CHI 2018 Paper

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Evaluating Attack and Defense Strategies
for Smartphone PIN Shoulder Surfing

Hassan Khan, Urs Hengartner, Daniel Vogel
Cheriton School of Computer Science
University of Waterloo
{h37khan, urs.hengartner, dvogel } @uwaterloo.ca

ABSTRACT

We evaluate the efficacy of shoulder surfing defenses for PIN-
based authentication systems. We find tilting the device away
from the observer, a widely adopted defense strategy, provides
limited protection. We also evaluate a recently proposed de-
fense incorporating an "invisible pressure component" into
PIN entry. Contrary to earlier claims, our results show this
provides little defense against malicious insider attacks. Obser-
vations during the study uncover successful attacker strategies
for reconstructing a victim’s PIN when faced with a tilt defense.
Our evaluations identify common misconceptions regarding
shoulder surfing defenses, and highlight the need to educate
users on how to safeguard their credentials from these attacks.
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INTRODUCTION

Traditional smartphone unlocking mechanisms rely on some-
thing that the user knows such as PINs, passwords, or An-
droid’s pattern lock. These are widely available and widely
used [11, 12]. Despite the increasing availability of biomet-
ric options like fingerprint and facial recognition, traditional
mechanisms remain the fallback authentication in case the bio-
metric approach fails. Shoulder surfing attacks on traditional
methods are particularly devastating since the attacker does
not require any special equipment or skill. Therefore, signifi-
cant effort has focused on securing traditional authentication
mechanisms against such attacks [1, 5, 6, 16, 21, 29].

Although several defenses had been proposed, evidence sup-
porting the prevalence of shoulder surfing in the wild was
missing until recently [7, 12]. Harbach et al. [12] conducted
an online survey (n=260), and a field study (n=52), to show
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that 35% of their participants were concerned that someone
may observe them during smartphone unlocking and steal their
credentials. During the field study, participants indicated that
shoulder surfing was a possibility for 17% of the sampled
device usage sessions. When shoulder surfing was possible
in non-public settings, the potential attacker was most often
a malicious insider, like a co-worker or a family member.
Furthermore, the most widely used shoulder surfing defense
reported was tilting the device screen away from the observer
(28% of the participants). Other research found that the choice
of this defense was motivated by users’ inclination to react in
a subtle way when the observer was an acquaintance [7, 19].

In addition to user-initiated defense strategies, several shoul-
der surfing resistant variations of traditional authentication
mechanisms have been proposed by researchers [5, 6, 22].
Most require significant changes to the contemporary PIN en-
try interface [22] or add new out-of-band communication [6].
One recent promising approach requires no changes to the
PIN user interface, but leverages capacitive touchscreens that
sense pressure [1, 16]. Here, a user can explicitly apply more
pressure to a subset of PIN key touches as a part of their se-
cret. Lab experiments demonstrate that this “invisible pressure
component” [16] prevents shoulder surfing [16].

We subject the defense strategies of tilting the screen to enter
a 4-digit PIN (“PIN”) and entering pressure-sensitive PINs
(“ForcePINs”) to shoulder surfing attacks. We record videos
of 30 victims entering a PIN and a ForcePIN from two unob-
structed views (top and side of the device) and a side view
where the device screen is tilted away from the camera. We re-
cruit 30 attackers to mount over 1,000 shoulder surfing attacks
by watching videos of victims. We also elicit feedback from
attackers on the strategies they used against both defenses.

Our results show that tilting the device screen provides limited
protection. For 45% of attacks on this tilting defense, the
attackers were able to correctly guess the complete PIN by
observing their victim authenticate an average of three times.
For another 50% of the attacks, the attackers were able to
partially guess the PIN digits. In terms of attacker strategies,
attackers who paid attention to the pattern of relative finger
movement (i.e., movement in direction and distance relative
to the previous tap) performed significantly better than the
attackers who guessed only based on the current position of
the finger and the layout of the keypad.
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ForcePINs failed to provide any advantage over PINs against
shoulder surfing attacks. All attackers identified and exploited
the timing side channel in ForcePINs, where entering digits
with high pressure took longer than entering digits with normal
pressure. Consequently, for 94% of the attacks, the attackers
were able to completely guess the PIN along with the pressure
digits. In all but two attacks on ForcePIN, all pressure digits
were guessed correctly.

The main contributions of this paper are:

e Examination of effects of different viewing angles and view-
ing distances on shoulder surfing.

e Identification of a common misconception, namely that
tilting the device screen away from an observer protects the
PIN.

e Evidence that the “invisible pressure component” assump-
tion [16] does not hold for ForcePINs due to the presence
of a timing side channel.

o Identification of (successful) strategies adopted by attackers
to circumvent shoulder surfing defenses.

RELATED WORK
We discuss only literature related to shoulder surfing attacks
on smartphones.

