
Proving Your Location Without Giving up Your Privacy

Wanying Luo & Urs Hengartner
Cheriton School of Computer Science

University of Waterloo
{w8luo,uhengart}@cs.uwaterloo.ca

ABSTRACT

Although location-based applications have existed for sev-

eral years, verifying the correctness of a user’s claimed loca-

tion is a challenge that has only recently gained attention in

the research community. Existing architectures for the gen-

eration and verification of such location proofs have limited

flexibility. For example, they do not support the proactive

gathering of location proofs, where, at the time of acquiring

a location proof, a user does not yet know for which applica-

tion or service she will use this proof. Supporting proactive

location proofs is challenging because these proofs might en-

able proof issuers to track a user or they might violate a

user’s location privacy by revealing more information about

a user’s location than strictly necessary to an application.

We present six essential design goals that a flexible location

proof architecture should meet. Furthermore, we introduce

a location proof architecture that realizes our design goals

and that includes user anonymity and location privacy as

key design components, as opposed to previous proposals.

Finally, we demonstrate how some of the design goals can

be achieved by adopting proper cryptographic techniques.

1. INTRODUCTION
Mobile devices, such as smartphones and PDAs, are play-

ing an increasingly important role in people’s lives. Location-

based applications take advantage of user location informa-

tion and provide mobile users with a unique style of resource

and service offerings. Today, it typically is a user’s mo-

bile device that determines the device’s location (e.g., using

GPS) and that sends the location to an application. This

approach makes it possible for a user to cheat by having

his device transmit a fake location, which might let the user

access a protected resource erroneously. Therefore, an appli-

cation might ask a device to prove that the device really is or

was at the claimed location. For example, a hospital might

limit access to patient information to doctors or nurses who

can prove that they are in (maybe a particular area of) the

hospital. Content that is generated by mobile users might

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile 2010, February 22–23, 2010, Annapolis, Maryland, USA.
Copyright 2010 ACM 978-1-4503-0005-6/10/02 ...$10.00.

be geotagged, and people who download the content should

be able to verify the location claim associated with the con-

tent [6]. A company might want proof from its repairmen

that they really followed a prescribed route during the day.

An insurance company might hand out discounts to drivers

who can prove that they take non–accident-prone routes for

their daily commutes. A person accused of committing a

crime is very much interested in being able to prove to the

police that he was somewhere other than the crime scene at

the time the crime was committed [7].

A location proof is an electronic form of document that

certifies someone’s presence at a certain location at some

point in time. A location proof architecture is a mechanism

with which mobile users can obtain location proofs from

proof issuers and with which applications can verify the va-

lidity of these proofs. In order to be truly useful, a location

proof architecture must be flexible. For example, in some

application scenarios, such as the insurance or police sce-

narios mentioned above, users might not know while being

at a particular location that they will need a proof for having

been at this location later on. Therefore, it must be possible

for users to gather location proofs proactively. However, the

proactive gathering of location proofs must be done care-

fully, otherwise proof issuers can track users and people’s

privacy will be in jeopardy. Moreover, different applications

have different requirements for the contents of a location

proof, such as the granularity of the certified location. For

example, an insurance company might want to know only

that a client drives around mainly in sedate Waterloo (as

opposed to busy Toronto), but not where exactly in Water-

loo. When a user does not know about the application that

a location proof will be used for, she also does not know

about the location granularity that will be required by the

application. Including fine-grained location information in

any location proof would solve this problem. However, pre-

senting such a proof to an application might reveal more

information than necessary about the user, and her privacy

would get violated.

Previous research has recognised the need for location

proof architectures (e.g., [6, 7]). However, none of the exist-

ing architectures is flexible enough to support all envisioned

use cases. We make the following contributions:

• We put forward six design goals for a flexible location

proof architecture. For each design goal, we elaborate

on its importance, how it contributes to the practi-

cality and usefulness of the architecture, and how it

potentially conflicts with other design goals.

• We present a location proof architecture that realizes

7



our design goals. The architecture can be deployed

on existing WiFi access points (APs) and is usable

by regular mobile users. Moreover, the architecture

demonstrates how cryptography can improve user pri-

vacy and system security. We are implementing and

deploying our architecture on a building-wide scale.

