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Workshops/Conferences of Interest
 Mobile Security and Privacy: SPSM, MoST, WiSec
 Security: USENIX Security, ACM CCS, IEEE Security 

& Privacy, NDSS
 Privacy: PETS
 Usability: SOUPS (including this year’s authentication 

workshop), CHI, USEC (NDSS workshop)
 Pervasive/mobile computing: UbiComp, PerCom, 

Pervasive, MobiSys
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Survey Articles on 
Mobile Privacy And Security

 SoK: Privacy on Mobile Devices – It’s Complicated, 
Spensky et al., PETS 2016
 Very readable, but quite brief

 SoK: Lessons Learned From Android Security 
Research For Appified Software Platforms, Acar et al., 
Oakland 2016
 Good discussion of solved/still unsolved problems

 Securing Android: A Survey, Taxonomy, and 
Challenges and Toward Engineering a Secure Android 
Ecosystem: A Survey of Existing Techniques, ACM 
Computing Surveys
 Very dense, but good coverage and useful if there’s a 

particular topic that you are interested in
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Cryptography/Security Books
 Pfleeger & Pfleeger, Security in Computing
 Doug Stinson, Cryptography- Theory and Practice
 Bruce Schneier, Applied Cryptography
 Ross Anderson, Security Engineering

http://www.cl.cam.ac.uk/~rja14/book.html
 Viega & McGraw, Building Secure Software
 Cranor & Garfinkel, Security and Usability
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Survey Articles on 
Mobile Privacy And Security

 Previous articles all ignore smartphone authentication

 Continuous User Authentication on Mobile Devices: 
Recent progress and remaining challenges, Patel et 
al., IEEE Signal Processing Magazine

 Surveying the Development of Biometric User 
Authentication on Mobile Phones, Meng et al., IEEE 
Communications Surveys Tutorials
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Android Security
 Android Security, Google

 Understanding Android Security, Enck et al., IEEE 
Security and Privacy

Presentations:
 Android Security Essentials, Pragati, Oscon
 Understanding Android's Security Framework , Enck
 Android’s security architecture, Elenkov, Android 

Security Symposium
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iOS Security
 iOS Security, Apple

 Behind the Scenes with iOS Security, Krstic, Blackhat
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Related Courses

 Every term
 CS 658 – Computer Security and Privacy

 Fall 2016:
 CS 858 – Computing on Encrypted Data

 C&O 485/685 The Mathematics of Public-Key 
Cryptography

 C&O 487 Applied Cryptography
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What is Security?
 In the context of computers, security generally means 

three things:
 Confidentiality: Access to systems or data is limited to 

authorized parties
 Integrity: When you ask for data, you get the “right" 

data
 Availability: The system or data is there when you 

want it

 A computing system is said to be secure if it has all 
three properties
 Well, usually
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What is Privacy?
 There are many definitions of privacy
 A useful one: “informational self-determination“
 This means that you get to control information about 

you
 “Control" means many things:

 Who gets to see it
 Who gets to use it
 What they can use it for
 Who they can give it to
 etc.
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How secure should we make it?
 Principle of Easiest Penetration

 “A system is only as strong as its weakest link“
 The attacker will go after whatever part of the system is 

easiest for him, not most convenient for you
 In order to build secure systems, we need to learn how 

to think like an attacker!

 Principle of Adequate Protection
 “Security is economics“
 Don't spend $100,000 to protect a system that can only 

cause $1,000 in damage
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Access Control
 In general, access control has three goals:

 Check every access: Else system might fail to notice 
that access has been revoked

 Enforce least privilege: Grant program access only to 
smallest number of objects required to perform a task
 Often violated for Android apps, see “Android 

Permissions Demystified” by Felt et al.
 Verify acceptable use: Limit types of activity that can be 

performed on an object
 E.g., for integrity reasons (ADTs)
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User Authentication
 Computer systems often have to identify and 

authenticate users before authorizing them
 Identification: Who are you?
 Authentication: Prove it!
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Authentication Factors
 Four classes of authentication factors
 Something the user knows

 Password, PIN, pattern, answer to “secret question”
 Something the user has

 ATM card, badge, browser cookie, physical key, 
uniform, smartphone

 Something the user is
 Biometrics (fingerprint, voice pattern, face,…), 

behaviour (swiping pattern, visited websites,…)
 Something about the user's context

 Location, time, devices in proximity
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Combination of Auth. Factors
 Different classes of authentication factors can be 

combined for more solid authentication
 Two- or multi-factor authentication
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Cryptography
 What is cryptography?
 Related fields:

 Cryptography (“secret writing”): Making secret 
messages
 Turning plaintext (an ordinary readable message) into 

ciphertext (secret messages that are “hard” to read) 
 Cryptanalysis: Breaking secret messages