Shoulder Surfing in the Wild & Users’ Countermeasures
Only a few studies have empirically evaluated the susceptibil-
ity of knowledge-based authentication mechanisms to shoulder
surfing attacks. Schaub et al. [20] conducted lab experiments
to investigate the susceptibility of password entry on differ-
ent smartphone platforms to shoulder surfing attacks. They
demonstrated significant differences for shoulder surfing suc-
cess for different keyboards and showed that keyboards with
low usability were less susceptible. Von Zezschwitz et al. [23]
evaluated the shoulder surfing susceptibility of Android’s pat-
tern lock and demonstrated that it is highly influenced by
pattern length, line visibility, number of overlaps and number
of intersections. Ye et al. [28] developed a smartphone app
that can be used by an attacker to record and crack (using
computer vision techniques) a user drawing Android’s pattern
lock in five attempts or less. In their ongoing research, Davin
et al. [3] outlined a method to measure and compare the effi-
cacy of shoulder surfing attacks on smartphone authentication
mechanisms. However, they offered no conclusive suggestions
from their preliminary findings and indicated that extensive
experiments are a part of their ongoing work.

Researchers have also measured users’ perceptions of the
threat posed by shoulder surfing and in-the-wild shoulder surf-
ing experiences. Harbach et al. [12] conducted an online
survey and a field study with 260 and 52 participants, respec-
tively, to understand smartphone unlocking behaviour and the
threat posed by shoulder surfing. Their online survey indicated
that 35% of users were concerned that someone may observe
their secret when they were entering it. During the field study,
through in-situ feedbacks, users indicated that shoulder surfing
was a possibility for 17% of their device usage sessions. The
top three defenses used by the participants against shoulder

Paper 164

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

surfing included: tilt screen away (27.7% of the participants),
wait a moment (16.2%), and turn around (11.2%).

Eiband et al. [7] surveyed 174 participants to elicit stories
about shoulder surfing incidents (not restricted to authentica-
tion) from both victims and observers. 48% of the respondents
admitted to shoulder surfing and 33% of the respondents men-
tioned catching someone in the act. Victims included strangers
(74% of the victims), acquaintances (20%) and other (6%). In
6% of the incidents, authentication data was shoulder surfed.
In terms of the top three defenses, respondents reported: turn
display/body away (43% of the respondents), put device down
(13%), and turn device off (13%).

The efficacy of the most widely adopted defense (tilting the
device screen) has not been established. Therefore, it is impor-
tant to understand the efficacy of tilting as a defense.

Defenses Against Shoulder Surfing Attacks

Several shoulder surfing resistant solutions have been pro-
posed for knowledge-based authentication systems. Harbach
et al. [12] broadly classified them into four categories: (i)
indirect input systems; (ii) additional layer of implicit bio-
metric systems; (iii) input obfuscation systems; and (iv) non-
observable channel systems. We provide a brief overview and
canonical examples for each system.

Indirect input systems display a challenge on one interface
and require a response on another interface (such as back-of-
device [5, 6]) or device (such as Google Glass [26]). The
requirement of an additional interface or device is an inherent
limitation of these systems.

Researchers have proposed systems that provide an additional
layer of defense by also considering the touch input behaviour
of the device user during authentication [4, 14, 21]. However,
in earlier work, we demonstrated that touch input behaviour
can be mimicked through shoulder surfing attacks [15].

Input obfuscation systems transform the secret entry interface
to prevent shoulder surfing [10, 17, 22, 27, 29]. However, most
proposals are complex and reduce usability [12]. For instance,
SwiPIN [22] transforms the interface by presenting PIN digits
in red and yellow coloured layouts. It also presents the PIN
entry fields in the same coloured fields. The user inputs digits
through the swiping or tapping gesture in the entry field that
corresponds to the layout colour of their digit. After each digit
input, the layouts are randomized again. Wiese and Roth [25]
demonstrated that the increased complexity of SwiPIN (and
similar schemes) can be broken through 6-11 observations by
a human observer followed by computer-based simulations.

Systems that establish non-observable channels include ap-
proaches that use the pressure dimension [1, 16, 18] and tactile
feedback [2]. The former approaches exploit the observation
that smartphone touchscreens are capable of distinguishing
different pressure levels. Krombholz et al. [16] proposed a
scheme where a user adds explicit pressure to a subset of the
entered digits. Introducing a binary state for pressure (nor-
mal/high) increases the password space of a 4-digit PIN from
10* to 20*. They conducted two experiments to demonstrate
that their scheme is resilient to shoulder surfing attacks. In
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the first experiment, one of the authors acted as a shoulder
surfer. In the second experiment, one of the authors entered
ForcePINs collected from the participants on camera and two
unrelated observers mounted 50 attacks in total. The authors
acknowledge the limited nature of their evaluation. Arif et
al. [1] proposed a similar scheme and argued that: “...in the-
ory it should be more difficult to guess the amount of pressure
applied on a key just by observing the user”.