The rest of the paper is organised as follows: We first

motivate potential applications that benefit from location

proofs in section 2. Our design goals are specified in sec-

tion 3. We present our threat model in section 4, which is

followed by our location proof architecture in section 5. Sec-

tion 6 briefly discusses our implementation. We summarise

related work in section 7 and conclude in section 8.

2. MOTIVATION
Location-based access control: Role-based access con-

trol is not always sufficient in restricting access to confiden-

tial information. For example, a doctor or a nurse should

never be allowed to access patients’ medical records outside

hospital buildings. In this kind of scenario, information ac-

cess should also take users’ locations into account. Similarly,

a company that stores confidential customer information or

a crucial trade secret may forbid its employees from access-

ing the company’s database anywhere other than inside the

company premises, in fear that its employees may deliber-

ately or accidentally leak sensitive information.

Location-based social networking: Online social net-

works allow users to form social groups based on their geo-

graphical locations. Users are often bombarded by too many

unsolicited add-friend requests. In order to be sure that an

add-friend request comes from a person in the required geo-

graphical region, the user can ask for a location proof from

the request sender and accepts the request only if the sender

is able to present a valid location proof.

Related work [4, 5, 6, 7, 8, 9] lists some more applications

that use location proofs.

3. DESIGN GOALS
In order for a location proof architecture to be useful and

deployable in practice, the design of such an architecture

should meet the following requirements.

3.1 Scalability
Whereas some earlier work has suggested to let a central

entity issue location proofs [6], this approach does not scale

and makes deployment difficult. Instead, similar to Saroiu

and Wolman [7], we envision that individual APs or cell

towers issue location proofs. However, an AP or cell tower

usually needs to serve many users. If issuing a location proof

demands hefty computation, the performance will decline as

the number of users increases, and the architecture will not

scale. Furthermore, mobile devices have far less process-

ing power than a desktop computer, and processing uses

up battery power. Therefore, a location proof architecture

that involves intensive computation is impractical for both

APs and mobile devices. Although adopting certain cryp-

tographic operations may be necessary in a location proof

architecture, we should minimise their usage.

3.2 Application-Agnostic Location Proofs
A number of mobile applications are available nowadays,

and each location-proof-based application might use loca-

tion proofs in different ways. If a single location proof can

only be used for a specific application, a user has to obtain

several location proofs when she wants to prove her location

to many applications. Each proof would be crafted to fol-

low the requirements of a particular application. Whereas

this approach is adopted in some earlier work [9], we believe

that location proofs should be produced in an application-

agnostic manner such that the same proof can be repeatedly

used by the user and accepted by a variety of applications.

This reduces the workload for proof issuers dramatically and

benefits users for two reasons: a general location proof re-

duces storage space that a user has to spend on storing loca-

tion proofs; moreover, a general proof format relieves users

of the burden of having to constantly interact with location

proof issuers, and allows them to spend more battery power

and time on other business.

3.3 Proactive Location Proofs
Most previous research assumes that there are three par-

ties involved in a location proof architecture: a user who

intends to prove her location, a verifier (or an application

in other words) that offers a certain service to users who

possess a valid location proof, and a location proof issuer

who gives out location proofs. But more often than not,

users may not have a target application in mind and sim-

ply want to collect location proofs for future use, that is, a

verifier will be involved only later. For example, a spouse

or an employee might get wrongly accused by her partner

or employer, respectively, of having been at a certain loca-

tion; here, location proofs gathered during the day can help

resolve these accusations. A shopper might learn only after

having left a shop that the shop offered discount coupons

for future purchases to people in the store; here, with the

help of a location proof gathered while being in the store,

the shopper can still retrieve these coupons. In all these

scenarios, users have an incentive to collect location proofs

continuously, in particular, before using an application and

maybe even before knowing about the application. There-

fore, we distinguish between proactive and retroactive loca-

tion proofs:

• A retroactive location proof is a location proof

that is requested by a user to interact with a target

application.

• A proactive location proof is a location proof that

is collected by a user for future purposes, without hav-

ing a target application in mind.

Proactive location proofs tie in with application-agnostic

proofs; since a user will not know for which application(s) a

proof will be used for, location proofs should follow a general

format and contain no application-specific data.

