
pTwitterRec: A Privacy-Preserving Personalized

Tweet Recommendation Framework
Bisheng Liu and Urs Hengartner
Cheriton School of Computer Science

University of Waterloo, Waterloo, ON, Canada

{bisheng.liu, urs.hengartner}@uwaterloo.ca

ABSTRACT
Twitter is one of the most popular Online Social Networks (OSNs)

nowadays. Twitter users retrieve information from other users by

subscribing to their tweets. Twitter users, especially those who

have many followees, may receive hundreds or even thousands of

tweets daily. Currently, all tweets are shown to users in chrono-

logical order. Consequently, a Twitter user may accidentally over-

look useful and interesting tweets because the user is over-

whelmed by the huge volume of uninteresting tweets. Researchers

in the recommendation system community have proposed using

recommendation techniques such as collaborative filtering to pre-

dict users’ preference of tweets and highlight those tweets in

which users are most likely to be interested. At the same time,

while OSNs such as Twitter have enabled people to conveniently

share information and interact with each other online, OSN users

are getting increasingly concerned about their online privacy.

Researchers in the security community have proposed using tech-

niques such as encrypted tweets to protect users’ privacy. In this

paper, we propose a privacy-preserving personalized tweet rec-

ommendation framework, pTwitterRec, in a Twitter-like social

network where users’ tweets are hidden from the OSN provider.

pTwitterRec provides users with personalized tweet recommenda-

tions while keeping users’ tweets and interests hidden from the

OSN provider as well as other unauthorized entities. pTwitterRec

splits the tweet recommendation task between the provider and a

semi-trusted third party, so that neither can derive users’ sensitive

information alone while working together to provide users with

personalized tweet recommendations. We implement a prototype

and demonstrate through evaluation that pTwitterRec incurs toler-

able overhead on today’s smartphones.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering;

J.4 [Computer Applications]: Social and behavioral sciences;

K.4.1 [Computers and Society]: Public Policy Issues – Privacy

Keywords
Privacy Protection; Tweet Recommendations; Personalization

1. INTRODUCTION
Twitter is a popular online social networking website and micro-

blogging service that allows users to conveniently share short

messages of up to 140 characters, known as “tweets”, with their

online followers. With more than 550 million active registered

Twitter users nowadays, approximately 58 million tweets are gen-

erated per day [38]. Twitter users on average follow 80 people

[29], which leads to hundreds or even thousands of new tweets

received by each user every day. Currently, all tweets are shown

to users in chronological order, which may lead to users missing

some informative and interesting tweets simply because users are

overwhelmed by other tweets that do not interest them at all. Re-

searchers [10, 14, 21] have proposed using various recommenda-

tion techniques that utilize all kinds of information available on

Twitter (such as users’ tweet history and social relations) to rank

tweets and display those tweets that might interest the user most

on top.

In the meantime, users of Online Social Networks (OSNs) such as

Twitter are increasingly concerned about privacy issues [30]. In

general, OSN providers are considered to be trustworthy, as they

have a valuable reputation to maintain and any suspicion of mali-

cious behaviors could potentially lead to a significant loss of users.

As a result, users trust OSN providers by default to properly safe-

guard and manage the contents published by users. Unfortunately,

users’ privacy is at risk by placing trust completely on OSN pro-

viders. For example, OSNs’ Terms of Service typically include

clauses that explicitly/implicitly allow the provider to mine user

content for the purpose of delivering targeted advertising or resel-

ling to third party services [12]. Also, in regions where OSNs are

closely monitored by unscrupulous and suppressive governments

[32], it is crucial to guarantee that only users’ explicitly autho-

rized followers/friends can access their data. Researchers in the

security community have proposed several approaches [3, 12, 16,

23] to achieve this goal by delegating control over content to end

users.

The contributions of this paper are as follows: Our work is the

first, to our best knowledge, to propose a privacy-preserving per-

sonalized tweet recommendation framework, pTwitterRec. We

enhance an existing personalized tweet recommendation algo-

rithm with a few cryptographic protocols and split the recommen-

dation task between the provider of the Twitter-like service and a

semi-trusted third party, so that users obtain personalized tweet

recommendations without leaking any sensitive information to

unauthorized entities. We demonstrate the practicality through

http://dx.doi.org/10.1145/2590296.2590304

365

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright © 2014 ACM 978-1-4503-2800-5/14/06…$15.00.

implementation and evaluation of the overhead incurred by pTwit-

terRec. pTwitterRec only introduces minimum overhead on the

user side while achieving the privacy goal, compared with the

original tweet recommendation algorithm, which was designed

with no privacy in mind. In this paper, we positively answer the

following question: in a Twitter-like OSN, can we provide users

with the benefits of personalized tweet recommendations while

keeping the contents of users' tweets and users' interests hidden

from the provider as well as other unauthorized parties?

The remainder of this paper is organized as follows: In Section 2,

we overview the related work. In Section 3, we introduce the

background of our work. In Section 4, we describe our system and

threat models. In Section 5, we present in detail our proposed

privacy-preserving personalized tweet recommendation frame-

work pTwitterRec. In Section 6, we discuss the security and pri-

vacy aspects and a possible extension of pTwitterRec. We de-

scribe the server-side implementation in Section 7. We analyze

and evaluate the overhead incurred by pTwitterRec in Section 8.

Finally we conclude our work in Section 9.

2. RELATED WORK

2.1 Tweet Recommendations
Researchers have proposed recommendation systems for Twitter.

Chen et al. [9] focus on recommending URLs on Twitter that a

Twitter user might find interesting. Hannon et al. [17] develop a

followee recommender system for Twitter that utilizes Twitter’s

real-time information as a source of recommendation knowledge.

Diaz-Aviles et al. [13] propose using collaborative filtering to

recommend hash tags on Twitter in real-time.

Some researchers focus on recommending tweets that are interest-

ing to users. Duan et al. [14] propose using learning to rank algo-

rithms to rank tweets based on the user query. Their approach

considers quality of tweets and authority of the publishers but

does not consider user personalization. Ramage et al. [31] pro-

pose using latent variable topic models like Labeled LDA to map

the content of the Twitter feed into dimensions and then filter

Twitter feeds for users. Their approach uses content-based filter-

ing and does not consider users’ social relations. Naveed et al. [21]

propose using a learning approach based on pure content features

to predict the probability of a message being retweeted. Their

work does not consider user personalization, either. Chen et al.

[10] propose using collaborative ranking to recommend tweets

that are personally interesting to a user. Their approach considers

not only explicit features such as quality of the tweet and authori-

ty of the publisher, but also tweet topic level latent factors and

social relation latent factors. Experiments on real-world data show

that their approach outperforms other tweet recommendation algo-

rithms in terms of mean average precision (MAP).

Our work is based on the tweet recommendation algorithm pro-

posed by Chen et al. [10]. In addition, we provide users with per-

sonalized tweet recommendations while preserving user privacy.

2.2 Privacy-preserving Recommendations
Privacy for traditional recommender systems such as collaborative

filtering has been extensively studied. Canny [7, 8] propose using

homomorphic encryption and a peer-to-peer protocol to provide

privacy for model-based collaborative recommender systems.

Polat and Du [25–28] propose that customers adopt randomized

perturbation techniques to disturb their private data before send-

ing the data to the service provider for recommender systems.

Aïmeur et al. [1] propose using a semi-trusted third party to distill

encoded sensitive customer information, which can be used to

produce recommendations but cannot be decrypted by any of the

concerned parties alone.

In personalized tweet recommendations, tweets are regarded as

items and many unique Twitter features such as content informa-

tion and social relation information need to be utilized to improve

recommendation accuracy. None of the abovementioned ap-

proaches can be trivially adapted to offer personalized tweet rec-

ommendations while preserving user privacy.

