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ABSTRACT 
Twitter is one of the most popular Online Social Networks (OSNs) 

nowadays. Twitter users retrieve information from other users by 

subscribing to their tweets. Twitter users, especially those who 

have many followees, may receive hundreds or even thousands of 

tweets daily. Currently, all tweets are shown to users in chrono-

logical order. Consequently, a Twitter user may accidentally over-

look useful and interesting tweets because the user is over-

whelmed by the huge volume of uninteresting tweets. Researchers 

in the recommendation system community have proposed using 

recommendation techniques such as collaborative filtering to pre-

dict users’ preference of tweets and highlight those tweets in 

which users are most likely to be interested. At the same time, 

while OSNs such as Twitter have enabled people to conveniently 

share information and interact with each other online, OSN users 

are getting increasingly concerned about their online privacy. 

Researchers in the security community have proposed using tech-

niques such as encrypted tweets to protect users’ privacy. In this 

paper, we propose a privacy-preserving personalized tweet rec-

ommendation framework, pTwitterRec, in a Twitter-like social 

network where users’ tweets are hidden from the OSN provider. 

pTwitterRec provides users with personalized tweet recommenda-

tions while keeping users’ tweets and interests hidden from the 

OSN provider as well as other unauthorized entities. pTwitterRec 

splits the tweet recommendation task between the provider and a 

semi-trusted third party, so that neither can derive users’ sensitive 

information alone while working together to provide users with 

personalized tweet recommendations. We implement a prototype 

and demonstrate through evaluation that pTwitterRec incurs toler-

able overhead on today’s smartphones. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering; 

J.4 [Computer Applications]: Social and behavioral sciences; 

K.4.1 [Computers and Society]: Public Policy Issues – Privacy 

Keywords 
Privacy Protection; Tweet Recommendations; Personalization 

1. INTRODUCTION 
Twitter is a popular online social networking website and micro-

blogging service that allows users to conveniently share short 

messages of up to 140 characters, known as “tweets”, with their 

online followers. With more than 550 million active registered 

Twitter users nowadays, approximately 58 million tweets are gen-

erated per day [38]. Twitter users on average follow 80 people 

[29], which leads to hundreds or even thousands of new tweets 

received by each user every day. Currently, all tweets are shown 

to users in chronological order, which may lead to users missing 

some informative and interesting tweets simply because users are 

overwhelmed by other tweets that do not interest them at all. Re-

searchers [10, 14, 21] have proposed using various recommenda-

tion techniques that utilize all kinds of information available on 

Twitter (such as users’ tweet history and social relations) to rank 

tweets and display those tweets that might interest the user most 

on top. 

In the meantime, users of Online Social Networks (OSNs) such as 

Twitter are increasingly concerned about privacy issues [30]. In 

general, OSN providers are considered to be trustworthy, as they 

have a valuable reputation to maintain and any suspicion of mali-

cious behaviors could potentially lead to a significant loss of users. 

As a result, users trust OSN providers by default to properly safe-

guard and manage the contents published by users. Unfortunately, 

users’ privacy is at risk by placing trust completely on OSN pro-

viders. For example, OSNs’ Terms of Service typically include 

clauses that explicitly/implicitly allow the provider to mine user 

content for the purpose of delivering targeted advertising or resel-

ling to third party services [12]. Also, in regions where OSNs are 

closely monitored by unscrupulous and suppressive governments 

[32], it is crucial to guarantee that only users’ explicitly autho-

rized followers/friends can access their data. Researchers in the 

security community have proposed several approaches [3, 12, 16, 

23] to achieve this goal by delegating control over content to end 

users. 

The contributions of this paper are as follows: Our work is the 

first, to our best knowledge, to propose a privacy-preserving per-

sonalized tweet recommendation framework, pTwitterRec. We 

enhance an existing personalized tweet recommendation algo-

rithm with a few cryptographic protocols and split the recommen-

dation task between the provider of the Twitter-like service and a 

semi-trusted third party, so that users obtain personalized tweet 

recommendations without leaking any sensitive information to 

unauthorized entities. We demonstrate the practicality through 
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implementation and evaluation of the overhead incurred by pTwit-

terRec. pTwitterRec only introduces minimum overhead on the 

user side while achieving the privacy goal, compared with the 

original tweet recommendation algorithm, which was designed 

with no privacy in mind. In this paper, we positively answer the 

following question: in a Twitter-like OSN, can we provide users 

with the benefits of personalized tweet recommendations while 

keeping the contents of users' tweets and users' interests hidden 

from the provider as well as other unauthorized parties? 

The remainder of this paper is organized as follows: In Section 2, 

we overview the related work. In Section 3, we introduce the 

background of our work. In Section 4, we describe our system and 

threat models. In Section 5, we present in detail our proposed 

privacy-preserving personalized tweet recommendation frame-

work pTwitterRec. In Section 6, we discuss the security and pri-

vacy aspects and a possible extension of pTwitterRec. We de-

scribe the server-side implementation in Section 7. We analyze 

and evaluate the overhead incurred by pTwitterRec in Section 8. 

Finally we conclude our work in Section 9. 

2. RELATED WORK 

2.1 Tweet Recommendations 
Researchers have proposed recommendation systems for Twitter. 

Chen et al. [9] focus on recommending URLs on Twitter that a 

Twitter user might find interesting. Hannon et al. [17] develop a 

followee recommender system for Twitter that utilizes Twitter’s 

real-time information as a source of recommendation knowledge. 

Diaz-Aviles et al. [13] propose using collaborative filtering to 

recommend hash tags on Twitter in real-time.  

Some researchers focus on recommending tweets that are interest-

ing to users. Duan et al. [14] propose using learning to rank algo-

rithms to rank tweets based on the user query. Their approach 

considers quality of tweets and authority of the publishers but 

does not consider user personalization. Ramage et al. [31] pro-

pose using latent variable topic models like Labeled LDA to map 

the content of the Twitter feed into dimensions and then filter 

Twitter feeds for users. Their approach uses content-based filter-

ing and does not consider users’ social relations. Naveed et al. [21] 

propose using a learning approach based on pure content features 

to predict the probability of a message being retweeted. Their 

work does not consider user personalization, either. Chen et al. 

[10] propose using collaborative ranking to recommend tweets 

that are personally interesting to a user. Their approach considers 

not only explicit features such as quality of the tweet and authori-

ty of the publisher, but also tweet topic level latent factors and 

social relation latent factors. Experiments on real-world data show 

that their approach outperforms other tweet recommendation algo-

rithms in terms of mean average precision (MAP). 

Our work is based on the tweet recommendation algorithm pro-

posed by Chen et al. [10]. In addition, we provide users with per-

sonalized tweet recommendations while preserving user privacy. 

2.2 Privacy-preserving Recommendations 
Privacy for traditional recommender systems such as collaborative 

filtering has been extensively studied. Canny [7, 8] propose using 

homomorphic encryption and a peer-to-peer protocol to provide 

privacy for model-based collaborative recommender systems. 