3.4 User Anonymity
An important factor that concerns many users before they

adopt a new technology is whether their privacy will be un-

dermined by using the technology. To be widely adopted,

location proof architectures must invest every effort to guar-

antee user privacy. In particular, a user should be able to re-

main anonymous while acquiring location proofs. Anonymity

becomes particularly important for proactive location proofs.

Here, a user continuously gathers location proofs. If the

(maybe colluding) parties that issue location proofs learn

the user’s identity, the user would become trackable.

8



To ensure user anonymity, some previous work [5] uses

a broadcast-based approach to distribute location proofs.

Anyone who captures a token broadcast by an AP can use

the token as a location proof. However, captured tokens

can be redistributed at will, which opens the door to abuse.

Instead, we require that a location proof is tied to a specific

user and can be used only by this user.

This problem is challenging in that it poses a dilemma

to the architecture design: in order to vouch for a person’s

presence at a certain location, the location proof issuer has

to know who it is vouching for; however, by knowing the

identity of the person, the location proof issuer can track

that person by her location, thus compromising her privacy.

3.5 Location Privacy
Intuitively, a location proof has to contain location infor-

mation of some form. The location information in the proof

not only vouches for a person’s location, but might also in-

directly reveal sensitive information about that person (e.g.,

her interests) to a verifier, and the person’s location privacy

could get violated. For example, if a service is offered only

to mobile users in Waterloo, users who present a proof that

shows that they are at the headquarter of the Liberal party

in Waterloo not only prove their qualification to the ser-

vice, but also reveal more location and personal information

than necessary to the service provider. Therefore, the user

should be given the ability to control how much location

information to disclose in response to the location require-

ments of different applications and services. For retroactive

location proofs, a user can inform the proof issuer of the

required granularity for the location information contained

in the proof. For proactive location proofs, this is not pos-

sible since the user does not yet know about the granularity

required by an application.

Not only the location information contained in a location

proof can reveal a person’s location; so can the identity of

the proof issuer. We assume that APs (or cell towers) issue

location proofs. The location of APs is often available on

the Internet. As a consequence, even if a proof contains only

coarse-grained location information, it might still be possible

to learn a user’s fine-grained location simply by looking up

the location of the AP issuing the proof on the Internet.

In summary, to maintain a user’s location privacy, loca-

tion proofs need to support granularity, where the required

amount of granularity might be unknown at proof issuing

time, and location proofs should not reveal the issuer’s iden-

tity.

3.6 No Dedicated Hardware
One of the most significant limitations in many previous

proposals of location proof architectures is their reliance on

dedicated hardware. For example, the location proof pro-

tocol described by Sastry et al. [8] relies on the fact that

nothing is faster than the speed of light in order to compute

an upper-bound of a user’s distance. This technique is called

distance bounding [2]. Here, dedicated hardware is required

to measure signal round trip time with very high precision

and negligible processing delay. Putting dedicated hardware

into users’ cellphones is costly. While it is possible that fu-

ture cellphones will have this hardware, we want our loca-

tion proof architecture to be deployable immediately. More-

over, it is unrealistic to expect operators of existing APs to

purchase and configure additional hardware to provide loca-

tion proof services. Therefore, a location proof architecture

should not rely on any dedicated hardware.

4. THREAT MODEL
We consider the following threats in our architecture:

• Dishonest users. A dishonest user tries to obtain

location proofs that certify her presence at some place

at a particular time even if she was not there. Dis-

honest users may achieve this goal by colluding with

malicious intruders.

• Malicious intruders. A malicious intruder is not

interested in obtaining location proofs for her own use

but offers to help other users to get location proofs on

their behalf in exchange for other benefits like money.

We assume malicious intruders will not collude with

dishonest users to launch wormhole attacks, which we

address in detail below.

• Curious APs and applications. A curious AP tries

to learn a user’s identity while the user is acquiring a

location proof from the AP. Similarly, a curious appli-

cation tries to learn more location information from a

location proof than it really needs.

• Malicious applications. A malicious application ob-

tains location proofs from its users and then tries to

take advantage of these proofs to get unauthorised ac-

cess to other applications.

• Active and passive eavesdroppers. An eavesdrop-

per records and maybe modifies communication be-

tween users, proof issuers, or applications.

