time. Matthews et al. (2016) listed 
broadcasting as a type of device sharing, where multiple people are co-
using a single device simultaneously. Recognizing all present legitimate 
users can be regarded as a multi-label classification problem. However, 
if the system is always assuming the device is under concurrent usage 
and performing multi-label classification, its accuracy is very likely to 
suffer given the problem complexity. Thus, we need a certain external 
signal indicating the concurrent usage context and then trigger multi-
label classification.

Contextual information. According to the user switch simulation 
tasks, an IA system may falsely reject a legitimate user if it is un-
informed. However, if it knows the context of user switch through 
external signals, the problem can be simplified as a general identifi-
cation task. Existing studies (Hintze et al., 2019; Miettinen et al., 2014) 
also use contextual information to adapt IA systems for better accuracy 
or less battery consumption. A future avenue is to embed contextual 
information into SHRIMPS and establish connections between context 
and authenticators.

8. Conclusion

We proposed SHRIMPS, the first simulation framework for design-
ing and evaluating multi-user, multi-modal IA schemes. SHRIMPS is 
targeted at IA researchers and developers and allows them to easily 
compose and evaluate different continuous identification and authen-
tication strategies. We also proposed a Dempster-Shafer based score 
fusion strategy to combine multiple modalities. Finally, we presented 
and evaluated two use cases that use SHRIMPS to design a multi-user 
IA scheme with touch-based and gait-based IA mechanisms and ad-
dressed practical design questions. The evaluation results of the use 
cases showed the (in)effectiveness of different IA strategies and config-
uration settings.
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Appendix A. Q selection for Kalman filter

In the first use, we adopt the Kalman Filter settings from COR-
MORANT (Hintze et al., 2019). The Kalman filter assumes there is 
Gaussian noise in the state transition, which is modeled with a noise 
covariance matrix 𝐐. CORMORANT highlighted the significant impact 
of the value selection of 𝐐: A large 𝐐 has a smaller confidence in the 
system model and a larger confidence in the observations, which is de-
sired by the score fusion purpose. To ensure the Kalman filter based 
score fusion method is optimized, we tested several 𝑄 values and com-
pared their accuracy values using the same settings of the first use case, 
where 𝑛𝑣 = 𝑛𝑎 = 3. Fig. A.6 shows the decision-level metrics of different 
Q’s. In general, a large 𝑄 results in a better FAR. An extremely small 
𝑄 = 0.001 leads to high FAR and FIR. However, FRR and FIR do not de-
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crease with larger Q. To balance the three metrics, we choose 𝑄 = 0.25
in our experiments, which has the lowest average FRR (0.05) plus FIR 
(0.06) with a relatively low FAR (0.18).

Appendix B. Results for IDNet+Touchalytics

In IDNet+Touchalytics, the decision-level FAR and FRR of the touch-
based IA are significantly lower than IDNet+BB-MAS (see Fig. B.7). At 
the session level, the FAR and FRR+FIR of the touch-based IA are more 
balanced. After applying the score-level fusion, we can see lower FAR, 
while D-S theory based methods can achieve the lowest session-level 
FAR (DS-AUC: 0.07). However, due to the gait-based IA, all fusion meth-
ods have a higher FRR than the touch-based IA. However, DS-AUC can 
still achieve the lowest FRR+FIR among all methods.

Appendix C. Gini coefficient for use case 1

The Gini Coefficient (GC) is calculated between the area between 
the Lorenz Curve and the Line of Equality. For evaluating IA systems, 
Lorenz Curve plots percentiles of the users on the x-axis according to 
error rate and plots cumulative error rate on the y-axis (Eberz et al., 
2017). A point (𝑥, 𝑦) on the curve indicates the normalized total er-
ror rate 𝑦 contributed by the bottom 𝑥 users. The Line of Equality is 
a straight diagonal line with a slope of 1, which represents that all 
users contribute to the same error rates. In Fig. C.8, we present the 
Lorenz Curve and the GC of all eight methods in the first group of 
evaluation tasks for the first use case. If we compare the D-S theory 
based fusion methods to other methods, we can observe fewer users 
contribute to more errors from the figure. For FAR, it means that 
the system may mis-classify a few “very successful” attackers as le-
gitimate users. However, it is also possible that the system rejects an 
attacker at a certain time during continuous authentication. Thus, we 
also measure session-level metrics and detection latency to capture such 
situations. For FRR and FIR, the Lorenz Curve does not change as sig-
nificantly as FAR, which means the error distribution remain similar 
among different methods. We can infer that score fusion strategies are 
effective in reducing random errors. To further improve the accuracy 
and reduce systematic error, a possible avenue is to incorporate new

modalities.
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Fig. C.8. Lorenz Curve and Gini Coefficient of use case 1, 𝑛𝑣 = 𝑛𝑎 = 3.
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