2.3 Privacy-preserving OSNs
There has been significant work in OSN privacy. Our work is

most related to approaches that aim to protect social network us-

ers’ privacy from a curious OSN provider. Systems such as Fly-

ByNight [22], NOYB [16] and Facecloak [23] store users’ data

with the untrusted provider but protect its content with encryption.

Conti et al. [11] propose establishing a virtual private network

between friends on OSNs to share sensitive information. Singh et

al. [34] propose Twitsper, a wrapper around Twitter that enables

private group communication among Twitter users while preserv-

ing Twitter’s business interests. Feldman et al. [15] propose

Frientegrity, a framework where an OSN provider observes only

encrypted data and cannot deviate from correct execution without

being detected. De Cristofaro et al. [12] propose Hummingbird, a

variant of Twitter that protects users’ tweets as well as users’ in-

terests from a semi-trusted OSN provider.

Our work, however, focuses primarily on protecting users’ privacy

from a curious OSN provider while offering users personalized

tweet recommendations. Our privacy-preserving tweet recommen-

dation framework pTwitterRec can be built upon any of the ab-

ovementioned approaches as long as the OSN provider is able to

distribute tweets to the corresponding followers without learning

the tweets.

3. BACKGROUND

3.1 Twitter
Twitter is one of the most popular OSNs that enable users to send

and read tweets, which are text messages limited to 140 characters.

A user receives tweets from other users by subscribing to their

tweets. Twitter terminology relevant to this paper includes:

• Publisher: A user who posts a tweet.

• Follower: A user who follows others’ tweets.

• Followee: A user whose tweets are being followed by
others.

• Tweets: short messages posted by a user/publisher.

• Retweets: someone else’s tweets that a user chooses to
share with all of the user’s followers.

• Service Provider (SP): the centralized entity of Twitter
that maintains all user profiles and tweets, and distributes
users’ tweets to followers.

Tweets are public by default; that is, any registered user can read

other users’ public tweets. However, upon registration, a user has

the option of keeping the tweets only visible to the user’s ap-

proved Twitter followers, known as protected tweets. Nonetheless,

all tweets published by users are not hidden from the SP.

366

3.2 Personalized Tweet Recommendations
Recommending useful tweets to a user is a challenging problem.

The key of the problem is how to use any information available on

Twitter to decide whether or not a user is interested in a tweet.

Such information available on Twitter includes the quality of the

tweet, the authority of the publisher, the user’s previous tweets,

etc. With such information as input, the SP adopts various ma-

chining learning techniques such as Collaborative filtering [4, 6],

LDA [5] or RankSVM [19] to learn a model to predict users’ inter-

ests in tweets. Among existing recommendation algorithms for

social updates [5, 10, 14, 18, 19, 21, 35], we adopt the collabora-

tive personalized tweet recommendation algorithm proposed by

Chen et al. [10] as the building block of our privacy-preserving

tweet recommendation framework pTwitterRec. We choose their

algorithm over others because: a) their tweet recommendation

model not only incorporates explicit tweet features such as the

quality of the tweet and the authority of the publisher, but also

uses topic level latent factors of tweets to capture users’ interests

and uses latent factors to model users’ social relations; b) their

model outperforms other up-to-date recommendation models with

reasonable computation cost. For example, the empirical results

show that their method achieves 46.84% and 17.41% improve-

ments compared with the RankSVM method and joint matrix

factorization method [35] in terms of Mean Average Precision

(MAP).

We briefly describe their tweet recommendation algorithm. For a

given user u and two received tweets k and h, assuming that the

ranks of tweets k and h are u

k
r and u

h
r respectively (user u is more

interested in tweet k than tweet h if u

k
r is larger/higher than u

h
r),

the authors model the probability of the orders of tweets k and h

for user u as follows:

, ,()

1
(|)

1 u k u h

u u

k h y y
P r r u

e
− −

> =
+

 (1)

where yu,k represents the predicted rating of user u for tweet k.

Then, the authors define the rank preference set D as follows:

 { , , | (), ()}D u k h k Re u h Re u= < > ∈ ∉ (2)

where Re(u) represents the set of tweets user u has retweeted. D is

built based on the assumption that users are more interested in

those tweets that they have retweeted than those they have not

retweeted. For a tuple <u, k, h> in D, an ideal rating prediction

model yu,k maximizes the probability of the ranking order that user

u ranks tweet k higher than tweet h. To solve this problem for all

tuples in D, it is equivalent to solve the following objective by

learning the optimal parameters for the rating prediction model

yu,k:

 , ,()

, ,

min ln(1) regularizationu k u hy y

u k h D

e
− −

< ∈ >

+ +∑ (3)

Finally, the authors define the prediction model yu,k as follows:

 ,

, ()

1
()

j

k

u k T

u k j u w p kk
j F w T

y b r p q d
Z

α
∈ ∈

= + +∑ ∑ (4)

In the first part of equation 4, the authors use ,

j

u k

j

j F

b r
∈

∑ to capture

the impact of explicit features (such as the quality of the tweet and

the authority of the publisher) on user u’s rating of tweet k, where

,

j

u kr is the j-th explicit feature computed from tweet k regarding

user u, F is the set of explicit features and bj is the system-wide

weight corresponding to the j-th explicit feature, which is to be

learned in the prediction model. The second part of equation 4

considers a latent factor model (described in Appendix A.1). In

brief, the authors use
k

T

u w

w T

p q
∈

∑ to capture the impact of words

contained in tweet k on user u’s rating of the tweet, where pu is the

low dimensional representation of user u in the latent feature

space Rd, Tk is the word set contained in tweet k and qw represents

the low dimensional representation of word w in the latent feature

space Rd; the authors use ()

T

u p kp d to capture the impact of the

social relation between user u and the publisher of tweet k on user

u’s rating of the tweet, where dp(k) is the low dimensional repre-

sentation of the publisher of tweet k in the latent feature space Rd.

In equation 4, Zk is the normalization term defined as the cardinal-

ity of the word set Tk, and α is a predefined system-wide parame-

ter that indicates the importance of social relations relative to

words contained in the tweet.

Using D as the training datasets, by solving objective 3, the SP

learns the parameters of the tweet rating prediction model: the

system-wide weight vector b, the latent factor for user u denoted

as pu, the latent factor for each word w denoted as qw and the la-

tent factor for the publisher of tweet k denoted as dp(k). Note that

among all parameters to be learned in the prediction model, only

the value of pu depends on user u and all other parameters are

global values. To solve objective 3, the authors perform stochastic

gradient descent (as described in Section 3.3). After the prediction

model yu,k is learned, the SP estimates a user’s rating for a tweet

using equation 4.

3.3 Stochastic Gradient Descent
Chen et al. [10] adopt stochastic gradient descent to solve objec-

tive 3. For each tuple <u, k, h> in D, the SP computes the descent

of each parameter as follows and updates the parameters by mov-

ing in the direction of negative gradient:

() () 1

1 1
ˆ ()

k h

w w p k p h uk h
w T w Tu

e q q d d p
p Z Z

α λ
∈ ∈

 ∂
= − + − −  ∂  

∑ ∑
ℓ

 (5)

2 2

1 1
ˆ ˆ,k h

u w u wk k h h

w w

ep q ep q
q Z q Z

λ λ
∂ ∂

= − = − −
∂ ∂

ℓ ℓ
 (6)

3 () 3 ()

() ()

ˆ ˆ,u p k u p h

p k p h

ep d ep d
d d

α λ α λ
∂ ∂

= − = −
∂ ∂

ℓ ℓ
 (7)

, ,

4
ˆ()u k u h

j j j

j

e r r b
b

λ
∂

= − −
∂

ℓ
 (8)

, ,()

1
ˆwhere 1

1 u k u hy y
e

e
− −

= −
+

 (9)

Here, k

w
q represents the latent factor of word contained in tweet k.