We do not consider the following threats:

• Wormhole attacks. A wormhole attack takes place

when a malicious party records network traffic in a re-

gion of the wireless network and replays it in another

region. For example, suppose two wireless devices A

and B are invisible to each other. A malicious de-

vice C within the transmission range of device A tun-

nels traffic from A to device B, which makes device B

appear visible to A. This kind of attack is extremely

hard to detect. In a location proof architecture, by

launching wormhole attacks, a user may collude with

several remote malicious intruders to simultaneously

obtain location proofs from APs in different places.

The only way to defeat wormhole attacks is to rely on

dedicated hardware and distance bounding techniques

as discussed in section 3.6. Since it violates our sixth

design principle, we do not consider this option.

• Weak identities. Device carriers are not always the

actual device owners. For example, a device may be

stolen or lent to a friend by the owner. Therefore, our

use of users’ public keys as their identities, as suggested

in section 5, may not be reliable, and this form of user

identity is deemed a weak identity. Saroiu and Wol-

man [7] propose several alternatives to achieve stronger

identities, but none of them is foolproof.

Both wormhole attacks and attacks that exploit weak iden-

tities can be instantiated in real wireless networks. Unfortu-

nately there are no easily deployable solutions against either

of them. Applications that need to protect access to highly

valued resources should therefore not rely only on our loca-

tion proof architecture for security. For other applications,

these threats can be ignored since the attacks tend to be ex-

pensive to instantiate, and their cost might be higher than

the value of the protected resource.

9



Granularity 1 2 3 4 5

Location country province city street building

Table 1: Location granularity

5. LOCATION PROOF ARCHITECTURE
In this section we first discuss how we achieve our design

goals. We then combine the pieces and present our location

proof architecture, followed by a security analysis.

5.1 User Anonymity
Our solution for user anonymity is based on cryptographic

hashes and digital signatures. Before issuing a location proof,

the issuer generates a nonce and sends it to the user. The

user concatenates the nonce with a nonce of her own and

signs them. The user’s nonce protects against attacks where

the proof issuer chooses non-random nonces in order to try

to make the user commit to a certain action.

Next, the user sends the hash of the signature and of her

nonce to the issuer. The hash in combination with the user’s

nonce serves two purposes: First, they act as a commitment

by the user to her signature. Once the commitment has

been released, it becomes computationally infeasible for the

user to find another signature/nonce combination with the

same hash value. Second, it hides the user’s signature and

therefore her identity from the proof issuer. Without the

user’s nonce, the proof issuer cannot infer any information

about the user’s signature and therefore her identity.

The proof issuer then creates a location proof. A location

proof is a statement signed by the issuer that includes the

location of the proof issuer (e.g., an AP), the current time,

the hash value received from the user, and the issuer’s nonce.

See Section 5.4 for the detailed protocol.

Later when the user submits the proof to an application

and is required to prove that she is the intended recipient

of the proof, she reveals her signature and her nonce. The

application first checks whether the hash value of the signa-

ture and of the nonce matches the hash value in the proof.

Then, it checks whether the signature covers the nonce in

the proof and the nonce from the user. See Section 5.5 for

the detailed protocol.

5.2 Location Privacy
To maintain a user’s location privacy, a location proof

issuer first defines several location granularity levels, such

as the five levels shown in table 1. When a user sends a

request for a retroactive location proof to a proof issuer,

the user should also specify a granularity level so that the

proof issuer can write location information of appropriate

granularity into the proof. (We discuss changes required for

proactive location proofs in Section 5.3.)

The location proof must be signed by the proof issuer. As

mentioned in Section 3.5, unless a user asks for a proof listing

her fine-grained location information, the proof issuer can-

not use the issuer’s private key for signing the proof. Oth-

erwise, an application could infer the identity of the issuer

and look up the issuer’s location on the Internet. Therefore,

we must hide the issuer’s identity from the application. The

immediate question is how can the application verify the

signature on the proof if the application does not know who

issued it? Group signature schemes [3] come to the rescue.

A group signature scheme allows a member of a group to

sign a message on behalf of the group while staying anony-

mous. Anyone can verify the validity of the signature with-

out learning who signed it. Only the group manager can

learn the signer’s identity. In practice, proof issuers belong-

ing to a certain corporation or geographical region would

form a group. For example, AT&T as a provider of WiFi

hotspots may deploy a group signature system on all its

APs. A proof issued by any member of the group will be

verifiable by the application, but the application has no way

of knowing which issuer created the proof. This way, AP’s

identities are hidden from the application.