Polat and Du [25–28] propose that customers adopt randomized 

perturbation techniques to disturb their private data before send-

ing the data to the service provider for recommender systems. 

Aïmeur et al. [1] propose using a semi-trusted third party to distill 

encoded sensitive customer information, which can be used to 

produce recommendations but cannot be decrypted by any of the 

concerned parties alone. 

In personalized tweet recommendations, tweets are regarded as 

items and many unique Twitter features such as content informa-

tion and social relation information need to be utilized to improve 

recommendation accuracy. None of the abovementioned ap-

proaches can be trivially adapted to offer personalized tweet rec-

ommendations while preserving user privacy. 

2.3 Privacy-preserving OSNs 
There has been significant work in OSN privacy. Our work is 

most related to approaches that aim to protect social network us-

ers’ privacy from a curious OSN provider. Systems such as Fly-

ByNight [22], NOYB [16] and Facecloak [23] store users’ data 

with the untrusted provider but protect its content with encryption. 

Conti et al. [11] propose establishing a virtual private network 

between friends on OSNs to share sensitive information. Singh et 

al. [34] propose Twitsper, a wrapper around Twitter that enables 

private group communication among Twitter users while preserv-

ing Twitter’s business interests. Feldman et al. [15] propose 

Frientegrity, a framework where an OSN provider observes only 

encrypted data and cannot deviate from correct execution without 

being detected. De Cristofaro et al. [12] propose Hummingbird, a 

variant of Twitter that protects users’ tweets as well as users’ in-

terests from a semi-trusted OSN provider. 

Our work, however, focuses primarily on protecting users’ privacy 

from a curious OSN provider while offering users personalized 

tweet recommendations. Our privacy-preserving tweet recommen-

dation framework pTwitterRec can be built upon any of the ab-

ovementioned approaches as long as the OSN provider is able to 

distribute tweets to the corresponding followers without learning 

the tweets.  

3. BACKGROUND 

3.1 Twitter 
Twitter is one of the most popular OSNs that enable users to send 

and read tweets, which are text messages limited to 140 characters. 

A user receives tweets from other users by subscribing to their 

tweets. Twitter terminology relevant to this paper includes: 

• Publisher: A user who posts a tweet. 

• Follower: A user who follows others’ tweets. 

• Followee: A user whose tweets are being followed by 
others. 

• Tweets: short messages posted by a user/publisher. 

• Retweets: someone else’s tweets that a user chooses to 
share with all of the user’s followers. 

• Service Provider (SP): the centralized entity of Twitter 
that maintains all user profiles and tweets, and distributes 
users’ tweets to followers. 

Tweets are public by default; that is, any registered user can read 

other users’ public tweets. However, upon registration, a user has 

the option of keeping the tweets only visible to the user’s ap-

proved Twitter followers, known as protected tweets. Nonetheless, 

all tweets published by users are not hidden from the SP. 

366



3.2 Personalized Tweet Recommendations 
Recommending useful tweets to a user is a challenging problem. 

The key of the problem is how to use any information available on 

Twitter to decide whether or not a user is interested in a tweet. 

Such information available on Twitter includes the quality of the 

tweet, the authority of the publisher, the user’s previous tweets, 

etc. With such information as input, the SP adopts various ma-

chining learning techniques such as Collaborative filtering [4, 6], 

LDA [5] or RankSVM [19] to learn a model to predict users’ inter-

ests in tweets. Among existing recommendation algorithms for 

social updates [5, 10, 14, 18, 19, 21, 35], we adopt the collabora-

tive personalized tweet recommendation algorithm proposed by 

Chen et al. [10] as the building block of our privacy-preserving 

tweet recommendation framework pTwitterRec. We choose their 

algorithm over others because: a) their tweet recommendation 

model not only incorporates explicit tweet features such as the 

quality of the tweet and the authority of the publisher, but also 

uses topic level latent factors of tweets to capture users’ interests 

and uses latent factors to model users’ social relations; b) their 

model outperforms other up-to-date recommendation models with 

reasonable computation cost. For example, the empirical results 

show that their method achieves 46.84% and 17.41% improve-

ments compared with the RankSVM method and joint matrix 

factorization method [35] in terms of Mean Average Precision 

(MAP). 

We briefly describe their tweet recommendation algorithm. For a 

given user u and two received tweets k and h, assuming that the 

ranks of tweets k and h are u

k
r and u

h
r respectively (user u is more 

interested in tweet k than tweet h if u

k
r is larger/higher than u

h
r ), 

the authors model the probability of the orders of tweets k and h 

for user u as follows: 

                         
, ,( )

1
( | )

1 u k u h

u u

k h y y
P r r u

e
− −

> =
+

                        (1) 

where yu,k represents the predicted rating of user u for tweet k.  

Then, the authors define the rank preference set D as follows: 

       { , , | ( ), ( )}D u k h k Re u h Re u= < > ∈ ∉                   (2) 

where Re(u) represents the set of tweets user u has retweeted. D is 

built based on the assumption that users are more interested in 

those tweets that they have retweeted than those they have not 

retweeted. For a tuple <u, k, h> in D, an ideal rating prediction 

model yu,k maximizes the probability of the ranking order that user 

u ranks tweet k higher than tweet h. To solve this problem for all 

tuples in D, it is equivalent to solve the following objective by 

learning the optimal parameters for the rating prediction model 

yu,k: 

                  , ,( )

, ,

min ln(1 ) regularizationu k u hy y

u k h D

e
− −

< ∈ >

+ +∑             (3) 

Finally, the authors define the prediction model yu,k as follows: 

                     ,
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In the first part of equation 4, the authors use ,

j

u k

j

j F

b r
∈

∑ to capture 

the impact of explicit features (such as the quality of the tweet and 

the authority of the publisher) on user u’s rating of tweet k, where 

,

j

u kr is the j-th explicit feature computed from tweet k regarding 

user u, F is the set of explicit features and bj is the system-wide 

weight corresponding to the j-th explicit feature, which is to be 

learned in the prediction model. The second part of equation 4 

considers a latent factor model (described in Appendix A.1). In 

brief, the authors use 
k

T

u w

w T

p q
∈

∑ to capture the impact of words 

contained in tweet k on user u’s rating of the tweet, where pu is the 

low dimensional representation of user u in the latent feature 

space Rd, Tk is the word set contained in tweet k and qw represents 

the low dimensional representation of word w in the latent feature 

space Rd; the authors use ( )

T

u p kp d to capture the impact of the 

social relation between user u and the publisher of tweet k on user 

u’s rating of the tweet, where dp(k) is the low dimensional repre-

sentation of the publisher of tweet k in the latent feature space Rd. 

In equation 4, Zk is the normalization term defined as the cardinal-

ity of the word set Tk, and α is a predefined system-wide parame-

ter that indicates the importance of social relations relative to 

words contained in the tweet.  