The algorithm loops over all tuples in D and updates the parame-

ters accordingly.

367

4. SYSTEM AND THREAT MODEL

4.1 System Model
In pTwitterRec, we assume a privacy-preserving Twitter-like so-

cial network where tweets posted by users are hidden from the SP.

We assume that users install a client application to participate in

the social network. In the remainder of the paper, we refer to the

client software installed on user u’s device as user u for simplicity.

In pTwitterRec, upon registration, each user’s account is protected

by default; that is, a user’s tweets are only visible to the user’s

explicitly authorized followers. In addition, the user’s tweets are

hidden from the SP as well. We assume that a user encrypts the

tweets using a secret key (not known by the SP) shared only

among the user’s authorized followers before posting them to

pTwitterRec. The SP is responsible for storing encrypted tweets

published by users and delivering those tweets to their corres-

ponding followers. How to construct pTwitterRec such that it

meets the abovementioned assumptions is out of the scope of our

work; as described in the related work, systems such as FlyBy-

Night [22] and Hummingbird [12] can be adapted to implement

pTwitterRec.

For tweet recommendations, to prevent the SP from learning a

user’s interests, in pTwitterRec, we introduce a semi-trusted third

party server, denoted as the word server (WS). Users, the SP and

the WS cooperate and learn the personalized tweet recommenda-

tion model. More specifically, users are mainly responsible for

collecting and preparing training samples that are used to learn the

recommendation model, the SP is responsible for computing the

weight parameters for explicit features, the latent factors of users

as recipients of tweets and the latent factors of users as publishers

of tweets while the WS is responsible for computing the latent

factors of words in the tweet vocabulary. By separating the latent

factors of words from the latent factors of users, neither the SP

nor the WS can learn the contents of users’ tweets and users’ in-

terests without colluding with each other (more details in Section

5).

4.2 Threat Model
In pTwitterRec, we assume both the SP and the WS to be honest

but curious; that is, they follow our protocol, but are curious

about passively learning the contents of users' tweets and users'

interests. More specifically, we assume that neither the SP nor the

WS creates spurious users or falsifies user requests in order to

learn secrets from each other. We consider this assumption to be

reasonable in OSNs, because it is not in OSN providers’ best

interests to lose users as a result of any suspicion of malicious

behaviors [12]. Furthermore, we assume that the SP and the WS

do not collude.

As mentioned in the system model, we assume that a user’s tweets

are encrypted with a secret key shared only among the user’s ap-

proved followers. No entities can decrypt the tweets without the

appropriate decryption key. Both the SP and the WS are interested

in learning the contents of a user's tweets. In addition, both the SP

and the WS are interested in inferring users’ interests by learning

users’ preference of specific words. For example, a user who ex-

hibits a strong preference for words “Ford” and “Toyota” is most

likely to be interested in cars.

Furthermore, we assume that the social relations between users

are not hidden from the SP in pTwitterRec. pTwitterRec works for

Twitter-like systems where user’s social relations and the contents

of users’ tweets are both hidden from the provider. However,

pTwitterRec may lose some recommendation accuracy if neither

the SP nor users are able to compute some of the explicit features

that depend on user’s social relations (more details in Section 5.3).

5. pTwitterRec
In this section, we present the main components of pTwitterRec.

5.1 Design Overview
The main challenges are: a) when using stochastic gradient des-

cent to learn the recommendation model, for any given tuple <u, k,

h> in D, update the parameters of the model using equations 5-9

without revealing the words contained in tweets k and h to any

unauthorized entities; b) when the model is learned, only user u is

allowed to compute T

u w
p q where pu is the latent factor of user u as

the recipient of tweets and qw is the latent factor of word w, be-

cause the result of T

u w
p q represents user u’s preference of word w

and thereby potentially reveals user u’s interest.

We make the following observations in relation to equations 5-9:

a) computing ê in equation 9 does not require knowing the spe-

cific words contained in tweets k and h. Instead, we only need to

know the result of
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; b) Similarly, updating

pu using equation 5 and updating dp(k) using equation 7 only re-

quire knowing the result of
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; c) updating

bj using equation 8 only requires knowing the result of
, ,()u k u h

j jr r− which is the difference between the explicit features

computed from tweets k and h regarding user u, and the result of

1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ ; d) finally, updating qw using equation 6

does not require to know the identity of user u. Instead, we only

need to learn the result of ˆ
uep .

Intuition. Based on the above observations, we split the task of

learning the parameters of the recommendation model among user

u, the SP and the WS. User u is responsible for selecting tweets k

and h which constitute the tuple <u, k, h>. User u and the SP coo-

perate to compute explicit features from tweets k and h and com-

pute , ,()u k u h

j jr r− without revealing the content of the tweets to the

SP. The SP is responsible for updating bj, Pu and dp(k) while the

WS is responsible for updating qw. The SP updates bj, Pu and dp(k)

upon receiving the result of
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the WS

without learning the words contained in tweets k and h. The WS

updates qw upon receiving the result of ˆ uep from the SP without

learning the identity of user u. As a result, neither the SP nor the

WS can calculate T

u w
p q without a coalition between them.

The main components of pTwitterRec include: a) word indexing,

b) explicit feature computation and training sample submission, c)

model learning, and d) tweet publishing, receiving and ranking.

We will describe each component in details in following subsec-

tions.

368

5.2 Word Indexing
In pTwitterRec, user u is responsible for selecting tweets k and h

(where tweet k is some tweet that user u has previously retweeted

and tweet h is some tweet that user u has not retweeted) and pre-

paring the tuple <u, k, h> in D before submitting it to the SP. User

u intends to keep the content of the tweets, i.e., the words con-

tained in tweets k and h, hidden from the SP. In addition, even

though the WS only manages the latent factor of words and will

not learn the identity of user u at the model learning stage (more

details in Section 5.3), user u wants to keep the content of the

tweets hidden from the WS as well, because the tweets may con-

tain some words that potentially reveal the identity of user u. On

the other hand, in order to update the latent factor of each word

contained in tweets k and h, the WS must be able to uniquely

index each word. Therefore, each word contained in D must be

uniquely indexed in a manner that the WS does not learn the

mapping between the word and the corresponding index.

Since all users communicate with the SP, we require the SP to be

the central server responsible for indexing words using some se-

cret that is unknown to the WS. Note that when users request the

indexes of words from the SP, users want to keep the words and

the corresponding indexes hidden from the SP. We propose that

the SP adopts a deterministic commutative encryption scheme

such as Pohlig-Hellman encryption [24], denoted as Ecomm, to

generate the unique index for each word. Loosely speaking, an

encryption scheme is commutative if a message encrypted by key

k1 first and then by key k2 can be decrypted by the decryption key

corresponding to k1 to reveal the message singly encrypted by k2.

Assuming that user u is requesting the index of word w from the

SP, the protocol works as follows: during system setup, both the

SP and user u generate a separate secret encryption key for the

commutative encryption scheme, denoted as ksp and ku respective-

ly. Then user u encrypts word w using Ecomm with the secret key ku

and sends the encrypted result to the SP. Let the encrypted result

be Ecomm(w, ku). Because the SP does not know the corresponding

decryption key for ku, the SP cannot learn word w. Upon receiving

Ecomm(w, ku), the SP further encrypts it using Ecomm with the SP’s

secret key ksp and sends Ecomm(Ecomm(w, ku), ksp) back to user u.