5.3 Proactive Location Proofs
In the previous subsection, we assume that a user knows

which application to interact with and thus knows which

granularity to ask for. We defined this situation as a retroac-

tive location proof in section 3.3. But sometimes the user

may try to collect location proofs for future use, which means

she is unlikely to have a target application in mind and thus

is not clear what granularity to ask for. To support proactive

location proofs, we modify the table in the previous section

by adding a wildcard granularity level, *. If the user requests

location proofs in a proactive manner, she should specify *

as the desired granularity. On receiving such a request, the

proof issuer encrypts the five granularity representations of

the location with five different symmetric keys, and includes

the five ciphertexts in the location proof. It then sends the

signed proof with the five decryption keys to the user. When

the user finally wants to present the proof to an application,

she reveals the appropriate key to the application, which can

decrypt location information of a specific granularity level,

as required by the application.

5.4 Generation of Location Proof
Our protocol relies on cryptographic hashes, digital signa-

tures, and symmetric-key encryption. We use ST (m) to rep-

resent message m signed with T ’s private key. As usual, we

assume a hybrid signature scheme, where a message is first

cryptographically hashed and the signature is computed for

the hash value. Furthermore, we define Ek (m) to represent

message m encrypted using a probabilistic symmetric-key

encryption algorithm with key k. We assume that all par-

ties are in the possession of a public/private key pair, where

the public key is signed by a Certification Authority (CA).

Moreover, we assume that the private key is used for vari-

ous purposes by a user, not only for location proofs, which

increases the user’s incentive to protect her private key and

stops her from giving it to colluding users. Finally, we as-

sume communication is secured against passive and active

eavesdroppers with the help of TLS/SSL.

When a user is nearby an AP, she may execute the pro-

tocol in figure 1 to obtain location proofs from the AP. We

use the user’s public key as her identity, i.e. IDuser = Puser,

where Puser is the user’s public key signed by the CA.

1. The user sends a location proof request to the AP.

The request should contain a desired granularity g,

where g = 1, . . . , 5 (for retroactive proofs) or g = ∗
(for proactive proofs).

2. The AP generates nonce nAP and sends it to the user.

3. The user generates nonce nuser and sends the following

hash value to the AP:

H = hash (Suser (nuser ‖ nAP) ‖ nuser)

10



Figure 1: Location proof protocol

4. Finally, the AP creates a location proof with a group

signature and sends the proof to the user. The proof

is of the following format:

H ‖ location ‖ time ‖ nAP ‖

Sgroup (H ‖ location ‖ time ‖ nAP)

The“location”part of the proof is worth further clarifi-

cation. If the user asks for a retroactive location proof

by specifying a g value between one and five, the AP

simply includes location information of that particular

granularity. If the user requests a proactive proof, the

“location” part becomes a concatenation of five cipher-

texts, each of which is the encrypted form of location

information of a particular granularity. That is

location = Ek1
(L1) ‖ · · · ‖ Ek5

(L5)

where Li is location information of granularity i, where

i = 1, . . . , 5. Moreover, the AP should also send five

decryption keys, k1, . . . , k5, to the user in this case.

5.5 Verification of Location Proof
The user submits Suser (nuser ‖ nAP), nuser, Puser and the

location proof to the application. The application needs to

verify whether the user is in the possession of the private

key corresponding to Puser, for example, by setting up a

SSL/TLS connection with client authentication. The appli-

cation then computes the following hash value:

H
′

= hash (Suser (nuser ‖ nAP) ‖ nuser)

If H ′

equals hash value H contained in the location proof,

the application continues by verifying Suser (nuser ‖ nAP) us-

ing Puser and nAP, where the latter value can be retrieved

from the location proof. Finally, the application checks the

group signature in the location proof, where we assume that

the application is in the possession of the required public

key. In general, we assume that an application knows the

public keys of organisations that are trusted by the applica-

tion to issue location proofs. Only if all checks succeed, the

proof will be accepted by the application.