Using D as the training datasets, by solving objective 3, the SP 

learns the parameters of the tweet rating prediction model: the 

system-wide weight vector b, the latent factor for user u denoted 

as pu, the latent factor for each word w denoted as qw and the la-

tent factor for the publisher of tweet k denoted as dp(k). Note that 

among all parameters to be learned in the prediction model, only 

the value of pu depends on user u and all other parameters are 

global values. To solve objective 3, the authors perform stochastic 

gradient descent (as described in Section 3.3). After the prediction 

model yu,k is learned, the SP estimates a user’s rating for a tweet 

using equation 4. 

3.3 Stochastic Gradient Descent 
Chen et al. [10] adopt stochastic gradient descent to solve objec-

tive 3. For each tuple <u, k, h> in D, the SP computes the descent 

of each parameter as follows and updates the parameters by mov-

ing in the direction of negative gradient:  

( ) ( ) 1

1 1
ˆ ( )

k h

w w p k p h uk h
w T w Tu

e q q d d p
p Z Z

α λ
∈ ∈

 ∂
=  − + − −  ∂  

∑ ∑
ℓ

        (5) 
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Here, k

w
q  represents the latent factor of word contained in tweet k. 

The algorithm loops over all tuples in D and updates the parame-

ters accordingly. 
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4. SYSTEM AND THREAT MODEL 

4.1 System Model 
In pTwitterRec, we assume a privacy-preserving Twitter-like so-

cial network where tweets posted by users are hidden from the SP. 

We assume that users install a client application to participate in 

the social network. In the remainder of the paper, we refer to the 

client software installed on user u’s device as user u for simplicity. 

In pTwitterRec, upon registration, each user’s account is protected 

by default; that is, a user’s tweets are only visible to the user’s 

explicitly authorized followers. In addition, the user’s tweets are 

hidden from the SP as well. We assume that a user encrypts the 

tweets using a secret key (not known by the SP) shared only 

among the user’s authorized followers before posting them to 

pTwitterRec. The SP is responsible for storing encrypted tweets 

published by users and delivering those tweets to their corres-

ponding followers. How to construct pTwitterRec such that it 

meets the abovementioned assumptions is out of the scope of our 

work; as described in the related work, systems such as FlyBy-

Night [22] and Hummingbird [12] can be adapted to implement 

pTwitterRec.  

For tweet recommendations, to prevent the SP from learning a 

user’s interests, in pTwitterRec, we introduce a semi-trusted third 

party server, denoted as the word server (WS). Users, the SP and 

the WS cooperate and learn the personalized tweet recommenda-

tion model. More specifically, users are mainly responsible for 

collecting and preparing training samples that are used to learn the 

recommendation model, the SP is responsible for computing the 

weight parameters for explicit features, the latent factors of users 

as recipients of tweets and the latent factors of users as publishers 

of tweets while the WS is responsible for computing the latent 

factors of words in the tweet vocabulary. By separating the latent 

factors of words from the latent factors of users, neither the SP 

nor the WS can learn the contents of users’ tweets and users’ in-

terests without colluding with each other (more details in Section 

5).  

4.2 Threat Model 
In pTwitterRec, we assume both the SP and the WS to be honest 

but curious; that is, they follow our protocol, but are curious 

about passively learning the contents of users' tweets and users' 

interests. More specifically, we assume that neither the SP nor the 

WS creates spurious users or falsifies user requests in order to 

learn secrets from each other. We consider this assumption to be 

reasonable in OSNs, because it is not in OSN providers’ best 

interests to lose users as a result of any suspicion of malicious 

behaviors [12]. Furthermore, we assume that the SP and the WS 

do not collude. 

As mentioned in the system model, we assume that a user’s tweets 

are encrypted with a secret key shared only among the user’s ap-

proved followers. No entities can decrypt the tweets without the 

appropriate decryption key. Both the SP and the WS are interested 

in learning the contents of a user's tweets. In addition, both the SP 

and the WS are interested in inferring users’ interests by learning 

users’ preference of specific words. For example, a user who ex-

hibits a strong preference for words “Ford” and “Toyota” is most 

likely to be interested in cars.  

Furthermore, we assume that the social relations between users 

are not hidden from the SP in pTwitterRec. pTwitterRec works for 

Twitter-like systems where user’s social relations and the contents 

of users’ tweets are both hidden from the provider. However, 

pTwitterRec may lose some recommendation accuracy if neither 

the SP nor users are able to compute some of the explicit features 

that depend on user’s social relations (more details in Section 5.3). 

5. pTwitterRec 
In this section, we present the main components of pTwitterRec.  

5.1 Design Overview 
The main challenges are: a) when using stochastic gradient des-

cent to learn the recommendation model, for any given tuple <u, k, 

h> in D, update the parameters of the model using equations 5-9 

without revealing the words contained in tweets k and h to any 

unauthorized entities; b) when the model is learned, only user u is 

allowed to compute T

u w
p q where pu is the latent factor of user u as 

the recipient of tweets and qw is the latent factor of word w, be-

cause the result of T

u w
p q represents user u’s preference of word w 

and thereby potentially reveals user u’s interest. 

We make the following observations in relation to equations 5-9: 

a) computing ê  in equation 9 does not require knowing the spe-

cific words contained in tweets k and h. Instead, we only need to 

know the result of
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; b) Similarly, updating 

pu using equation 5 and updating dp(k) using equation 7 only re-

quire knowing the result of 
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; c) updating 

bj using equation 8 only requires knowing the result of 
, ,( )u k u h

j jr r−  which is the difference between the explicit features 

computed from tweets k and h regarding user u, and the result of 

1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; d) finally, updating qw using equation 6 

does not require to know the identity of user u. Instead, we only 

need to learn the result of ˆ
uep . 

Intuition. Based on the above observations, we split the task of 

learning the parameters of the recommendation model among user 

u, the SP and the WS. User u is responsible for selecting tweets k 

and h which constitute the tuple <u, k, h>. User u and the SP coo-

perate to compute explicit features from tweets k and h and com-

pute , ,( )u k u h

j jr r− without revealing the content of the tweets to the 

SP. The SP is responsible for updating bj, Pu and dp(k) while the 

WS is responsible for updating qw. The SP updates bj, Pu and dp(k) 

upon receiving the result of 
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the WS 

without learning the words contained in tweets k and h. The WS 

updates qw upon receiving the result of ˆ uep from the SP without 

learning the identity of user u. As a result, neither the SP nor the 

WS can calculate T

u w
p q without a coalition between them. 

The main components of pTwitterRec include: a) word indexing, 

b) explicit feature computation and training sample submission, c) 

model learning, and d) tweet publishing, receiving and ranking. 

We will describe each component in details in following subsec-

tions. 