Finally, user u decrypts Ecomm(Ecomm(w, ku) with the corresponding

decryption key for ku. Because of the commutative property of the

encryption scheme Ecomm, user u obtains Ecomm(w, ksp) and com-

putes indexw = H(Ecomm(w, ksp)) where H is the SHA-224 hash

function and indexw is the index of word w. Because of the deter-

ministic property of the encryption scheme Ecomm, the index of

word w is unique in the whole system. In order to reduce the on-

line computational and communication overhead on the user side,

an alternative approach is to require that the SP pre-computes the

indexes of popular words and users pre-download the indexes

beforehand without revealing their interests to the SP. For some

obscure words that are not pre-computed by the SP, users adopt

the commutative encryption scheme as mentioned above to re-

quest the indexes from the SP.

5.3 Explicit Feature Computation and Train-

ing Sample Submission
For each tweet in D, information such as the quality of the tweet

(e.g., the number of URLs contained in the tweet) and the authori-

ty of the publisher (e.g., the number of followers) can be indicated

as features, which explicitly reflect the possibility of a user ret-

weeting the tweet, known as explicit features. Chen et al. [10]

propose four categories of explicit features: relation features, con-

tent-relevance features, twitter-specific features and publishers’

authority features.

Table 1. Explicit features (tweet k published by user p received by user u)

Feature Category Description Computed By

Co-follow Score Relation The similarity of followee sets of between user u and user p SP

Mention Score Relation
The number of times user u has mentioned user p in his

previous tweets
SP

Friend Relation 1 when user u and user p follow each other and 0 otherwise SP

Relevance to Tweet

History

Content-

relevance

The relevance between tweet k and the posting history of

user u
User u

Relevance to Retweet

History

Content-

relevance

The relevance between tweet k and the retweeted history of

user u
User u

Relevance to Hash

Tags

Content-

relevance

The count of words in tweet k that ever appeared as hash

tags through user u’s posting history
User u

Length of Tweet Twitter Specific The number of words contained in tweet k User u

Hash Tag Count Twitter Specific The number of hash tags contained in tweet k User u

URL Count Twitter Specific The number of URLs contained in tweet k User u

Retweet Count Twitter Specific The number of times tweet k has been retweeted SP

Mention Count
Publishers’

Authority
The times user p is mentioned in all tweets SP

Followee Count
Publishers’

Authority
The number of users who user p follows SP

Follower Count
Publishers’

Authority
The number of users who follow user p SP

Tweet Count
Publishers’

Authority
The number of tweets ever posted by user p SP

369

In pTwitterRec, we split the task of computing explicit features

between users and the SP (as listed in Table 1). Users are respon-

sible for computing those features that depend on the content of

the tweet, for example, relevance to tweet history feature, which

estimates the relevance between the tweet and the user’s previous

tweet history. The SP is responsible for computing those features

that depend on non-sensitive global information that is available

to the SP, for example, co-follow score feature, which estimates

the similarity of the followee sets of the recipient and the publish-

er of the tweet.

For a given tuple <u, k, h> in D, user u computes the explicit fea-

tures that she is responsible for computing. Let the j-th explicit

feature computed from tweets k and h be ,u k

jr and ,u h

jr respective-

ly. User u calculates ,u k

jr - ,u h

jr and attaches the result to the tuple

before sending it to the SP.

Finally, user u cannot simply replace each word contained in

tweets k and h with the corresponding index when submitting the

tuple <u, k, h> to the SP, because the SP can conveniently learn

each word by decrypting the index with its decryption key. We

propose that during system setup, the WS generates a pair of pub-

lic and private keys (Pukws, Prkws) for a probabilistic public-key

encryption scheme denoted Ews. For tweet k in the tuple, user u

randomly mixes the order of the indexes of all words contained in

tweet k, concatenates all indexes altogether, and encrypts the in-

dexes using Ews with the WS’s public key Pukws. Consequently,

the SP learns neither the indexes of words contained in the tweet

nor the frequency of each word contained in D while the WS only

learns the index of each word at the model learning stage. The WS

does learn the frequency of each word and might be able to corre-

late the most popular words with their indexes at certain proba-

bilities. However, we argue the impact of such attacks is negligi-

ble for reasons explained in Section 6.

As a result, for a given tuple <u, k, h> in D, the final data submit-

ted to the SP by user u is as follows:

, ,,{ | }, (), (), (), () (10)j

u k u h

j u ws k ws hu r r j F p k p h E tweet E tweet< − ∈ >

Where Ews(tweetk) denotes the encrypted set of indexes of words

contained in tweet k as previously described, Fu denotes the set of

explicit features computed by user u, and p(k) denotes the identi-

ties of the publisher of tweets k. Upon receiving the data submit-

ted by user u, the SP computes explicit features (as listed in Table

1) that the SP is responsible for computing from tweets k and h.

Combined with the data received from user u, we denote the final

training dataset for the given tuple <u, k, h> in D as d<u, k, h>.

5.4 Model Learning
For tweet k received by user u, in addition to explicit features

computed as described in Section 5.3, Chen et al. [10] use a latent

factor model (details in Appendix A.1) to capture user u’s inter-

ests in tweet k and propose three categories of latent features: the

latent factors of user u as a recipient of tweet k in the latent feature

space Rd denoted as pu, the latent factor of the publisher of tweet k

in Rd denoted as dp(k), and the latent factor of each word w con-

tained in tweet k in Rd denoted as qw. User u’s interest in tweet k is

captured by measuring the affinity between user u and the words

contained in tweet k and the affinity between user u and the pub-

lisher of tweet k in the latent feature space Rd. At the model learn-

ing stage, the SP and the WS cooperate to learn the values of

these latent factors, in addition to the weight vector for explicit

features by performing stochastic gradient descent as described in

Section 3.3.

In pTwitterRec, during system setup, the SP initializes the weight

bj for all explicit features, the latent factor pu of each user as the

recipient of tweets and the latent factor dp(k) of each user as the

publisher of tweets with random values. For each training dataset

d<u, k, h> corresponding to <u, k, h> in D, the SP and the WS

engage in the following protocols (as depicted in Figure 1):

a) The SP forwards the encrypted set of word indexes (denoted

as Ews(tweetk) and Ews(tweeth)) contained in d<u, k, h> to the

WS. The WS obtains the corresponding word indexes by

decrypting with its private key Prkws. If the WS has never

come across the index of word w before, the WS initializes

the latent factor for word w with random values, denoted as

qw. Then, the WS calculates
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ and

sends the result back to the SP. Note that the WS does not

know the actual words but only learns the index of each

word contained in tweets k and h.

b) Upon receiving
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the WS, the

SP calculates ê using equation 9 and updates parameters bj,

pu and dp(k) using equations 5, 7 and 8.

c) The SP computes ˆ
uep and sends the result to the WS. The

WS updates qw for each word w contained in tweets k and h

1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑

ˆ
uep

Figure 1. Privacy-preserving model learning.

1

k

wk
w T

q
Z ∈

∑

1

k

wk
w T

q
Z ∈

∑ , ,u k

j j spb r j F∈∑

Figure 2. Tweet publishing, receiving and ranking.

370

using equation 6. Note that the WS does not learn the identi-

ty of user u.

The SP and the WS loop over all training datasets in D and update

the parameters of the tweet recommendation model in the same

manner as mentioned above. At the end of the model learning

stage, the SP learns bj for each explicit feature, pu for users as

recipients of tweets and dp(k) for users as publishers of tweets

while the WS learns qw for words in the tweet vocabulary.

5.5 Tweet Publishing, Receiving and Ranking
Once the tweet recommendation model is learned, it can be used

to predict users’ interests in tweets and rank the tweets according-

ly (as depicted in Figure 2).

In pTwitterRec, users are primarily responsible for ranking tweets

with the help of the SP and the WS. When the recommendation

model is learned, user u requests from the SP her personal latent

factor pu, the latent factors of all her followees as publishers, de-

noted as df where user f is a followee of user u, and the system-

wide weight bj for explicit features. Note that user u only needs to

retrieve these parameters once.