5.6 Security Analysis
By including only a commitment to a user’s signature in a

location proof, but not the actual signature, a user remains

anonymous while acquiring the proof. The commitment also

prevents a malicious application from re-using a valid loca-

tion proof obtained from a user for its own purposes. In

particular, the application cannot find a signature/nonce

combination with the same cryptographic hash value. The

signature needs to be issued by the application and needs

to cover nonce nAP, as included in the location proof, and

a nonce nuser of the application’s choice. The only way for

the malicious application to succeed here is to generate a

signature of its own that is identical to the user’s signature.

However, this would imply that the application can forge

signatures, which it cannot.

A dishonest user may collude with a malicious intruder

to launch a replay attack in an attempt to acquire loca-

tion proofs for a place where the dishonest user is no longer

located. Suppose a dishonest user successfully and legit-

imately obtains a location proof for a particular location.

The user then gives nonce nAP and Suser (nuser ‖ nAP ) to a

malicious intruder that is in the same area. The task of the

malicious intruder is to acquire further location proofs from

the same proof issuer on behalf of the dishonest user, who

has moved away. The only way for the malicious intruder

to succeed is to hope that the proof issuer is going to re-use

nonce nAP. However, since each nonce is used only once,

the malicious intruder cannot succeed.

In the above attack, it is also impossible for the malicious

intruder to sign a fresh nonce nAP herself, because under the

trust assumptions in section 5.4, she does not have the pri-

vate key of the dishonest user. The malicious intruder may

also try to set up a communication channel through which

she can send a fresh nonce nAP to the remote dishonest user

to have him sign the nonce in real time. This is a wormhole

attack, which we do not address in this paper.

Several APs could collude and track a user based on the

MAC address of the user’s device. However, for many de-

vices, it is possible to change their MAC address, which

makes tracking hard. Moreover, even if APs are able to

track a user, our protocol still prevents them from learning

the user’s identity.

6. IMPLEMENTATION
We have implemented our architecture and are deploying

it in a WiFi testbed [1]. The testbed covers two floors of the

Davis Centre at the University of Waterloo. It consists of 38

APs that are connected to a central controller, which also

issues location proofs in our implementation. This approach

reduces load on the APs and simplifies deployment. Consid-

ering that in many business environments APs and authen-

tication are centrally managed, it makes sense to have the

controller also issue location proofs. Users request location

proofs directly from a daemon running on the controller.

Each AP in the testbed is also an IP router and implements

NAT, which makes it easy for the daemon to learn the iden-

tity of the AP that a user is connecting to.

7. RELATED WORK
Denning and MacDoran [4] present a location-based au-

thentication system where a location signature sensor (LSS)

creates location signatures that describe the physical loca-

tion of the LSS at a particular time. A user carrying an

LSS can hand a location signature to an application, which

learns the user’s location based on the location signature.

This system lacks a strong binding between the location sig-

nature and the user identity. Therefore, a user can sell lo-

cation signatures to anyone. Moreover, the system relies

on dedicated hardware and supports only reactive location

proofs. In comparison, our architecture ties location proofs

to specific users, does not require dedicated hardware, and

supports also proactive location proofs.

Waters and Felten [9] introduce a system that allows a

11



device to obtain location proofs from a location manager

(LM) and submit proofs to a verifier. A device requests lo-

cation proofs by sending its device ID encrypted with the

public key of the verifier. The LM then sends the device

a nonce which the device immediately sends back upon re-

ception. The LM measures the round-trip delay and sends

the device a location proof containing the measured delay

and the encrypted device ID. A drawback of this system is

that a malicious intruder can craft fake device IDs and col-

lect location proofs on behalf of dishonest users, which is

not possible in our system. Moreover, Waters and Felten’s

system requires the device to know verifiers in advance and

does not support proactive location proofs.

Faria and Cheriton [5] design a location-based authenti-

cation architecture for wireless LANs. A centralised wire-

less appliance (WA) controls a group of APs and broad-

casts a set of random nonces through its controlled APs. To

prove its closeness, a client must capture and send all the re-

ceived nonces back to the WA. As argued in section 3.4, this

broadcast-based approach for distributing location proofs

is problematic, because no identity information about the

client is included in a proof, which is why we do not pursue

this approach in our solution.