368



5.2 Word Indexing 
In pTwitterRec, user u is responsible for selecting tweets k and h 

(where tweet k is some tweet that user u has previously retweeted 

and tweet h is some tweet that user u has not retweeted) and pre-

paring the tuple <u, k, h> in D before submitting it to the SP. User 

u intends to keep the content of the tweets, i.e., the words con-

tained in tweets k and h, hidden from the SP. In addition, even 

though the WS only manages the latent factor of words and will 

not learn the identity of user u at the model learning stage (more 

details in Section 5.3), user u wants to keep the content of the 

tweets hidden from the WS as well, because the tweets may con-

tain some words that potentially reveal the identity of user u. On 

the other hand, in order to update the latent factor of each word 

contained in tweets k and h, the WS must be able to uniquely 

index each word. Therefore, each word contained in D must be 

uniquely indexed in a manner that the WS does not learn the 

mapping between the word and the corresponding index.  

Since all users communicate with the SP, we require the SP to be 

the central server responsible for indexing words using some se-

cret that is unknown to the WS. Note that when users request the 

indexes of words from the SP, users want to keep the words and 

the corresponding indexes hidden from the SP. We propose that 

the SP adopts a deterministic commutative encryption scheme 

such as Pohlig-Hellman encryption [24], denoted as Ecomm, to 

generate the unique index for each word. Loosely speaking, an 

encryption scheme is commutative if a message encrypted by key 

k1 first and then by key k2 can be decrypted by the decryption key 

corresponding to k1 to reveal the message singly encrypted by k2. 

Assuming that user u is requesting the index of word w from the 

SP, the protocol works as follows: during system setup, both the 

SP and user u generate a separate secret encryption key for the 

commutative encryption scheme, denoted as ksp and ku respective-

ly. Then user u encrypts word w using Ecomm with the secret key ku 

and sends the encrypted result to the SP. Let the encrypted result 

be Ecomm(w, ku). Because the SP does not know the corresponding 

decryption key for ku, the SP cannot learn word w. Upon receiving 

Ecomm(w, ku), the SP further encrypts it using Ecomm with the SP’s 

secret key ksp and sends Ecomm(Ecomm(w, ku), ksp) back to user u. 

Finally, user u decrypts Ecomm(Ecomm(w, ku) with the corresponding 

decryption key for ku. Because of the commutative property of the 

encryption scheme Ecomm, user u obtains Ecomm(w, ksp) and com-

putes indexw = H(Ecomm(w, ksp)) where H is the SHA-224 hash 

function and indexw is the index of word w. Because of the deter-

ministic property of the encryption scheme Ecomm, the index of 

word w is unique in the whole system. In order to reduce the on-

line computational and communication overhead on the user side, 

an alternative approach is to require that the SP pre-computes the 

indexes of popular words and users pre-download the indexes 

beforehand without revealing their interests to the SP. For some 

obscure words that are not pre-computed by the SP, users adopt 

the commutative encryption scheme as mentioned above to re-

quest the indexes from the SP. 

5.3 Explicit Feature Computation and Train-

ing Sample Submission 
For each tweet in D, information such as the quality of the tweet 

(e.g., the number of URLs contained in the tweet) and the authori-

ty of the publisher (e.g., the number of followers) can be indicated 

as features, which explicitly reflect the possibility of a user ret-

weeting the tweet, known as explicit features. Chen et al. [10] 

propose four categories of explicit features: relation features, con-

tent-relevance features, twitter-specific features and publishers’ 

authority features.  

Table 1. Explicit features (tweet k published by user p received by user u) 

Feature Category Description Computed By 

Co-follow Score Relation The similarity of followee sets of between user u and user p SP 

Mention Score Relation 
The number of times user u has mentioned user p in his 

previous tweets 
SP 

Friend Relation 1 when user u and user p follow each other and 0 otherwise SP 

Relevance to Tweet 

History 

Content-

relevance 

The relevance between tweet k and the posting history of 

user u 
User u 

Relevance to Retweet 

History 

Content-

relevance 

The relevance between tweet k and the retweeted history of 

user u 
User u 

Relevance to Hash 

Tags 

Content-

relevance 

The count of words in tweet k that ever appeared as hash 

tags through user u’s posting history 
User u 

Length of Tweet Twitter Specific The number of words contained in tweet k User u 

Hash Tag Count Twitter Specific The number of hash tags contained in tweet k User u 

URL Count Twitter Specific The number of URLs contained in tweet k User u 

Retweet Count Twitter Specific The number of times tweet k has been retweeted SP 

Mention Count 
Publishers’ 

Authority 
The times user p is mentioned in all tweets SP 

Followee Count 
Publishers’ 

Authority 
The number of users who user p follows SP 

Follower Count 
Publishers’ 

Authority 
The number of users who follow user p SP 

Tweet Count 
Publishers’ 

Authority 
The number of tweets ever posted by user p SP 
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In pTwitterRec, we split the task of computing explicit features 

between users and the SP (as listed in Table 1). Users are respon-

sible for computing those features that depend on the content of 

the tweet, for example, relevance to tweet history feature, which 

estimates the relevance between the tweet and the user’s previous 

tweet history. The SP is responsible for computing those features 

that depend on non-sensitive global information that is available 

to the SP, for example, co-follow score feature, which estimates 

the similarity of the followee sets of the recipient and the publish-

er of the tweet. 

For a given tuple <u, k, h> in D, user u computes the explicit fea-

tures that she is responsible for computing. Let the j-th explicit 

feature computed from tweets k and h be ,u k

jr and ,u h

jr  respective-

ly. User u calculates ,u k

jr - ,u h

jr and attaches the result to the tuple 

before sending it to the SP. 

Finally, user u cannot simply replace each word contained in 

tweets k and h with the corresponding index when submitting the 

tuple <u, k, h> to the SP, because the SP can conveniently learn 

each word by decrypting the index with its decryption key. We 

propose that during system setup, the WS generates a pair of pub-

lic and private keys (Pukws, Prkws) for a probabilistic public-key 

encryption scheme denoted Ews. For tweet k in the tuple, user u 

randomly mixes the order of the indexes of all words contained in 

tweet k, concatenates all indexes altogether, and encrypts the in-

dexes using Ews with the WS’s public key Pukws. Consequently, 

the SP learns neither the indexes of words contained in the tweet 

nor the frequency of each word contained in D while the WS only 

learns the index of each word at the model learning stage. The WS 

does learn the frequency of each word and might be able to corre-

late the most popular words with their indexes at certain proba-

bilities. However, we argue the impact of such attacks is negligi-

ble for reasons explained in Section 6. 

As a result, for a given tuple <u, k, h> in D, the final data submit-

ted to the SP by user u is as follows:  

, ,,{ | }, ( ), ( ), ( ), ( )   (10)j

u k u h

j u ws k ws hu r r j F p k p h E tweet E tweet< − ∈ >

 

Where Ews(tweetk) denotes the encrypted set of indexes of words 

contained in tweet k as previously described, Fu denotes the set of 

explicit features computed by user u, and p(k) denotes the identi-

ties of the publisher of tweets k. Upon receiving the data submit-

ted by user u, the SP computes explicit features (as listed in Table 

1) that the SP is responsible for computing from tweets k and h. 