ForcePINs are the most promising defense since they: (i) do
not change the PIN interface so they are easy to deploy and
understand; (ii) require only a small change to how PINs are
entered so they are easy to use; and (iii) do not requite any new
hardware [16]. However, a rigorous evaluation of shoulder
surfing attacks on ForcePINs has not been performed.

STUDY

Threat Model

The attacker is in close vicinity of the victim during authen-
tication and may be a stranger or a malicious insider. The
former may have observed the user entering their PIN only
once in a public place (e.g., a coffee shop) while the latter (a
spouse or a co-worker) may have repeatedly observed the user.
An attacker may also use their smartphone to secretly record
the user authenticating thereby enabling them to repeatedly
observe the victim. Other influential factors include the view-
ing angle (e.g., from the side vs. the top when the victim is
sitting and the adversary is passing by) and the distance from
the victim. Attackers may gain access to the victim’s device
when it gets lost or stolen or is left unattended. The device
may limit incorrect attempts, thereby preventing bruteforcing.

The tilting defense requires that the victim chooses a tilt angle
such that the attacker cannot see the device screen or the
location of the finger tip used for PIN entry on the device
screen. However, in practice, the tilt angle is subjective, and
different users may tilt the screen of their devices differently.
In order to objectively measure the efficacy of tilting, we
attempt to capture the natural behaviour of users when they
are tilting their device away from the observer.

For the ForcePIN defense, we use the same threat model as
Krombholz et al. The adversary is able to “clearly observe all
sensitive information” and “observe the typing behaviour”.
Therefore, we assume that the adversary can clearly observe
the ForcePIN that is entered and is also able to watch the
ForcePIN entry behaviour. Since device tilting is a common
defense strategy adopted by users, we also investigate the
scenario where the tilting and ForcePIN defense strategies are
used in combination.

Design

We conduct a lab study to investigate the efficacy of the two
defense mechanisms. We consider four conditions: (i) PIN: no
defense during standard PIN entry; (ii) Tilt: tilting the phone
to hide PIN entry from attackers; (iii) ForcePIN: selectively
adding pressure during PIN entry to a subset of digits; and
(iv) ForcePIN-Tilt: a combination of ForcePIN and Tilt. The
no defense baseline is introduced to compare the attackers’
success for the two defenses against an unsuspecting victim
who is entering a standard PIN.
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Independent variables: We treat the viewing angle of the at-
tacker as an independent variable. We investigate two viewing
angles: a top view and a side view (Figure 1). The viewing
angle is of interest for PIN and ForcePIN. Since Tilt requires
tilting the device screen away from the observer, testing from
multiple observer angles is not meaningful. A related aspect
for tilt is the tilt angle and we investigate it in the “Discussion”
section.

Dependent variables: The dependent variables include: (i)
attacker success rate; (ii) number of observations required;
and (iii) number of incorrect guesses. The attackers’ success
is measured in terms of correct (all four digits) or partially
correct guesses (between 1-3 digits in their correct order).
For ForcePIN, the correct guess of the pressure digit(s) is
also important and we report it separately to quantify the
protection offered by this feature. The other variables, number
of observations required and the number of incorrect guesses,
capture the effort required by an adversary to bypass a defense.

DATA COLLECTION

To conduct attacks under the investigated variables, we re-
quired videos of users entering PINs, entering ForcePINs, and
entering PINs or ForcePINs while tilting their device screen
away from the observer. We now describe the data collection
setup and descriptive statistics of the gathered data. We re-
ceived approval from our university’s IRB for all experiments
involving human participants.

Apparatus

We developed an Android app to configure and enter PINs
and ForcePINs. Our app presents a PIN keypad to users that
is identical (in terms of layout and key sizes) to the standard
PIN keypad of Android 6.0. In addition to recording PIN
entry time, every time a user enters a digit, our app logs the
raw pressure value (returned between 0 and 1 by Android
API’s MotionEvent.getPressure()) and the keyhold in-
terval. All experiments were conducted on a Nexus 5 device.

For ForcePINs, we performed a pilot experiment (n = 3) to
determine the threshold for the high pressure level. Subjects
were asked to apply normal and high pressure on the screen
surface when entering PINs. Our experiment showed that
subjects reliably produced a high pressure level over the value
of 0.7 (i.e., no normal pressure input accidentally exceeded
this value). We, therefore, use this value as the threshold.

While Arif et al. do not use haptic feedback for input with
high pressure, Krombholz et al. use vibration-based feedback.
During the pilot study, we found that haptic feedback was
helpful as it enabled users to reliably register high pressure
input. Therefore, we used vibration-based haptic feedback. To
ensure that haptic feedback was not used as a side channel by
the attackers, we muted the audio in the footage.