 Recovering the plaintext from the ciphertext
 Cryptology is the science which studies these both
 The point of cryptography is to send secure 

messages over an insecure medium (like the 
Internet)
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Dramatis Personae
When talking about cryptography, we often use a 
standard cast of characters

 Alice, Bob, Carol, Dave
 People (usually honest) who wish to communicate

 Eve
 A passive eavesdropper, who can listen to any transmitted 

messages
 Mallory

 An active Man-In-The-Middle, who can listen to, and modify, insert, 
or delete, transmitted messages

 Trent
 A Trusted Third Party
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Building blocks
 Cryptography contains three major types of components

 Secrecy components
 Preventing Eve from reading Alice's messages

 Integrity components
 Preventing Mallory from modifying Alice's messages

 Authenticity components
 Preventing Mallory from impersonating Alice
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Kerckhoffs' Principle (19th c.) 
The security of a cryptosystem should not rely on a 
secret that's hard (or expensive) to change

 So don't have secret encryption methods
 Then what do we do?
 Have a large class of encryption methods, instead

 Hopefully, they're all equally strong
 Make the class public information
 Use a secret key to specify which one you're using
 It's easy to change the key; it's usually just a smallish 

number
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Kerckhoffs' Principle (19th c.) 
 This has a number of implications:

 The system is at most as secure as the number of keys
 Eve can just try them all, until she finds the right one
 A strong cryptosystem is one where that's the best Eve 

can do
 With weaker systems, there are shortcuts to finding the key

 Example: newspaper cryptogram has 
403,291,461,126,605,635,584,000,000 possible keys

 But you don't try them all; it's way easier than that!
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Strong cryptosystems
 What information do we assume the attacker (Eve) 

has when she's trying to break our system?
 She may:

 Know the algorithm (the public class of encryption 
methods) 

 Know some part of the plaintext
 Know a number (maybe a large number) of 

corresponding plaintext/ciphertext pairs
 Have access to an encryption and/or decryption oracle

 And we still want to prevent Eve from learning the key!
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Symmetric encryption
 Symmetric encryption is the simplest form of 

cryptography
 Used for thousands of years
 The key Alice uses to encrypt the message is the 

same as the key Bob uses to decrypt it

Encrypt Decrypt
P C

K

P

K
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Symmetric encryption
 Eve, not knowing the key, should not be able to 

recover the plaintext

Encrypt Decrypt
? C ?
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Perfect symmetric encryption
 Is it possible to make a completely unbreakable 

cryptosystem?

 Yes: the One-Time Pad

 It's also very simple:
 The key is a truly random bitstring of the same length 

as the message
 The “Encrypt” and “Decrypt” functions are each just 

XOR
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One-time pad
 But!  It's very hard to use correctly

 The key must be truly random, not pseudorandom
 The key must never be used more than once!

 A “two-time pad” is insecure!

 Used in the Washington / Moscow hotline for many 
years

 Q: Why does “try every key” not work here?

 Q: How do you share that much secret key?
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Computational security
 In contrast to OTP's “perfect” or “information-theoretic” 

security, most cryptosystems have “computational” 
security
 This means that it's certain they can be broken, given 

enough work by Eve

 How much is “enough”?

 At worst, Eve tries every key
 How long that takes depends on how long the keys are
 But it only takes this long if there are no “shortcuts”!
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Some data points
 One computer can try about 17 million keys per second
 A medium-sized corporate or research lab may have 100 

computers
 The BOINC project has 2 million computers

 Remember that most computers are idle most of the time 
(they're waiting for you to type something); getting them 
to crack keys in their spare time doesn't actually cost 
anything extra

Berkeley Open Infrastructure
for Network Computing
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40-bit crypto
This was the US legal export limit for a long time
240 = 1,099,511,627,776 possible keys

 One computer: 18 hours

 One lab: 11 minutes

 BOINC: 30 ms
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56-bit crypto
This was the US government standard (DES) for a long 

time
256 = 72,057,594,037,927,936 possible keys

 One computer: 134 years

 One lab: 16 months

 BOINC: 36 minutes
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Cracking DES

“DES cracker” machine of Electronic Frontier Foundation
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128-bit crypto
This is the modern standard
2128 = 340,282,366,920,938,463,463,374,607,

431,768,211,456 possible keys

 One computer: 635 thousand million million million years

 One lab: 6 thousand million million million years

 BOINC: 300 thousand million million years
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Well, we cheated a bit
 This isn't really true, since computers get faster over time

 A better strategy for breaking 128-bit crypto is just to wait 
until computers get 288 times faster, then break it on one 
computer in 18 hours.

 How long do we wait?  Moore's law says 132 years.