When publishing a tweet, the user looks up the indexes of words

contained in the tweet to be published, mixes the order of these

indexes randomly and concatenates them together, encrypts the

indexes using Ews with the WS’s public key Pukws and attaches the

encrypted indexes to the tweet before sending it to the SP. Simi-

larly to model learning, the SP forwards the encrypted indexes to

the WS, which calculates
1

k

wk
w T

q
Z ∈

∑ for words contained in the

tweet and sends the result back to the SP. The SP computes the

sum of explicit features (denoted as , ,u k

j j spb r j F∈∑ where Fsp

denotes the set of explicit features that the SP is responsible for

computing), attaches the sum along with
1

k

wk
w T

q
Z ∈

∑ which was

previously received from the WS to the tweet before distributing it

to corresponding followers.

Upon receiving the tweet and the attached values, user u decrypts

the tweet, calculates the explicit features that the user is responsi-

ble for computing, and computes the predicted rating for the tweet

using equation 4. Tweet ranking works as follows: When the ac-

tual user, not the pTwitterRec client software, wants to read her

tweets, this process is done for all tweets that have arrived since

her last update and then the tweets are shown to her in ranked

order.

6. DISCUSSION
In this section, we discuss the security and privacy aspects of

pTwitterRec and a possible extension.

6.1 Security Analysis
We discuss possible attacks against pTwitterRec.

Frequency analysis attacks. At the model learning stage, the WS

decrypts the encrypted indexes of the words contained in the

tweets submitted by users as described in Section 5.4. Therefore,

the WS learns the frequency of each word that has appeared in all

tweets contained in the training datasets D while not knowing the

actual words. Should the WS have the background knowledge of

the popularity of each word in the tweet vocabulary, the WS

might be able to correlate the most popular words with their in-

dexes at certain probabilities. However, we argue that those words

that are most vulnerable against such frequency analysis attacks

are exactly those words that are most common among all users

and therefore reveal little personal information regarding an indi-

vidual user. In regards of the SP, even though the SP knows the

identities of the users included in D, the SP cannot learn the fre-

quencies of words because the indexes were encrypted using

probabilistic encryption scheme Ews with the WS’s public key

Pukws.

Collusion attacks. In our threat model, we assume that the SP and

the WS do not collude. In addition, since the SP and the WS are

honest-but-curious adversaries, they would not create phantom

users to interact with other parties. The SP might try to collude

with some legitimate users. A collusion between the SP and a user

does not reveal the indexes of words contained in other users’

tweets as they are encrypted using probabilistic encryption

scheme Ews (we require that Ews is also secure against chosen-

plaintext attacks.) with the WS’s public key Pukws. However, the

SP can learn the latent factors of some words through the collud-

ing user and thereby infer other users’ interests. Similarly, a collu-

sion between the WS and a user discloses the mapping of words

and corresponding indexes. However, we claim that users who

collude with either the SP or the WS lose some of their own pri-

vacy. A collusion among a group of users does not pose threats to

other users, because in pTwitterRec users are only allowed to

obtain their own personal latent factors from the SP, as described

in Section 5.5.

Poisoning attacks. Some malicious users may inject false training

datasets such as falsified explicit features to render the tweet rec-

ommendation model less effective. Prior work such as Orca [2]

has been proposed to detect such poisoning attacks. Poisoning

attacks are not introduced as a result of adopting pTwitterRec. We

leave the full investigation of the impact of such attacks on the

recommendation accuracy and the applicability of existing de-

fense mechanisms to future work.

6.2 Privacy Analysis
In this subsection, we examine the user information disclosed to

the SP and the WS at each stage of pTwitterRec and analyze the

privacy threats.

Word indexing. When user u requests the index of word w from

the SP, the SP learns neither word w nor the corresponding index,

because word w is encrypted using commutative encryption with a

secret key known only to user u. Upon receiving the index of

word w from the SP, user u caches the index corresponding to

word w locally so user u does not need to request the index of the

same word again in the future. Therefore, the SP learns no infor-

mation other than that user u has made such a request. If the SP

pre-computes the indexes for all popular words in the tweet voca-

bulary as described in Section 5.2, user u reveals no personal

information by downloading such indexes from the SP in advance.

Explicit feature computation and training sample submission.
For a given tuple <u, k, h> in D, when user u finishes calculating

the explicit features for tweets h and k and submitting the corres-

ponding training dataset to the SP as described in Section 5.3, the

SP learns: a) the identities of the publishers of tweets k and h,

which is not private information in our threat model; b) the en-

crypted indexes for words contained in tweets k and h, which are

encrypted using Ews with the WS’s public key Pukws. The SP

learns neither the words contained in the tweets nor their indexes.

In addition, the SP does not even learn how frequent the same

371

word has appeared among all tweets in D because Ews is a proba-

bilistic encryption scheme; c) the difference between the explicit

features (computed by user u) computed from tweets k and h,

denoted as , ,{ | }j

u k u h

j ur r j F− ∈ . Among all explicit features com-

puted by user u, features Relevance to Tweet History, Relevance

to Retweet History and Relevance to Hash Tags do not leak any

personal information about user u because all tweets received and

published by user u are hidden from the SP. Features Length of

Tweet, Hash Tag Count and URL Count do reveal the number of

words, the number of hash tags and the number of URLs con-

tained in a tweet. However, we do not consider such information

to be sensitive for user u. In addition, user u only submits the

difference between those features computed from tweets k and h;

d) the SP computes some explicit features of tweets k and h as

listed in Table 1. However, those features only depend on non-

sensitive information, which is already available to the SP, such

as user u’s social relations, and therefore do not leak any private

information about user u.

Model learning. At the model learning stage, the SP and the WS

cooperate to update the parameters of the tweet recommendation

model. For a given tuple <u, k, h> in D, a) at the first step of the

protocol, the SP only forwards the encrypted indexes for words

contained in tweets k and h to the WS. The WS does not learn the

original words contained in tweets k and h but only learns their

indexes. In addition, the WS learns neither the identity of user u

nor the identity of the publishers of tweets k and h. Furthermore,

we require that users randomly mix the order of indexes of words

contained in the tweet before encrypting and submitting them, so

the WS cannot identify words by analyzing the pattern of the or-

der of words appearing in tweets. The WS does learn the frequen-

cy of each word that has appeared in all tweets contained in D

while not knowing the actual words. However, as analyzed in

Section 6.1, such frequency analysis attacks reveal little personal

information regarding each individual user. At the end of the first

step, the SP learns the result of
1 1

k h

w wk h
w T w T

q q
Z Z∈ ∈

−∑ ∑ from the

WS, which does not reveal the individual latent factor of each

word because all word indexes were encrypted using probabilistic

encryption scheme Ews with the WS’s public key Pukws; b) at the

third step of the protocol, the WS learns the result of ˆ
uep from the

SP, which does not reveal the identity of user u; c) at the end of

the model learning stage, the SP learns the latent factor pu of user

u as recipients of tweets and the latent factor dp(k) of user p(k) as

the publisher of tweet k (note that pu is a vector in the latent fea-

ture space Rd and pu alone does not disclose any personal informa-

tion of user u). The SP is able to learn the closeness of the social

relation between users u and p(k) by computing ()

T

u p kp d . However,

in pTwitterRec, we assume that the social relations between users

are not hidden from the SP, as described in the threat model; d)

the SP cannot replace the WS by updating the latent factors of

words as well, because the indexes for words are encrypted by

user u using the probabilistic encryption scheme with the WS’s

public key; e) the WS cannot replace the SP, because the WS

cannot compute the model all by itself without knowing the expli-

cit features, the identity of the recipient of the tweet, and the iden-

tity of the publisher of the tweet, which are only known to the SP.