Shoulder Surfing Videos

For our experiments, we need authentication videos of users
against four conditions—PIN, ForcePIN, Tilt, and ForcePIN-
Tilt. For PIN and ForcePIN, we captured videos from two
viewing angles: a top view and a side view. Each angle pro-
vided an unobstructed view of the participant’s finger on the
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(a) View from top

(b) View from side
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(c) View with device tilted

Figure 1. The shoulder surfing views evaluated in this work (cropped images).

touchscreen and the numeric pad (see Figure 1). For Tilt and
ForcePIN-Tilt, users were asked to tilt their device away from
the camera as a defense against shoulder surfing. We did not
explicitly tell the participants how much to tilt the device. This
effectively captured the subjective nature of the tilt angle.

All videos were shot in 1080p format (1920x1080 pixels) with
a frame rate of 30 FPS. The camera was held between 30—45
centimeters away from the smartphone such that the smart-
phone occupied 5-10% of the video frame. We assume an
“over-the-shoulder” attack scenario: the adversary was seated
60 centimeters apart from the screen displaying a victim’s
device in its real-life size.

Collection Procedure

We recruited participants through local advertisement websites
mouth advertising. The recruited participants were first asked
to configure a 4-digit PIN and then enter it ten times. They
were asked to enter it three more times to facilitate recording
of videos in the aforementioned angles. Videos were shot in
the following order: the side view, the top view, and the side
view with the device screen tilted.

Participants were then introduced to ForcePINs. They were not
informed about ForcePINs earlier to avoid any change in their
input behaviour. Participants repeated the aforementioned
steps for ForcePINs, where they were instructed to configure
a ForcePIN with at least one pressure digit. Participants were
permitted to reuse the PIN that they chose for the previous task.
Before entering their ForcePIN ten times, participants were
given the opportunity to get familiarized with it by entering
it as many times as they wanted on an interface that provided
visual feedback (pressure digits in bold typeface).

Data Statistics

The data collection part of the experiment was completed by
30 participants. 60% of the participants were male. 56% of
the participants were between the ages of 18-25 years, and
the rest were between 26-30 years old. All participants were
graduate students. In terms of authentication preferences on
their smartphones, 33% used PIN, 33% used Android’s pattern
lock, and the rest used fingerprint. For PIN and ForcePIN, we
shot 60 videos each (30 for each of the top and side views). For
Tilt and ForcePIN-Tilt, we shot 30 videos each from the side
view. The tilted videos of two participants were excluded as
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their screen was visible (tilt angles < 10°). Raw data against
300 PIN and ForcePIN entries was logged.

The majority of participants (19/30) chose a ForcePIN where
only one digit was entered with high pressure. From now on
we call such a digit a “pressure digit”. In terms of the distri-
bution of the pressure digit among the four digits, we observe
that eight, six, five and two participants chose the first, second,
third and fourth digit, respectively. Eight participants chose
a ForcePIN with two pressure digits while only three partici-
pants chose three pressure digits. Finally, eleven participants
chose the same sequence of digits for their PIN and ForcePIN.

SHOULDER SURFING ATTACKS

Experiment Protocol

We recruited 30 participants using the same method as in the
data collection part of the experiment. 53% of the partici-
pants were male. 60% of the participants were between the
ages of 18-25 years, 27% were between 26-30 years and the
rest were over 30 years old. 87% of the participants were
graduate students and the rest were professionals. In terms
of authentication preferences on their smartphones, 47% used
PIN, 30% used Android’s pattern lock, and the rest used finger-
print. A subset of 22 participants had also participated in the
data collection. (Participants never attacked their own videos.)
Participants who had not participated in the data collection
were first asked to perform the same steps as the other par-
ticipants during data collection (i.e., configuring and entering
a PIN and ForcePIN) but their video was not recorded. This
step was taken to ensure that all attackers were primed in the
same way with the knowledge of defenses.

Participants were informed that they would observe shoul-
der surfing footage to identify PIN digits (in correct order)
and pressure digits for the ForcePIN condition. Each partici-
pant attacked 24 unique victims against the following condi-
tions: (i) PIN: four PIN entries each from top and side views;
(i1) ForcePIN: four ForcePIN entries each from top and side
views; (iii) Tilt: four PIN entries with tilting defense; and (iv)
ForcePIN-Tilt: four ForcePIN entries with the tilting defense.
These conditions were counterbalanced across participants.

For each video, the researcher played it once and then asked
participants whether they would like to guess the PIN (or
ForcePIN) by telling it to the researcher or watch the video
again. Participants were allowed to watch a video as many
times as they liked. If they guessed an incorrect response, they
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Figure 2. Success rates by condition and viewing angle (95% CI error
bars).

were only told that the response was incorrect. They were
not told if it was partially correct or whether the mistake was
made for the pressure digit(s). Participants were given the
opportunity to make up to three guesses before continuing to
the next victim. Participants were given pen and paper to take
notes and a smartphone that they could use to recall the keypad
layout during the experiment. Once participants completed
the shoulder surfing task, they were asked about their strategy
for guessing the secret. Participants were paid $10.