Combined with the data received from user u, we denote the final 

training dataset for the given tuple <u, k, h> in D as d<u, k, h>. 

5.4 Model Learning 
For tweet k received by user u, in addition to explicit features 

computed as described in Section 5.3, Chen et al. [10] use a latent 

factor model (details in Appendix A.1) to capture user u’s inter-

ests in tweet k and propose three categories of latent features: the 

latent factors of user u as a recipient of tweet k in the latent feature 

space Rd denoted as pu, the latent factor of the publisher of tweet k 

in Rd denoted as dp(k), and the latent factor of each word w con-

tained in tweet k in Rd denoted as qw. User u’s interest in tweet k is 

captured by measuring the affinity between user u and the words 

contained in tweet k and the affinity between user u and the pub-

lisher of tweet k in the latent feature space Rd. At the model learn-

ing stage, the SP and the WS cooperate to learn the values of 

these latent factors, in addition to the weight vector for explicit 

features by performing stochastic gradient descent as described in 

Section 3.3. 

In pTwitterRec, during system setup, the SP initializes the weight 

bj for all explicit features, the latent factor pu of each user as the 

recipient of tweets and the latent factor dp(k) of each user as the 

publisher of tweets with random values. For each training dataset 

d<u, k, h> corresponding to <u, k, h> in D, the SP and the WS 

engage in the following protocols (as depicted in Figure 1): 

a) The SP forwards the encrypted set of word indexes (denoted 

as Ews(tweetk) and Ews(tweeth)) contained in d<u, k, h> to the 

WS. The WS obtains the corresponding word indexes by 

decrypting with its private key Prkws. If the WS has never 

come across the index of word w before, the WS initializes 

the latent factor for word w with random values, denoted as 

qw. Then, the WS calculates 
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ and 

sends the result back to the SP. Note that the WS does not 

know the actual words but only learns the index of each 

word contained in tweets k and h.  

b) Upon receiving 
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the WS, the 

SP calculates ê using equation 9 and updates parameters bj, 

pu and dp(k) using equations 5, 7 and 8. 

c) The SP computes ˆ
uep and sends the result to the WS. The 

WS updates qw for each word w contained in tweets k and h 

1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑

ˆ
uep

 

Figure 1. Privacy-preserving model learning. 
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Figure 2. Tweet publishing, receiving and ranking. 
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using equation 6. Note that the WS does not learn the identi-

ty of user u. 

The SP and the WS loop over all training datasets in D and update 

the parameters of the tweet recommendation model in the same 

manner as mentioned above. At the end of the model learning 

stage, the SP learns bj for each explicit feature, pu for users as 

recipients of tweets and dp(k) for users as publishers of tweets 

while the WS learns qw for words in the tweet vocabulary. 

5.5 Tweet Publishing, Receiving and Ranking 
Once the tweet recommendation model is learned, it can be used 

to predict users’ interests in tweets and rank the tweets according-

ly (as depicted in Figure 2).  

In pTwitterRec, users are primarily responsible for ranking tweets 

with the help of the SP and the WS. When the recommendation 

model is learned, user u requests from the SP her personal latent 

factor pu, the latent factors of all her followees as publishers, de-

noted as df where user f is a followee of user u, and the system-

wide weight bj for explicit features. Note that user u only needs to 

retrieve these parameters once. 

When publishing a tweet, the user looks up the indexes of words 

contained in the tweet to be published, mixes the order of these 

indexes randomly and concatenates them together, encrypts the 

indexes using Ews with the WS’s public key Pukws and attaches the 

encrypted indexes to the tweet before sending it to the SP. Simi-

larly to model learning, the SP forwards the encrypted indexes to 

the WS, which calculates 
1

k

wk
w T

q
Z ∈

∑ for words contained in the 

tweet and sends the result back to the SP. The SP computes the 

sum of explicit features (denoted as , ,u k

j j spb r j F∈∑ where Fsp 

denotes the set of explicit features that the SP is responsible for 

computing), attaches the sum along with 
1

k

wk
w T

q
Z ∈

∑ which was 

previously received from the WS to the tweet before distributing it 

to corresponding followers. 

Upon receiving the tweet and the attached values, user u decrypts 

the tweet, calculates the explicit features that the user is responsi-

ble for computing, and computes the predicted rating for the tweet 

using equation 4. Tweet ranking works as follows: When the ac-

tual user, not the pTwitterRec client software, wants to read her 

tweets, this process is done for all tweets that have arrived since 

her last update and then the tweets are shown to her in ranked 

order. 

6. DISCUSSION 
In this section, we discuss the security and privacy aspects of 

pTwitterRec and a possible extension. 

6.1 Security Analysis 
We discuss possible attacks against pTwitterRec. 

Frequency analysis attacks. At the model learning stage, the WS 

decrypts the encrypted indexes of the words contained in the 

tweets submitted by users as described in Section 5.4. Therefore, 

the WS learns the frequency of each word that has appeared in all 

tweets contained in the training datasets D while not knowing the 

actual words. Should the WS have the background knowledge of 

the popularity of each word in the tweet vocabulary, the WS 

might be able to correlate the most popular words with their in-

dexes at certain probabilities. However, we argue that those words 

that are most vulnerable against such frequency analysis attacks 

are exactly those words that are most common among all users 

and therefore reveal little personal information regarding an indi-

vidual user. In regards of the SP, even though the SP knows the 

identities of the users included in D, the SP cannot learn the fre-

quencies of words because the indexes were encrypted using 

probabilistic encryption scheme Ews with the WS’s public key 

Pukws.  

Collusion attacks. In our threat model, we assume that the SP and 

the WS do not collude. In addition, since the SP and the WS are 

honest-but-curious adversaries, they would not create phantom 

users to interact with other parties. The SP might try to collude 

with some legitimate users. A collusion between the SP and a user 

does not reveal the indexes of words contained in other users’ 

tweets as they are encrypted using probabilistic encryption 

scheme Ews (we require that Ews is also secure against chosen-

plaintext attacks.) with the WS’s public key Pukws. However, the 

SP can learn the latent factors of some words through the collud-

ing user and thereby infer other users’ interests. Similarly, a collu-

sion between the WS and a user discloses the mapping of words 

and corresponding indexes. However, we claim that users who 

collude with either the SP or the WS lose some of their own pri-

vacy. A collusion among a group of users does not pose threats to 

other users, because in pTwitterRec users are only allowed to 

obtain their own personal latent factors from the SP, as described 

in Section 5.5. 

Poisoning attacks. Some malicious users may inject false training 

datasets such as falsified explicit features to render the tweet rec-

ommendation model less effective. Prior work such as Orca [2] 

has been proposed to detect such poisoning attacks. Poisoning 

attacks are not introduced as a result of adopting pTwitterRec. We 

leave the full investigation of the impact of such attacks on the 

recommendation accuracy and the applicability of existing de-

fense mechanisms to future work. 