Tweet publishing, receiving and ranking. For tweet k received

by user u, the SP and the WS both only learn the value of

1

k

wk
w T

q
Z ∈

∑ for all words contained in tweet k but do not know the

words contained in tweet k. In addition, neither the SP nor the WS

can infer user u’s interest by computing T

u w
p q for any word w

(which represents user u’s preference over word w) without col-

luding with each other. Furthermore, for user u, we require that

user u is only allowed to retrieve her own personal latent factor pu

from the SP and therefore user u cannot learn other users’ inter-

ests.

6.3 Extension
In pTwitterRec, the SP is not only responsible for managing the

social relations between users and distributing users’ tweets to

their followers as an OSN provider, but also responsible for re-

commending personalized interesting tweets to users (in coopera-

tion with the WS and users) as a recommendation service provider.

However, pTwitterRec can be conveniently adapted to support a

third-party privacy-preserving tweet recommendation service that

is independent of the OSN provider. The benefit of implementing

pTwitterRec as a third-party service is that there would be no re-

quirements of any changes to the existing OSN provider while

still providing users with personalized tweet recommendations

(and hiding the contents of users’ tweets and user’s interests from

the tweet recommendation service provider).

With the new pTwitterRec client application, users receive/publish

tweets from/to the OSN provider, and interact with the third-party

tweet recommendation service provider (consisting of a separate

SP and WS) to learn the recommendation model without leaking

any sensitive information to the recommendation service provider.

Upon the completion of the model learning stage, users are able to

rank tweets received from the OSN provider. pTwitterRec may

lose some recommendation accuracy because the recommendation

service provider is unable to compute some explicit features such

as features that depend on users’ social relations. However, users

may be able to compute such features if they know their follo-

wees’ social relations.

7. IMPLEMENTATION
To demonstrate the practicality of our framework, we imple-

mented a prototype that simulates the model learning stage of

pTwitterRec, which is the core component of our framework. The

prototype consists of: a server acting as the SP that takes the train-

ing datasets D as input and updates the weight bj for each explicit

feature, the latent factor pu of user u as the recipient of the tweets,

and the latent factors dp(k) and dp(h) of users p(k) and p(h) as pub-

lishers of tweets k and h for every tuple <u, k, h> in D; another

server acting as the WS that communicates with the SP as de-

scribed in Section 5.4 and updates the latent factor qw of each

word w contained in D.

Our prototype uses the SVDFeature toolkit [37] to implement

gradient stochastic descent, which is used for updating abovemen-

tioned parameters at the model learning stage. We choose

SVDFeature since it is open source and well-documented.

SVDFeature is a toolkit designed to efficiently solve large-scale

collaborative filtering problems with auxiliary information by

performing gradient stochastic descent. Unlike traditional ap-

proaches that require writing a specific solver for each recom-

mendation model, SVDFeature provides a general solution for

collaborative filtering problems and allows developing new rec-

ommendation models by defining new features.

372

In our prototype, we define the explicit features described in Sec-

tion 5.3 as global features in SVDFeature, the latent factors of

users (as recipients of tweets) as user features in SVDFeature, and

the latent factors of words contained in the tweet vocabulary in

addition to the latent factors of users (as publishers of tweets) as

item features in SVDFeature. Figure 3 depicts the architecture of

our prototype. The SP and the WS each maintains a separate data-

base. At the end of the model learning stage, the SP stores in its

database the final values of the system-wide weight bj for each

explicit feature, the latent factor pu of each user as the recipient of

tweets, and the latent factors dp(k) of each user as the publisher of

tweets; the WS stores in its database the latent factor qw of each

word in the tweet vocabulary. We leave the implementation of the

complete framework to future work.

8. EVALUATION
In this section, we analyze and evaluate the overhead particularly

on the user side due to the introduction of our privacy protection

framework pTwitterRec, compared with the original tweet rec-

ommendation algorithm [10] with no user privacy protection. Our

framework only adds privacy protection to the tweet recommenda-

tion algorithm without modifying the original recommendation

model [10]. Thus, there is no loss of recommendation accuracy

(please refer to [10] for the thorough evaluation of recommenda-

tion accuracy).

We assume that users run the pTwitterRec client application on a

smartphone with limited computation power and memory. In our

evaluation, we use a Google Nexus Four phone featuring a 1.512

GHz quad-core Krait CPU and 2 GB of RAM. On the other hand,

we assume that both the SP and the WS have reasonably unli-

mited computation power and storage space. We use an 8 core

server featuring Intel Xeon 2.40 GHz CPU with 8 GB RAM as the

SP/WS. We assume that there is a fast and persistent network

connection between the SP and the WS and the communication

overhead between them is negligible. We analyze the overhead at

each stage of our framework in following subsections.

8.1 Word Indexing
As described in Section 5.2, assuming that user u does not know

the index of word w, user u first encrypts word w using commuta-

tive encryption Ecomm with her secret key ku and then sends the

encrypted word to the SP. The SP further encrypts the received

encrypted word using Ecomm with its secret key ksp and returns the

result to user u. Finally, user u obtains the index of word w by

decrypting the result received from the SP with her decryption key

and then computing the hash value of the result using SHA-224.

Therefore, to obtain the index of a new word, it requires user u to

perform one encryption and one decryption using commutative

encryption Ecomm and perform one hash function while it requires

the SP to perform one encryption using Ecomm. The computational

cost for carrying out one hash function is negligible and therefore

we only evaluate the computational cost for commutative encryp-

tion/decryption. We adopt Pohlig-Hellman encryption (described

in Appendix A.2) as Ecomm for our evaluation because of its de-

terministic commutative property (note that any encryption

scheme that is both deterministic and commutative can be used as

Ecomm in our protocol, as described in Section 5.2). We measure

the execution time of a single Pohlig-Hellman encryp-

tion/decryption on the smartphone and on the server. We vary the

key length, carry out 10,000 runs for each key length and average

the results. Figure 4 shows the results. With a 2048-bit key, it

takes approximately 91.1 ms for the smartphone and 35.2 ms for

the SP to carry out one Pohlig-Hellman encryption/decryption.

The communication overhead for user u is to send and receive one

encrypted word. Therefore, with a 2048-bit key size, the commu-

nication overhead for user u is approximately 512 bytes to obtain

the index of one word. It is reported that there are approximately

15 words [36] in each tweet on average. Assuming that each user

submits n (n = 392 in [10]) tweets to the SP as training datasets,

the total communication overhead for a user to obtain all indexes

from the SP is less than 7.5n KB and the total computational

overhead is less than 2.7n seconds. Note that user u caches the

index of word w locally and thereby only needs to request the

index of word w from the SP once even if word w appears in mul-

tiple tweets. In addition, to further reduce the overhead on the

user side, as described in Section 5.2, we propose that the SP pre-

computes the indexes for popular words and users pre-download

the indexes for these popular words beforehand without revealing

their interests to the SP.

8.2 Explicit Feature Computation and Train-

ing Sample Submission
In pTwitterRec, users are responsible for computing six of the

explicit features for each tweet contained in the training samples.

Compared with the cryptographic overhead evaluated in Section

8.1, the computational overhead incurred by explicit feature com-

putation is negligible for users. For each tweet contained in the

training samples, Relevance to Tweet History feature and Relev-

ance to Retweet History feature each takes four bytes, and the

remaining four integer-value features each takes two bytes.

Furthermore, users encrypt the indexes of words contained in the

tweet using probabilistic encryption Ews with the WS’s public key

Pukws. The size of each word index is 28 bytes (recall that users

Figure 3. Server-side architecture.

Figure 4. Pohlig-Hellman encryption/decryption.

373

adopt SHA-224 to compute the indexes for words) and therefore

the plaintext of all indexes for a tweet is 420 bytes on average. We

propose that users encrypt all indexes using Advanced Encryption

Standard (AES) in CBC mode with a random secret key kr and

then encrypt the secret key using RSA with the WS’s public key

Pukws (note that any probabilistic public-key encryption scheme

can be used as Ews in our protocol, as described in Section 5.3).