Results

We now report how successful attackers were at guessing the
victim’s secret and the amount of effort required. For test
statistics, we use a paired t-test when comparing between two
conditions (e.g., side view vs. top view for PIN) and a one-
way ANOVA when comparing more than three conditions
(e.g., PIN vs. ForcePIN vs. Tilt vs. ForcePIN-Tilt). Post hoc
comparisons using multiple pairwise t-tests are used only if
the ANOVA test is significant. For data that is not normally
distributed, we use a Kruskal-Wallis test and perform post
hoc comparisons using multiple pairwise Mann-Whitney rank
tests. In all cases, a p < 0.05 critical value is used for sta-
tistical significance. For multiple comparisons of the same
data category, we apply Bonferroni correction to p-values (and
set the significance cut-off at &/n, where n is the number of
multiple comparisons [13]).

Attacker success

A correct guess is when the attacker identifies the digit (and
pressure setting for ForcePIN) in the correct sequence position.
We report the success rate for completely correct guesses. We
also report the success rate for partially correct guesses, where
one or more digits (including pressure setting for ForcePIN)
are correct. Success rates for partially correct guesses sug-
gest a trend and a vulnerability. Guessing one or more digits
suggests an attacker could make a completely correct guess
with more observations. Guessing all but one digit means the
attacker could mount a bruteforce attack to find the remaining
digit. Recall that attackers were allowed up to three guesses;
we report the guess closest to the victim’s secret.

In Figure 2, we report the attack success rate by defense
method (including PIN, which is no defense) and different
viewing angles when applicable. Attackers were able to suc-
cessfully guess the complete secret for PIN and ForcePIN in
over 97% of the attacks, and they were able to partially guess
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Figure 3. Number of observations required for correct or partially cor-
rect guesses.

the secret for the remaining attacks. An alarming result is
that for ForcePIN, in all but two attacks, all pressure digits
were guessed correctly. For Tilt, attackers were able to cor-
rectly determine the PIN for 43% of the attacks. For another
23%, attackers guessed three digits, and for another 22%, they
guessed one or two digits correctly. For ForcePIN-Tilt, the
success rates were comparable to Tilt.

We also measure the effect of the viewing angle on the correct
guess success rate for PIN and ForcePIN. A t-test comparing
side and top views for PIN indicates no statistically significant
difference (¢ = 1.0, p = 0.64). Similarly, a t-test comparing
side and top views for ForcePIN indicates no statistically sig-
nificant difference (1 = 2.04, p = 0.10). For the remaining
results, we focus on the side view since it is common to all
defense conditions including Tilt.

Of particular interest is whether ForcePIN, Tilt, or the com-
bined ForcePIN-Tilt made a significant reduction in attacker
success rates. A one way ANOVA indicates a significant ef-
fect of defense type on attackers’ correct guess success rate
(F330 = 63.15,p < 0.001). Post hoc comparisons using the
Tukey HSD test showed no significant difference between PIN
(M=0.98; SD=0.06) and ForcePIN (M=0.91; SD=0.12), and
between Tilt (M=0.45; SD=0.23) and ForcePIN-Tilt (M=0.5;
SD=0.27) defenses (all p > 0.07). There were significant dif-
ferences between the group including PIN and ForcePIN and
the group including Tilt and ForcePIN-Tilt (all p < 0.001).
Our results show that tilting provides some increased protec-
tion compared to no defense, but ForcePIN does not.

Attacker effort

We use two metrics to capture the amount of effort an attacker
required for correct or partially correct guesses. First, we
report the number of observations an attacker required for a
correct or partially correct guess. Second, we report the num-
ber of incorrect guesses an attacker made during the shoulder
surfing attack. This is critical since a victim’s device may lock
out the attacker after a certain number of incorrect authentica-
tion attempts. Note that our setup is similar to the real-world
scenario in that the attacker is only provided accept or reject
feedback and no other information about their guess. Since,
in the real world, attackers may make multiple observations
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Figure 4. Number of incorrect guesses before a correct or partially cor-
rect guess is made.

before gaining access to the victim’s device, these metrics
effectively capture the attacker effort.

Figure 3 shows the number of observations required for a cor-
rect (Figure 3(a)) and partially correct (Figure 3(b)) guess for
the PIN, ForcePIN, Tilt and ForcePIN-Tilt conditions. Fig-
ure 3(a) shows that 40% and about 85% of participants re-
quired one or at most two observations only, respectively, to
correctly guess the secret for both PIN and ForcePIN. Fur-
thermore, over 90% of the attackers required at most three
observations to correctly guess the secret for PIN and For-
cePIN. For Tilt and ForcePIN-Tilt, 20% and 15% of the partic-
ipants, respectively, required one observation to make a correct
guess. At most four observations were required by 80% of the
attackers to make a correct guess for Tilt and ForcePIN-Tilt.