6.2 Privacy Analysis 
In this subsection, we examine the user information disclosed to 

the SP and the WS at each stage of pTwitterRec and analyze the 

privacy threats. 

Word indexing. When user u requests the index of word w from 

the SP, the SP learns neither word w nor the corresponding index, 

because word w is encrypted using commutative encryption with a 

secret key known only to user u. Upon receiving the index of 

word w from the SP, user u caches the index corresponding to 

word w locally so user u does not need to request the index of the 

same word again in the future. Therefore, the SP learns no infor-

mation other than that user u has made such a request. If the SP 

pre-computes the indexes for all popular words in the tweet voca-

bulary as described in Section 5.2, user u reveals no personal 

information by downloading such indexes from the SP in advance. 

Explicit feature computation and training sample submission. 
For a given tuple <u, k, h> in D, when user u finishes calculating 

the explicit features for tweets h and k and submitting the corres-

ponding training dataset to the SP as described in Section 5.3, the 

SP learns: a) the identities of the publishers of tweets k and h, 

which is not private information in our threat model; b) the en-

crypted indexes for words contained in tweets k and h, which are 

encrypted using Ews with the WS’s public key Pukws. The SP 

learns neither the words contained in the tweets nor their indexes. 

In addition, the SP does not even learn how frequent the same 
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word has appeared among all tweets in D because Ews is a proba-

bilistic encryption scheme; c) the difference between the explicit 

features (computed by user u) computed from tweets k and h, 

denoted as , ,{ | }j

u k u h

j ur r j F− ∈ . Among all explicit features com-

puted by user u, features Relevance to Tweet History, Relevance 

to Retweet History and Relevance to Hash Tags do not leak any 

personal information about user u because all tweets received and 

published by user u are hidden from the SP. Features Length of 

Tweet, Hash Tag Count and URL Count do reveal the number of 

words, the number of hash tags and the number of URLs con-

tained in a tweet. However, we do not consider such information 

to be sensitive for user u. In addition, user u only submits the 

difference between those features computed from tweets k and h; 

d) the SP computes some explicit features of tweets k and h as 

listed in Table 1. However, those features only depend on non-

sensitive information, which is already available to the SP, such 

as user u’s social relations, and therefore do not leak any private 

information about user u.  

Model learning. At the model learning stage, the SP and the WS 

cooperate to update the parameters of the tweet recommendation 

model. For a given tuple <u, k, h> in D, a) at the first step of the 

protocol, the SP only forwards the encrypted indexes for words 

contained in tweets k and h to the WS. The WS does not learn the 

original words contained in tweets k and h but only learns their 

indexes. In addition, the WS learns neither the identity of user u 

nor the identity of the publishers of tweets k and h. Furthermore, 

we require that users randomly mix the order of indexes of words 

contained in the tweet before encrypting and submitting them, so 

the WS cannot identify words by analyzing the pattern of the or-

der of words appearing in tweets. The WS does learn the frequen-

cy of each word that has appeared in all tweets contained in D 

while not knowing the actual words. However, as analyzed in 

Section 6.1, such frequency analysis attacks reveal little personal 

information regarding each individual user. At the end of the first 

step, the SP learns the result of 
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the 

WS, which does not reveal the individual latent factor of each 

word because all word indexes were encrypted using probabilistic 

encryption scheme Ews with the WS’s public key Pukws; b) at the 

third step of the protocol, the WS learns the result of ˆ
uep from the 

SP, which does not reveal the identity of user u; c) at the end of 

the model learning stage, the SP learns the latent factor pu of user 

u as recipients of tweets and the latent factor dp(k) of user p(k) as 

the publisher of tweet k (note that pu is a vector in the latent fea-

ture space Rd and pu alone does not disclose any personal informa-

tion of user u). The SP is able to learn the closeness of the social 

relation between users u and p(k) by computing ( )

T

u p kp d . However, 

in pTwitterRec, we assume that the social relations between users 

are not hidden from the SP, as described in the threat model; d) 

the SP cannot replace the WS by updating the latent factors of 

words as well, because the indexes for words are encrypted by 

user u using the probabilistic encryption scheme with the WS’s 

public key; e) the WS cannot replace the SP, because the WS 

cannot compute the model all by itself without knowing the expli-

cit features, the identity of the recipient of the tweet, and the iden-

tity of the publisher of the tweet, which are only known to the SP. 

Tweet publishing, receiving and ranking. For tweet k received 

by user u, the SP and the WS both only learn the value of 

1

k

wk
w T

q
Z ∈

∑ for all words contained in tweet k but do not know the 

words contained in tweet k. In addition, neither the SP nor the WS 

can infer user u’s interest by computing T

u w
p q  for any word w 

(which represents user u’s preference over word w) without col-

luding with each other. Furthermore, for user u, we require that 

user u is only allowed to retrieve her own personal latent factor pu 

from the SP and therefore user u cannot learn other users’ inter-

ests. 

6.3 Extension 
In pTwitterRec, the SP is not only responsible for managing the 

social relations between users and distributing users’ tweets to 

their followers as an OSN provider, but also responsible for re-

commending personalized interesting tweets to users (in coopera-

tion with the WS and users) as a recommendation service provider. 

However, pTwitterRec can be conveniently adapted to support a 

third-party privacy-preserving tweet recommendation service that 

is independent of the OSN provider. The benefit of implementing 

pTwitterRec as a third-party service is that there would be no re-

quirements of any changes to the existing OSN provider while 

still providing users with personalized tweet recommendations 

(and hiding the contents of users’ tweets and user’s interests from 

the tweet recommendation service provider). 

With the new pTwitterRec client application, users receive/publish 

tweets from/to the OSN provider, and interact with the third-party 

tweet recommendation service provider (consisting of a separate 

SP and WS) to learn the recommendation model without leaking 

any sensitive information to the recommendation service provider. 

Upon the completion of the model learning stage, users are able to 

rank tweets received from the OSN provider. pTwitterRec may 

lose some recommendation accuracy because the recommendation 

service provider is unable to compute some explicit features such 

as features that depend on users’ social relations. However, users 

may be able to compute such features if they know their follo-

wees’ social relations. 

7. IMPLEMENTATION 
To demonstrate the practicality of our framework, we imple-

mented a prototype that simulates the model learning stage of 

pTwitterRec, which is the core component of our framework. The 

prototype consists of: a server acting as the SP that takes the train-

ing datasets D as input and updates the weight bj for each explicit 

feature, the latent factor pu of user u as the recipient of the tweets, 

and the latent factors dp(k) and dp(h) of users p(k) and p(h) as pub-

lishers of tweets k and h for every tuple <u, k, h> in D; another 

server acting as the WS that communicates with the SP as de-

scribed in Section 5.4 and updates the latent factor qw of each 

word w contained in D. 