The size of the ciphertext is approximately equal to the size of (all

word indexes + one AES block + initialization vector + the ci-

phertext of the secret AES key kr encrypted using RSA), which is

about 0.7 KB in total with a 2048-bit RSA key. The computation-

al overhead for encrypting word indexes is dominated by encrypt-

ing kr using RSA. With the same key size, the computational cost

for RSA encryption/decryption is the same as Pohlig-Hellman

encryption/decryption (see Figure 4) because the compute-

intensive part for both encryption schemes is one modular expo-

nentiation. Therefore, the computational overhead at this stage for

the user to submit n tweets is approximately 0.1n seconds and the

communication overhead is approximately 0.7n KB for a user.

8.3 Model Learning
Once the SP has received all training samples from users, the SP

only interacts with the WS at the model learning stage. Therefore,

there is no overhead on the user side. Compared with the original

recommendation algorithm [10], we split the model learning task

between the SP and the WS. As we assume that the communica-

tion overhead between the SP and the WS is negligible, the only

overhead incurred by pTwitterRec is the cost for the WS to de-

crypt and obtain the indexes for words contained in tweets, so that

the WS can update the corresponding latent factors of these words.

8.4 Tweet Publishing, Receiving and Ranking
When publishing a tweet, the publisher carries out one probabilis-

tic encryption Ews to encrypt the indexes of all words contained in

the tweet in the same manner as described in Section 8.2 and at-

taches the result to the tweet before publishing it. Therefore, to

publish a tweet, the computational overhead for the publisher is

approximately 91.1 ms and the communication overhead is ap-

proximately 0.7 KB on average. The overhead incurred on the

server side is that the WS needs to perform one decryption to

obtain the word indexes for each tweet. As described in Section

5.5, the SP attaches the results of ,u k

j jb r∑ and
1

k

wk
w T

q
Z ∈

∑ to the

tweet before forwarding it to the followers. Therefore, the com-

munication overhead for the followers to receive a tweet is ap-

proximately the size of two floating point number, which is eight

bytes. We do not consider here the overhead incurred by decrypt-

ing tweets using the publisher’s secret key that is shared only

among the publisher’s followers, which is out of the scope of our

work.

For tweet ranking, upon receiving a tweet from the SP, the user

only needs to compute the explicit features and then predicts the

rating for the tweet using equation 4. Therefore, the overhead

incurred by tweet ranking on the user side is negligible and there

is no communication overhead.

8.5 Overall Overhead
Users may run the client application on a smartphone with limited

computation power and memory. Therefore, we illustrate the fea-

sibility of pTwitterRec by analyzing the overall overhead incurred

on the user side. We summarize the results in Table 2.

For model learning, assuming that each user submits n tweets to

the SP for training, the computational overhead for a user is ap-

proximately 2.7n seconds and the communication overhead is

approximately 7.5n KB in total assuming that the user requests the

index of every single word contained in the tweets. Note that a

user only needs to submit training samples once and the tweet

recommendation model can be learned offline between the SP and

the WS. Therefore, there are no strict real-time requirements for a

user to submit training samples and it can take place when the

user’s phone is not busy and when it has a Wi-Fi connection to

the Internet.

To publish a tweet, the computational overhead for the publisher

is 91.1 ms and the communication overhead is 0.7 KB. The pub-

lisher can choose to not participate in tweet recommendations by

just publishing tweets without attaching the encrypted word in-

dexes. However, the publisher’s followers may overlook her

tweets as the followers cannot predict the ratings for her tweets

and rank her tweets. For every received tweet, there is no compu-

tational cost for the receiver and the communication overhead for

the receiver is eight bytes per tweet.

For tweet ranking, the computational overhead for the user is

negligible and there is no communication overhead.

Summary. The user side overhead incurred by pTwitterRec for

tweet recommendation model learning is reasonable and the mod-

el learning between the SP and the WS can take place offline. The

overhead for publishing and receiving tweets incurred by pTwit-

terRec is small and the overhead for ranking tweets is negligible.

9. CONCLUSIONS
In this paper, we present pTwitterRec, the first privacy-preserving

personalized tweet recommendation framework that provides

Table 2. User side overhead (each user submits n tweets for training)

 Computational Overhead Communication Overhead

Word Indexing <2.7n seconds <7.5n KB

Explicit Feature Com-

putation and Training

Sample Submission

0.1n seconds 0.7n KB

Model Learning none none

Tweet Publishing and

Receiving (one tweet)

Publisher: 91.1 ms

Receiver: none

Publisher: 0.7 KB

Receiver: 8 bytes

Tweet Ranking negligible none

374

users with the benefits of tweet recommendations while keeping

the content of tweets and users’ interests hidden from other unau-

thorized entities including the provider. We introduce a semi-

trusted third server (WS) to compute the tweet recommendation

model, in cooperation with users and the SP. The implementation

and evaluation show that pTwitterRec is practical and only intro-

duces reasonable overhead. Our future work includes implement-

ing the complete framework of pTwitterRec and evaluating the

performance in the real world.

10. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.

This work is supported by a Google Focused Research Award, the

Ontario Research Fund, and the Natural Sciences and Engineering

Research Council of Canada.

11. REFERENCES
[1] Aïmeur, E., Brassard, G., Fernandez, J.M. and Mani Onana,

F.S. Alambic: a privacy-preserving recommender system for

electronic commerce. International Journal of Information

Security. 7, 5 (2008), 307–334.

[2] Bay, S.D. and Schwabacher, M. Mining distance-based out-

liers in near linear time with randomization and a simple

pruning rule. Proceedings of the 9th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing (2003), 29–38.

[3] Beato, F., Kohlweiss, M. and Wouters, K. Scramble! your

social network data. Proceedings of the 11th International

Conference on Privacy Enhancing Technologies (2011),

211–225.

[4] Billsus, D. and Pazzani, M.J. Learning collaborative infor-

mation filters. Proceedings of the 15th International Confe-

rence on Machine Learning (1998), 46–54.

[5] Blei, D.M., Ng, A.Y. and Jordan, M.I. Latent dirichlet allo-

cation. Journal of Machine Learning research. 3, (2003),

993–1022.

[6] Breese, J.S., Heckerman, D. and Kadie, C. Empirical analy-

sis of predictive algorithms for collaborative filtering. Pro-

ceedings of the 14th conference on Uncertainty in Artificial

Intelligence (San Francisco, CA, USA, 1998), 43–52.

[7] Canny, J. Collaborative filtering with privacy. Proceedings

of 2002 IEEE Symposium on Security and Privacy (2002),

45–57.

[8] Canny, J. Collaborative filtering with privacy via factor

analysis. Proceedings of the 25th Annual International ACM

SIGIR Conference on Research and Development in Infor-

mation Retrieval (New York, NY, USA, 2002), 238–245.

[9] Chen, J., Nairn, R., Nelson, L., Bernstein, M. and Chi, E.

2010. Short and tweet: experiments on recommending con-

tent from information streams. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(2010), 1185–1194.

[10] Chen, K., Chen, T., Zheng, G., Jin, O., Yao, E. and Yu, Y.

Collaborative personalized tweet recommendation. Proceed-

ings of the 35th International ACM SIGIR Conference on

Research and Development in Information Retrieval (2012),

661–670.

[11] Conti, M., Hasani, A. and Crispo, B. Virtual private social

networks. Proceedings of the 1st ACM Conference on Data

and Application Security and Privacy (2011), 39–50.

[12] De Cristofaro, E., Soriente, C., Tsudik, G. and Williams, A.