Figure 3(b) shows the number of observations required for
partially correct guesses. Since most attacks on PIN resulted in
correct guesses, we do not have enough data to report against
it. For partially correct guesses on ForcePIN, 50% of attackers
required only one observation while 90% required at most two
observations. For Tilt and ForcePIN-Tilt, only 8% and 7% of
the participants, respectively, required only one observation to
make a partially correct guess. At most five or at most seven
observations for Tilt and ForcePIN-Tilt, respectively, were
required to make a partially correct guess. While Tilt requires
more observations, given that an average user unlocks their
smartphone 47 times a day [12], it would likely be easy for an
insider to repeatedly observe a victim.

Figure 4 shows the number of incorrect guesses made before a
correct (Figure 4(a)) and a partially correct (Figure 4(b)) guess
is made. Figure 4(a) shows that for both PIN and ForcePIN
only two attackers made an incorrect guess before correctly
guessing the secret. For Tilt and ForcePIN-Tilt, 63% and
70% of attackers required one incorrect guess before making a
correct guess, respectively. Only at most two incorrect guesses
were made by over 90% of the attackers before making a
correct guess for Tilt and ForcePIN-Tilt.

Figure 4(b) shows the number of incorrect guesses made be-
fore a partially correct guess. Since most attacks on PIN
and ForcePIN resulted in correct guesses, we do not have
enough data to report against this metric for them. For Tilt
and ForcePIN-Tilt, only 31% and 33% of the participants, re-
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spectively, made one incorrect guess before making a partially
correct guess. Over 80% of the attackers made at most two
incorrect guesses for Tilt and ForcePIN-Tilt, respectively, to
make a partially correct guess. These results show that while
tilting is relatively more resilient, ForcePIN fails to provide
any advantage over PIN against shoulder surfing attacks.

Effect of the Viewing Distance on Attackers’ Success
The results reported above are based on an “over-the-shoulder’
attack scenario, where the adversary was 60 centimeters from
the victim’s device. This is obviously a desirable scenario for
the attacker, but it is also easily achievable in real settings [7]
and has been the focus of previous studies [16]. Regardless,
it is informative to see if attacker efficacy degrades when
observing the victim from a distance, such as across a room.

s

To examine this, we conducted a small experiment with ten
participants attacking ten victims against each of the PIN,
ForcePIN and Tilt conditions from a distance. We did not
evaluate the ForcePIN-Tilt condition because our previous
results show that the attackers can defeat Tilt in most cases,
so ForcePIN-Tilt unlikely offers more protection when tilted.
The protocol was exactly the same as our main experiment,
but this time the attacker viewed videos on a television placed
5.5 meters away (the average length of a living room in an
average new house [8]). The video player frame size was
adjusted so the size of the smartphone matched its real-life
size. This simulating enabled us to re-use videos from the
main experiment and we were concerned that shooting videos
from across the room would make protecting the anonymity
of participants difficult.

In Figure 5, we show the success rate of attackers against PIN,
ForcePIN and Tilt when the victim is near and far. All near
attack data is from the main 30-participant experiment. For
the far distance, the average success rate for correct guesses is
86%, 91% and 52% for PIN, ForcePIN and Tilt, respectively.
Furthermore, for 94%, 99% and 70% of the attacks for the
far distance, attackers were able to correctly guess at least
three digits (including the pressure digit for ForcePIN) for
PIN, ForcePIN and Tilt conditions, respectively.

We compare the correct guess success rate of attackers between
near and far cases using independent samples t-tests. There is
a significant difference between near and far cases for PIN (¢ =
5.01, p < 0.001). The success rate for PIN is 12% lower when
attacked from far away. This matches our intuition; it should
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Figure 6. Success rates against different attack strategies (95% CI error
bars; L+P = Landmark+Pattern).

be more difficult to shoulder surf from far away. Surprisingly,
there are no significant differences between near and far case
for ForcePIN or Tilt.

The average ForcePIN success rates in our measured data are
very similar, including distributions. Without additional ex-
periments, we can only speculate that the act of providing
pressure digits is somehow compensating for any loss of ef-
ficacy at increased viewing distance. For Tilt, we believe the
reason is that attacks on tilting are already difficult given the
low success and high variance, so a small increase in difficulty
when attacking at a distance may not be detected.

We also compare the number of observations required to make
a correct guess between near and far cases using independent
samples t-tests. A t-test between near (M=1.99; SD=1.2) and
far (M=7.85; SD=4.08) cases for Tilt indicates significant
differences (t = 12.41, p < 0.001). No significant differences
were found between near and far cases for PIN and ForcePIN
(all p > 0.45).