Our prototype uses the SVDFeature toolkit [37] to implement 

gradient stochastic descent, which is used for updating abovemen-

tioned parameters at the model learning stage. We choose 

SVDFeature since it is open source and well-documented. 

SVDFeature is a toolkit designed to efficiently solve large-scale 

collaborative filtering problems with auxiliary information by 

performing gradient stochastic descent. Unlike traditional ap-

proaches that require writing a specific solver for each recom-

mendation model, SVDFeature provides a general solution for 

collaborative filtering problems and allows developing new rec-

ommendation models by defining new features.  
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In our prototype, we define the explicit features described in Sec-

tion 5.3 as global features in SVDFeature, the latent factors of 

users (as recipients of tweets) as user features in SVDFeature, and 

the latent factors of words contained in the tweet vocabulary in 

addition to the latent factors of users (as publishers of tweets) as 

item features in SVDFeature. Figure 3 depicts the architecture of 

our prototype. The SP and the WS each maintains a separate data-

base. At the end of the model learning stage, the SP stores in its 

database the final values of the system-wide weight bj for each 

explicit feature, the latent factor pu of each user as the recipient of 

tweets, and the latent factors dp(k) of each user as the publisher of 

tweets; the WS stores in its database the latent factor qw of each 

word in the tweet vocabulary. We leave the implementation of the 

complete framework to future work. 

8. EVALUATION 
In this section, we analyze and evaluate the overhead particularly 

on the user side due to the introduction of our privacy protection 

framework pTwitterRec, compared with the original tweet rec-

ommendation algorithm [10] with no user privacy protection. Our 

framework only adds privacy protection to the tweet recommenda-

tion algorithm without modifying the original recommendation 

model [10]. Thus, there is no loss of recommendation accuracy 

(please refer to [10] for the thorough evaluation of recommenda-

tion accuracy). 

We assume that users run the pTwitterRec client application on a 

smartphone with limited computation power and memory. In our 

evaluation, we use a Google Nexus Four phone featuring a 1.512 

GHz quad-core Krait CPU and 2 GB of RAM. On the other hand, 

we assume that both the SP and the WS have reasonably unli-

mited computation power and storage space. We use an 8 core 

server featuring Intel Xeon 2.40 GHz CPU with 8 GB RAM as the 

SP/WS. We assume that there is a fast and persistent network 

connection between the SP and the WS and the communication 

overhead between them is negligible. We analyze the overhead at 

each stage of our framework in following subsections. 

8.1 Word Indexing 
As described in Section 5.2, assuming that user u does not know 

the index of word w, user u first encrypts word w using commuta-

tive encryption Ecomm with her secret key ku and then sends the 

encrypted word to the SP. The SP further encrypts the received 

encrypted word using Ecomm with its secret key ksp and returns the 

result to user u. Finally, user u obtains the index of word w by 

decrypting the result received from the SP with her decryption key 

and then computing the hash value of the result using SHA-224. 

Therefore, to obtain the index of a new word, it requires user u to 

perform one encryption and one decryption using commutative 

encryption Ecomm and perform one hash function while it requires 

the SP to perform one encryption using Ecomm. The computational 

cost for carrying out one hash function is negligible and therefore 

we only evaluate the computational cost for commutative encryp-

tion/decryption. We adopt Pohlig-Hellman encryption (described 

in Appendix A.2) as Ecomm for our evaluation because of its de-

terministic commutative property (note that any encryption 

scheme that is both deterministic and commutative can be used as 

Ecomm in our protocol, as described in Section 5.2). We measure 

the execution time of a single Pohlig-Hellman encryp-

tion/decryption on the smartphone and on the server. We vary the 

key length, carry out 10,000 runs for each key length and average 

the results. Figure 4 shows the results. With a 2048-bit key, it 

takes approximately 91.1 ms for the smartphone and 35.2 ms for 

the SP to carry out one Pohlig-Hellman encryption/decryption. 

The communication overhead for user u is to send and receive one 

encrypted word. Therefore, with a 2048-bit key size, the commu-

nication overhead for user u is approximately 512 bytes to obtain 

the index of one word. It is reported that there are approximately 

15 words [36] in each tweet on average. Assuming that each user 

submits n (n = 392 in [10]) tweets to the SP as training datasets, 

the total communication overhead for a user to obtain all indexes 

from the SP is less than 7.5n KB and the total computational 

overhead is less than 2.7n seconds. Note that user u caches the 

index of word w locally and thereby only needs to request the 

index of word w from the SP once even if word w appears in mul-

tiple tweets. In addition, to further reduce the overhead on the 

user side, as described in Section 5.2, we propose that the SP pre-

computes the indexes for popular words and users pre-download 

the indexes for these popular words beforehand without revealing 

their interests to the SP. 

8.2 Explicit Feature Computation and Train-

ing Sample Submission 
In pTwitterRec, users are responsible for computing six of the 

explicit features for each tweet contained in the training samples. 

Compared with the cryptographic overhead evaluated in Section 

8.1, the computational overhead incurred by explicit feature com-

putation is negligible for users. For each tweet contained in the 

training samples, Relevance to Tweet History feature and Relev-

ance to Retweet History feature each takes four bytes, and the 

remaining four integer-value features each takes two bytes.  

Furthermore, users encrypt the indexes of words contained in the 

tweet using probabilistic encryption Ews with the WS’s public key 

Pukws. The size of each word index is 28 bytes (recall that users 

 

Figure 3. Server-side architecture. 

 

Figure 4. Pohlig-Hellman encryption/decryption. 
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adopt SHA-224 to compute the indexes for words) and therefore 

the plaintext of all indexes for a tweet is 420 bytes on average. We 

propose that users encrypt all indexes using Advanced Encryption 

Standard (AES) in CBC mode with a random secret key kr and 

then encrypt the secret key using RSA with the WS’s public key 

Pukws (note that any probabilistic public-key encryption scheme 

can be used as Ews in our protocol, as described in Section 5.3). 

The size of the ciphertext is approximately equal to the size of (all 

word indexes + one AES block + initialization vector + the ci-

phertext of the secret AES key kr encrypted using RSA), which is 

about 0.7 KB in total with a 2048-bit RSA key. The computation-

al overhead for encrypting word indexes is dominated by encrypt-

ing kr using RSA. With the same key size, the computational cost 

for RSA encryption/decryption is the same as Pohlig-Hellman 

encryption/decryption (see Figure 4) because the compute-

intensive part for both encryption schemes is one modular expo-

nentiation. Therefore, the computational overhead at this stage for 

the user to submit n tweets is approximately 0.1n seconds and the 

communication overhead is approximately 0.7n KB for a user. 

8.3 Model Learning 
Once the SP has received all training samples from users, the SP 

only interacts with the WS at the model learning stage. Therefore, 

there is no overhead on the user side. Compared with the original 

recommendation algorithm [10], we split the model learning task 

between the SP and the WS. As we assume that the communica-

tion overhead between the SP and the WS is negligible, the only 

overhead incurred by pTwitterRec is the cost for the WS to de-

crypt and obtain the indexes for words contained in tweets, so that 

the WS can update the corresponding latent factors of these words. 