Hummingbird: privacy at the time of Twitter. Proceedings of

2012 IEEE Symposium on Security and Privacy (SP) (May

2012), 285 –299.

[13] Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L. and

Nejdl, W. Real-time top-n recommendation in social streams.

Proceedings of the 6th ACM Conference on Recommender

Systems (2012), 59–66.

[14] Duan, Y., Jiang, L., Qin, T., Zhou, M. and Shum, H.-Y. An

empirical study on learning to rank of tweets. Proceedings of

the 23rd International Conference on Computational Lin-

guistics (2010), 295–303.

[15] Feldman, A.J., Blankstein, A., Freedman, M.J. and Felten,

E.W. Social networking with Frientegrity: privacy and inte-

grity with an untrusted provider. Proceedings of the 21st

USENIX Conference on Security Symposium (Berkeley, CA,

USA, 2012), 31–31.

[16] Guha, S., Tang, K. and Francis, P. NOYB: Privacy in online

social networks. Proceedings of the 1st Workshop on Online

Social Networks (2008), 49–54.

[17] Hannon, J., Bennett, M. and Smyth, B. Recommending twit-

ter users to follow using content and collaborative filtering

approaches. Proceedings of the 4th ACM Conference on Re-

commender Systems (2010), 199–206.

[18] Hong, L., Bekkerman, R., Adler, J. and Davison, B.D.

Learning to rank social update streams. Proceedings of the

35th International ACM SIGIR Conference on Research and

Development in Information Retrieval (2012), 651–660.

[19] Joachims, T. Optimizing search engines using clickthrough

data. Proceedings of the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(2002), 133–142.

[20] Koren, Y., Bell, R. and Volinsky, C. Matrix factorization

techniques for recommender systems. Computer. 42, 8

(2009), 30–37.

[21] Kunegis, N.N.T.G.J. and Alhadi, A.C. Bad news travel fast:

a content-based analysis of interestingness on twitter. Pro-

ceedings of ACM Web Science Conference (2011).

[22] Lucas, M.M. and Borisov, N. Flybynight: mitigating the

privacy risks of social networking. Proceedings of the 7th

ACM Workshop on Privacy in the Electronic Society (2008),

1–8.

[23] Luo, W., Xie, Q. and Hengartner, U. Facecloak: an architec-

ture for user privacy on social networking sites. Proceedings

of International Conference on Computational Science and

Engineering (2009), 26–33.

[24] Pohlig, S. and Hellman, M. An improved algorithm for

computing logarithms over GF (p) and its cryptographic sig-

nificance. Information Theory, IEEE Transactions on. 24, 1

(1978), 106–110.

[25] Polat, H. and Du, W. Achieving private recommendations

using randomized response techniques. Advances in Know-

ledge Discovery and Data Mining. (2006), 637–646.

[26] Polat, H. and Du, W. Privacy-preserving collaborative filter-

ing. International Journal of Electronic Commerce. 9, 4

(2003), 9–35.

[27] Polat, H. and Du, W. Privacy-preserving collaborative filter-

ing using randomized perturbation techniques. Proceedings

of the 3rd IEEE International Conference on Data Mining

(Washington, DC, USA, 2003), 625–628.

[28] Polat, H. and Du, W. SVD-based collaborative filtering with

privacy. Proceedings of the 2005 ACM symposium on Ap-

plied Computing (New York, NY, USA, 2005), 791–795.

[29] Qu, Z. and Liu, Y. Interactive group suggesting for Twitter.

Proceedings of the 49th Annual Meeting of the Association

375

for Computational Linguistics: Human Language Technolo-

gies (Short Papers) (2011), 519–523.

[30] Rainie, L., Kiesler, S., Kang, R. and Madden, M. 20130905.

Anonymity, privacy, and security online. Pew Internet &

American Life Project.

http://www.pewinternet.org/PPF/r/213/report_display.asp,

[31] Ramage, D., Dumais, S.T. and Liebling, D.J. Characterizing

microblogs with topic models. Proceedings of the 4th Inter-

national AAAI Conference on Weblogs and Social Media

(2010).

[32] Reeves, S. Internet is double-edged sword in Arab revolts.

http://middle-east-online.com/english/?id=46109

[33] Rennie, J.D. and Srebro, N. Fast maximum margin matrix

factorization for collaborative prediction. Proceedings of the

22nd International Conference on Machine Learning (2005),

713–719.

[34] Singh, I., Butkiewicz, M., Madhyastha, H.V., Krishnamurthy,

S.V. and Addepalli, S. Twitsper: tweeting privately. IEEE

Security Privacy. 11, 3 (2013), 46–50.

[35] Yang, S.-H., Long, B., Smola, A., Sadagopan, N., Zheng, Z.

and Zha, H. Like like alike: joint friendship and interest

propagation in social networks. Proceedings of the 20th In-

ternational Conference on World Wide Web (2011), 537–

546.

[36] RT this: OUP Dictionary team monitors Twitterer’s tweets.

http://blog.oup.com/2009/06/oxford-twitter/

[37] SVDFeature toolkit.

http://svdfeature.apexlab.org/wiki/Main_Page

[38] Twitter statistics.

http://www.statisticbrain.com/twitter-statistics/

A: Appendix

A.1 Latent Factor Model
Collaborative recommendation techniques based on latent factor

models have been proved to be effective in improving recommen-

dation accuracy [20, 33]. In a basic latent factor model, users and

items are mapped to a joint low-dimensional latent factor space Rd.

Let pu be the low dimensional representation of user u in the latent

feature space Rd and qi be the low dimensional representation of

item i in Rd. The predicted rating of user u for item i is computed

as the affinity between user u and item i in the latent feature space,

i.e., the inner product of pu and qi in R
d.

For tweet recommendations, directly applying the basic latent

factor model faces the problem of data sparsity due to the lack of

retweet data. Chen et al. [9] propose decomposing the latent factor

of a tweet (i.e., an item in the basic latent model) into a combina-

tion of the latent factors of words contained in the tweet. There-

fore, for a given tweet k,
k

T

u w

w T

p q
∈

∑ captures the impact of the

words contained in tweet k on user u’s rating of the tweet, where

Tk is the word set contained in tweet k and qw represents the low

dimensional representation of word w in the latent feature space

Rd. Furthermore, Chen et al. propose representing the publisher of

tweet k as a latent factor (denoted as dp(k)) in R
d as well and mea-

suring the possibility of user u retweeting tweet k by considering

the affinity of user i and the publisher of tweet k in the latent fea-

ture space. Therefore, ()

T

u p kp d captures the impact of the social

relation between user u and the publisher of tweet k on user u’s

rating of the tweet. The values of pu, qw and dp(k) are learned

through the training as described in Section 5.4.

A.2 Pohlig-Hellman Encryption
The Pohlig-Hellman encryption scheme [24] is similar to RSA.

Different keys are used for encryption and decryption. However, it

is not a public-key scheme, because the keys are easily derivable

from each other; both the encryption and decryption keys must be

kept secret.

Given a large prime p with no small factors of p - 1, each party

chooses a random (e, d) pair such that e × d = 1 (mod p – 1)

where the encryption key is e and the decryption key is d. For a

given message M, the encryption of M is Me (mod p) and for a

given ciphertext C, the decryption of C is Cd (mod p). It is

straightforward to prove that the Pohlig-Hellman encryption

scheme is both deterministic and commutative.

Pohlig-Hellman leaks the information whether the plaintext mes-

sage M is quadratic residue (mod p) or not. In our framework, the

SP computes the index of each word by encrypting the word using

Pohlig-Hellman. Because the SP is honest but curious in the

threat model, the SP would not manipulate the distribution of

word indexes at the risk of being caught. Although we use Pohlig-

Hellman encryption for examples in this paper, any encryption

scheme that is both deterministic and commutative can be used in

our protocol.

376