DISCUSSION

We note that a surprisingly large number of attacks against Tilt
were successful. Furthermore, since we allowed the attackers
to make at most three guesses, the tilting defense may not be as
effective against determined insiders using repeated observa-
tions combined with bruteforcing or for strangers recording the
victim authenticating. Another influencing factor is the cop-
ing strategy of users against insiders. Users may adjust their
strategy depending on their relationship with the observer, for
example avoiding using the device instead of tilting to avoid
signs of mistrust [7].

In this section, we first investigate different strategies adopted
by attackers to bypass Tilt and the related secondary factor
of tilt angle. We then report attackers’ strategies against For-
cePIN and the effect of attackers’ viewing distance. We ground
our discussion in additional analysis of our attack data.

Attackers’ Strategies Against Tilt Defense

We asked attackers what they watched for to guess the se-
cret digits for the Tilt defense. For qualitative analysis of
their responses, three researchers coded all participant re-
sponses using the grounded theory approach [9]. An inter-rater
agreement between the three researchers was almost perfect
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(Fleiss’s k = 87%). The discrepancies were resolved by pick-
ing the majority code (there were no ties). The strategies of
attackers were categorized under the following labels:

Keypad: Attacker watches for finger intersection with keys
in the keypad. For example, “where the thumb was... could be
within a set of keys”.

Landmark: Attacker watches the absolute position in a co-
ordinate frame defined by fixed element on the phone or user
interface. For example, “how their thumb was moving from
the start point... for start point how far from sides [corners]
and enter key”

Pattern: Attacker watches the pattern of relative finger move-
ment in terms of direction and distance from the last tap loca-
tion. For example, “movements of their thumb and how far
apart or which direction they were from the last one”

Figure 6 shows the correct guess success rate against each
strategy. The Keypad strategy was adopted by twelve attackers
who had an average success rate of 36%. The Landmark
strategy was used only by two attackers and they achieved
a success rate of 50%. Twelve participants used the Pattern
strategy to achieve a success rate of 55%. Four participants
used a combination of Landmark and Pattern strategies. Their
responses included: “relative distance between keys... corners
of the screen and enter key location was helpful”. These
participants achieved a success rate of 55%.

A one way ANOVA indicates a significant effect of strategy
on attacker success (F3 5 = 4.04, p = 0.01). Post hoc com-
parisons using the Tukey HSD test showed only a significant
difference between Keypad (M=2.83; SD=1.33) and Pattern
(M=4.81; SD=1.40) strategies. These results show that the
attackers who adopt a strategy beyond a simple visual hit test
on a target have a better chance of success.

Effect of Tilt Angle on Attackers’ Success

Recall that we placed no restriction on how victims adjust the
tilt angle of their device for the Tilt condition. This enabled
us to capture the natural behaviour of participants, but it also
enables us to investigate the influence of tilt angle based on
these natural variances. To measure tilt angle, three people
independently viewed all 28 videos (two videos where the
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screen was visible were excluded) used for the Tilt condition
and estimated the tilt angle in 5° intervals for each. Estimated
tilt angles for each video differed by 10° on average (SD=7°),
11 videos differed by 5° or less, 12 videos differed by 10° or
15°, 5 videos differed by 20° or 25°. For each video, we use
the mean of the three estimated angles given by the raters. The
overall mean estimated tilt angle was 45° (SD=22°) with a
minimum angle of 15° and maximum angle of 88°.

Figure 6.1 shows the correlation between success rates for
guesses and tilt angle in victim video. An increase in the tilt
angle results in a corresponding decrease in the correct guess
success rate, and a corresponding increase in the success rate
for partial guesses of 1 or 2 digits. The success rate for partial
guesses of 3 digits remains about the same. This balanced
trade-off follows from the relationship between completely
correct and partially correct guesses. As expected, these trends
suggest that making a correct guess becomes increasingly
difficult for higher tilt angles.

Figure 6.1 also shows that no attacker was able to correctly
guess the PIN when a tilt angle of 70° or higher was used.
However, attackers were still able to partially guess the PIN
when a tilt angle close to 90° was used. This was possible due
to the Landmark+Pattern attack strategy, where some attackers
paid attention to the thumb movements near the corner of the
device screen to determine whether they pressed digits in the
first column (i.e., 1 or 4 or 7).

We calculated linear regressions to see if success rates can
be predicted using tilt angle. The linear relationship with
correct guess success rate is significant (F] 26=78.62, p <
0.0001, R? = .75) and can be predicted using: 0.9881 —
0.01208 * tilt_angle. The linear relationship with partially
correct guesses of 1 or 2 digits is also significant (F 26=106.3,
p < 0.0001, R?> = .80) and can be predicted using: 0.1461 +
0.0088 * tilt_angle. No significant linear relationship was
found for partial guesses of 3 digits (F726=0.01, p = 0.9,
R? =0.0005).