8.4 Tweet Publishing, Receiving and Ranking 
When publishing a tweet, the publisher carries out one probabilis-

tic encryption Ews to encrypt the indexes of all words contained in 

the tweet in the same manner as described in Section 8.2 and at-

taches the result to the tweet before publishing it. Therefore, to 

publish a tweet, the computational overhead for the publisher is 

approximately 91.1 ms and the communication overhead is ap-

proximately 0.7 KB on average. The overhead incurred on the 

server side is that the WS needs to perform one decryption to 

obtain the word indexes for each tweet. As described in Section 

5.5, the SP attaches the results of ,u k

j jb r∑ and 
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∑  to the 

tweet before forwarding it to the followers. Therefore, the com-

munication overhead for the followers to receive a tweet is ap-

proximately the size of two floating point number, which is eight 

bytes. We do not consider here the overhead incurred by decrypt-

ing tweets using the publisher’s secret key that is shared only 

among the publisher’s followers, which is out of the scope of our 

work. 

For tweet ranking, upon receiving a tweet from the SP, the user 

only needs to compute the explicit features and then predicts the 

rating for the tweet using equation 4. Therefore, the overhead 

incurred by tweet ranking on the user side is negligible and there 

is no communication overhead. 

8.5 Overall Overhead 
Users may run the client application on a smartphone with limited 

computation power and memory. Therefore, we illustrate the fea-

sibility of pTwitterRec by analyzing the overall overhead incurred 

on the user side. We summarize the results in Table 2. 

For model learning, assuming that each user submits n tweets to 

the SP for training, the computational overhead for a user is ap-

proximately 2.7n seconds and the communication overhead is 

approximately 7.5n KB in total assuming that the user requests the 

index of every single word contained in the tweets. Note that a 

user only needs to submit training samples once and the tweet 

recommendation model can be learned offline between the SP and 

the WS. Therefore, there are no strict real-time requirements for a 

user to submit training samples and it can take place when the 

user’s phone is not busy and when it has a Wi-Fi connection to 

the Internet. 

To publish a tweet, the computational overhead for the publisher 

is 91.1 ms and the communication overhead is 0.7 KB. The pub-

lisher can choose to not participate in tweet recommendations by 

just publishing tweets without attaching the encrypted word in-

dexes. However, the publisher’s followers may overlook her 

tweets as the followers cannot predict the ratings for her tweets 

and rank her tweets. For every received tweet, there is no compu-

tational cost for the receiver and the communication overhead for 

the receiver is eight bytes per tweet. 

For tweet ranking, the computational overhead for the user is 

negligible and there is no communication overhead.  

Summary. The user side overhead incurred by pTwitterRec for 

tweet recommendation model learning is reasonable and the mod-

el learning between the SP and the WS can take place offline. The 

overhead for publishing and receiving tweets incurred by pTwit-

terRec is small and the overhead for ranking tweets is negligible. 

9. CONCLUSIONS 
In this paper, we present pTwitterRec, the first privacy-preserving 

personalized tweet recommendation framework that provides 

Table 2. User side overhead (each user submits n tweets for training) 

 Computational Overhead  Communication Overhead  

Word Indexing <2.7n seconds <7.5n KB 

Explicit Feature Com-

putation and Training 

Sample Submission 

0.1n seconds 0.7n KB 

Model Learning none none 

Tweet Publishing and 

Receiving (one tweet) 

Publisher: 91.1 ms 

Receiver: none 

Publisher: 0.7 KB 

Receiver: 8 bytes 

Tweet Ranking negligible none 
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users with the benefits of tweet recommendations while keeping 

the content of tweets and users’ interests hidden from other unau-

thorized entities including the provider. We introduce a semi-

trusted third server (WS) to compute the tweet recommendation 

model, in cooperation with users and the SP. The implementation 

and evaluation show that pTwitterRec is practical and only intro-

duces reasonable overhead. Our future work includes implement-

ing the complete framework of pTwitterRec and evaluating the 

performance in the real world.  
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A: Appendix 

A.1 Latent Factor Model 
Collaborative recommendation techniques based on latent factor 

models have been proved to be effective in improving recommen-

dation accuracy [20, 33]. In a basic latent factor model, users and 

items are mapped to a joint low-dimensional latent factor space Rd. 

Let pu be the low dimensional representation of user u in the latent 

feature space Rd and qi be the low dimensional representation of 

item i in Rd. The predicted rating of user u for item i is computed 

as the affinity between user u and item i in the latent feature space, 

i.e., the inner product of pu and qi in R
d. 

For tweet recommendations, directly applying the basic latent 

factor model faces the problem of data sparsity due to the lack of 

retweet data. Chen et al. [9] propose decomposing the latent factor 

of a tweet (i.e., an item in the basic latent model) into a combina-

tion of the latent factors of words contained in the tweet. There-

fore, for a given tweet k, 
k

T

u w

w T

p q
∈

∑ captures the impact of the 

words contained in tweet k on user u’s rating of the tweet, where 

Tk is the word set contained in tweet k and qw represents the low 

dimensional representation of word w in the latent feature space 

Rd. Furthermore, Chen et al. propose representing the publisher of 

tweet k as a latent factor (denoted as dp(k)) in R
d as well and mea-

suring the possibility of user u retweeting tweet k by considering 

the affinity of user i and the publisher of tweet k in the latent fea-

ture space. Therefore, ( )

T

u p kp d captures the impact of the social 

relation between user u and the publisher of tweet k on user u’s 

rating of the tweet. The values of pu, qw and dp(k) are learned 

through the training as described in Section 5.4. 

A.2 Pohlig-Hellman Encryption 
The Pohlig-Hellman encryption scheme [24] is similar to RSA. 

Different keys are used for encryption and decryption. However, it 

is not a public-key scheme, because the keys are easily derivable 

from each other; both the encryption and decryption keys must be 

kept secret.  

Given a large prime p with no small factors of p - 1, each party 

chooses a random (e, d) pair such that e × d = 1 (mod p – 1) 

where the encryption key is e and the decryption key is d. For a 

given message M, the encryption of M is Me (mod p) and for a 

given ciphertext C, the decryption of C is Cd (mod p). It is 

straightforward to prove that the Pohlig-Hellman encryption 

scheme is both deterministic and commutative.  

Pohlig-Hellman leaks the information whether the plaintext mes-

sage M is quadratic residue (mod p) or not. In our framework, the 

SP computes the index of each word by encrypting the word using 

Pohlig-Hellman. Because the SP is honest but curious in the 

threat model, the SP would not manipulate the distribution of 

word indexes at the risk of being caught. Although we use Pohlig-

Hellman encryption for examples in this paper, any encryption 

scheme that is both deterministic and commutative can be used in 

our protocol. 
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