Lenders et al. [6] describe a geotagging service that allows

a content creator to obtain a location/time certificate for the

content. Such a certificate proves the generation location

and time of the content. There are two major drawbacks of

this system compared to ours. First, their system relies on a

single trusted location/time verification party, which could

become a single point of failure, whereas in our architec-

ture APs become proof issuers, thus making the architecture

more robust. Second, the location/time certificates do not

bind the content and the certificate to the content origina-

tor; in other words, anyone can claim or disclaim ownership

of the content and its certificate. Our architecture achieves

a strong binding between a location proof and its owner,

while still keeping the anonymity of the owner to the proof

issuer.

Saroiu and Wolman [7] propose a mechanism for mobile

devices to acquire location proofs from APs. APs broadcast

beacons to announce their presence. A user wishing to ob-

tain a location proof must capture a beacon and extract a

sequence number from it. The user then signs and returns

the sequence number to the AP, which sends a location proof

to the user. This design is problematic from a privacy point

of view. First, to reduce the chance of being tracked, users

are responsible for deciding when to request location proofs.

But requiring a user to keep an eye on her own privacy is not

only unrealistic but also error-prone. Moreover, this design

makes the proactive collection of location proofs impossible

due to privacy concerns. In our architecture, privacy protec-

tion is a fundamental component, which enables proactive

location proofs. Second, Saroiu and Wolman’s system al-

ways reveals a user’s fine-grained location to an application,

which can violate a user’s location privacy.

8. CONCLUDING REMARKS
We formalised six essential goals that should govern the

design of location proof architectures. We elaborated on the

importance of these design goals with regard to their roles in

system functionality and their implications on user privacy.

In addition, we put forward a location proof architecture

that meets all design goals. We illustrated how crypto-

graphic techniques can aid in our design.

As part of the deployment of our proposed architecture,

we are going to evaluate it with several prototype applica-

tions, which will allow us to gain insights about the per-

formance of the proposed architecture. Furthermore, the

security of the architecture lacks formal proofs, which are

important, but left for future work since they are out of

scope here. Finally, finding defences against wormhole at-

tacks that do not rely on dedicated hardware is another area

of future work.

Acknowledgements

We thank the anonymous reviewers and our shepherd Ramón

Cáceres for their helpful comments. This work is supported

by the Natural Sciences and Engineering Research Council

of Canada.

9. REFERENCES
[1] N. Ahmed and U. Ismail. Designing a high performance

wlan testbed for centralized control. In TridentCom

2009: Proc. of 5th International Conference on Testbeds

and Research Infrastructures for the Development of

Networks and Communities, pages 1–6, 2009.

[2] S. Brands and D. Chaum. Distance-bounding protocols.

In EUROCRYPT ’93: Workshop on the theory and

application of cryptographic techniques on Advances in

cryptology, pages 344–359, 1994.

[3] D. Chaum and E. van Heyst. Group signatures. In

EUROCRYPT ’91: Workshop on the theory and

application of cryptographic techniques on Advances in

cryptology, pages 257–265, April 1991.

[4] D. E. Denning and P. F. MacDoran. Location-based

authentication: grounding cyberspace for better

security. In Internet besieged: countering cyberspace

scofflaws, pages 167–174, New York, NY, USA, 1998.

ACM Press/Addison-Wesley Publishing Co.

[5] D. Faria and D. Cheriton. No long term secrets:

Location based security in over provisioned wireless

lans. In HotNets-III: Proc. of the Third ACM Workshop

on Hot Topics in Networks, November 2004.

[6] V. Lenders, E. Koukoumidis, P. Zhang, and

M. Martonosi. Location-based trust for mobile

user-generated content: applications, challenges and

implementations. In HotMobile ’08: Proc. of the 9th

workshop on Mobile computing systems and

applications, pages 60–64, 2008.

[7] S. Saroiu and A. Wolman. Enabling new mobile

applications with location proofs. In HotMobile ’09:

Proc. of the 10th workshop on Mobile Computing

Systems and Applications, pages 1–6, 2009.

[8] N. Sastry, U. Shankar, and D. Wagner. Secure

verification of location claims. In WiSe ’03: Proc. of the

2nd ACM workshop on Wireless security, pages 1–10,

2003.

[9] B. Waters and E. Felten. Secure, private proofs of

location. Technical Report TR-667-03, Department of

Computer Science, Princeton University, January 2003.

12