Attackers’ Strategy Against ForcePIN Defense

We asked attackers about the strategy they used to guess For-
cePIN. All 30 attackers indicated that they determined pressure
digits through timing differences between pressure digits and
non-pressure digits. We analyze the logged data to confirm
this. First we compare the entry times between PIN and For-
cePIN. We use the same definition as Krombholz et al. and
define entry time as the duration between the key down event
for the first digit and the key release event for the enter key.
Entry times for PIN and ForcePIN are provided in Figure 8(a).
On average, users take 1.7s (M=1.4s; SD=0.92s) to enter PINs
whereas ForcePIN entry takes 3.2s (M=2.5s; SD=2.1s). An
independent samples t-test indicates this 1.5s difference be-
tween PIN and ForcePIN is significant (f = -10.8, p < 0.05).
This corroborates the findings of Krombholz et al. and Arif
et al. — both found statistically significant differences for
entry times between PIN and ForcePIN. Krombholz et al. also
reported ForcePIN took 1.3s longer to enter, very similar to
the difference we found.
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Figure 8. Timing and keyhold interval differences between PIN and For-
cePIN and between normal and pressure digits.

To investigate the timing channel more closely, we examine the
keyhold interval: the duration between pressing and releasing
a key. Using the logs from the data collection, we measure
keyhold intervals when the victim taps on keys with normal
pressure and with high pressure in the ForcePIN defense.

Figure 8(b) illustrates that the average keyhold interval for
normal pressure keys is 88ms (M=83ms; SD=38ms), but for
keys pressed with higher pressure, it is 566ms (M=486ms;
SD=419ms). An independent samples t-test indicates this
483ms difference is significant (¢ = -58.6, p < 0.05). Detect-
ing when a victim takes almost six times longer to enter a digit
would be very easy, especially considering the less than 100ms
interval of normal pressure digits. Our analysis provides the
empirical evidence behind the timing side channel. We sus-
pect that the attackers in Krombholz et al.’s experiment failed
to identify this side channel due to their limited evaluation:
only two attackers unrelated to the experimenters mounted
50 attacks in total. In our experiments, we had 30 observers
mount 360 attacks on ForcePIN.

LIMITATIONS

Our study has reasonable limitations due to the inclusion of
human subjects: the scope is limited to people willing to
participate and it contains self-reported views. Since these are
unavoidable, we discuss limitations specific to our study.

For the Tilt condition, victim participants may not have been as
motivated to protect their secret from shoulder surfing attacks
because they were using a temporary secret for the purpose
of this study. This may have resulted in over reporting of the
success rates. While this limitation is difficult to avoid, it is
representative of the insider attack scenario where the user
desires to be subtle. Furthermore, our analysis shows that
participants used a range of tilting angles, which enabled us to
report protection offered against different angles.

While we provided victim participants the opportunity to prac-
tice their chosen PINs as many times as they wanted, they
were not well trained. This resulted in an optimal condition
for the attackers. However, this limitation was unavoidable for
a time-constrained, lab-based experiment.

The 250ms haptic feedback for the pressure digit(s) of For-
cePIN may have influenced the entry times. However, this
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potential influence on the entry times does not impact the pres-
ence of a side channel. This is evident from the longer entry
times reported by Arif et al. for their experiment (without the
haptic feedback).

Attacker participants did not receive a performance-based
reward, so they may have had less motivation and this may
have affected their performance. However, our results still
provides a lower baseline on attackers’ performance.

Wiese and Roth suggested that it is preferable to conduct
shoulder surfing attacks on live users [24]. In our study, each
attacker attacked 24 unique victims. To conduct the same
study on live users would be extremely difficult in terms of
participant recruiting and experiment session time. Moreover,
using videos enabled us to exercise much more control over
the attacker’s distance and viewing angle, it eliminated po-
tential side channels like audio, and it guaranteed that the
environment context was consistent.

CONCLUSION

We conducted experiments using 30 subjects to understand
shoulder surfing defenses and attack strategies on smartphone
PINs. Our experiments show that it is quite easy to correctly
guess PINs with two observations, on average. Furthermore,
attackers were surprisingly effective in shoulder surfing PINs
from across the room. We also subject the most commonly
used defense, tilting the device screen away from the observer,
to shoulder surfing attacks and show its limited efficacy. We
show that while tilting the device screen away from the attacker
with an angle of 70° or higher prevents complete guessing of
PINs, smart attackers look for other clues (such as the proxim-
ity of the finger to the corner of the smartphone) to partially
guess the PIN. Finally, we conduct experiments and gather
empirical evidence to show that ForcePIN has an inherent
timing side channel, which renders it completely ineffective
against shoulder surfing attacks.

Our work calls attention to educating users about the threat
of shoulder surfing and common misconceptions. First, it
shows that smartphone users need to be careful even when
the observer is located across the room. Second, while tilting
the device screen may hide its contents, it does not prevent
shoulder surfing attacks on PINs. Therefore, it is important to
educate smartphone users on the inefficacy of this defense.
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