 If we believe Moore's law will keep on working, we'll be 
able to break 128-bit crypto in 132 years (and 18 hours) :-) 
 Q: Do we believe this?
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An even better strategy
 Don't break the crypto at all!

 There are always weaker parts of the system to attack

 The point of cryptography is to make sure the 
information transfer is not the weakest link
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Types of symmetric ciphers
 Symmetric ciphers come in two major classes

 Stream ciphers

 Block ciphers
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Stream ciphers
 A stream cipher is what you get if you take the

One-Time Pad, but use a pseudorandom keystream 
instead of a truly random one

 RC4 is the most commonly used stream cipher on the 
Internet today

Pseudorandom
Keystream
Generator

Keystream
XOR

Plaintext

Ciphertext



36

Stream ciphers
 Stream ciphers can be very fast

 This is useful if you need to send a lot of data securely

 But they can be tricky to use correctly!

 What happens if you use the same key to encrypt two 
different messages?

 How would you solve this problem without requiring a 
new shared secret key for each message?  

 WEP, PPTP are great examples of how not to use 
stream ciphers
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Block ciphers
 Notice what happens in a stream cipher if you change 

just one bit of the plaintext
 This is because stream ciphers operate on the 

message one bit at a time

 We can also use block ciphers
 Block ciphers operate on the message one block at a 

time
 Blocks are usually 64 or 128 bits long

 AES is the block cipher everyone should use today
 Unless you have a really, really good reason
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Modes of operation
 Block ciphers work like this:

 But what happens when the plaintext is larger than 
one block?
 The choice of what to do with multiple blocks is called 

the mode of operation of the block cipher

Encrypt

1 block of plaintext

1 block of ciphertext
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Modes of operation
 The simplest thing to do is just to encrypt each 

successive block separately.
 This is called Electronic Code Book (ECB) mode

 But if there are 
repeated blocks 
in the plaintext, 
you'll see the 
same repeating 
patterns in the 
ciphertext:
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Modes of operation
 There are much better modes of operation to choose 

from
 Common ones include Cipher Block Chaining (CBC) 

and Counter (CTR) modes

 Patterns in the 
plaintext are no 
longer exposed

 But you need 
an IV (Initial 
Value), which 
acts much like 
a salt
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Key exchange
 The hard part of symmetric ciphers is:

 How do Alice and Bob share the secret key?
 Meet in person; diplomatic courier

 In general this is very hard

 Or, we invent new technology...
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Public-key cryptography
 Invented (in public) in the 1970's

 Allows Alice to send a secret message to Bob without any 
prearranged shared secret!

 In symmetric crypto, the same key “locks” the message as 
“unlocks” it

 In asymmetric (or “public-key”) crypto, there's one key for 
locking, and a different key for unlocking!

 Some common examples:
 RSA, ElGamal, ECC
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Public-key cryptography
 How does it work?

 Bob gives everyone a copy of his public locking key.  Alice 
uses it to lock (encrypt) a message, and sends the locked 
message to Bob

 Bob uses his private unlocking key to unlock (decrypt) the 
message.
 Eve can't unlock it; she only has the locking key.
 Neither can Alice!

 So with this, Alice just needs to know Bob's public key in 
order to send him secret messages
 These public keys can be published in a directory somewhere
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Public-key cryptography

Encrypt Decrypt
P C

D
P

E

E
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Public key sizes
 Recall that if there are no shortcuts, Eve would have to 

try 2128 things in order to read a message encrypted 
with a 128-bit key

 Unfortunately, all of the public-key methods we know 
do have shortcuts
 Eve could read a message encrypted with a 128-bit 

RSA key with just 233 work, which is easy!
 If we want Eve to have to do 2128 work, we need to use 

a much longer public key
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Public key sizes
Comparison of key sizes for roughly equal strength

AES

80
116
128
160
256

RSA

1024
2048
2600
4500
14000



47

Hybrid cryptography
 In addition to having longer keys, public-key crypto takes 

a long time to calculate (as compared to symmetric-key 
crypto) 
 Using public-key to encrypt large messages would be too 

slow, so we take a hybrid approach:
 Pick a random 128-bit key for a symmetric-key cryptosystem
 Encrypt the large message with that symmetric key (AES) 
 Encrypt the 128-bit key with a public-key cryptosystem
 Send the symmetric-encrypted message and the public-

encrypted key to Bob
 This hybrid approach is used for almost every 

cryptography application on the Internet today
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Is that all there is?
 It seems we've got this “sending secret messages” thing 

down pat.  What else is there to do?
 Even if we're safe from Eve reading our messages, there's 

still the matter of Mallory
 It turns out that even if our messages are encrypted, 

Mallory can sometimes modify them in transit!
 Mallory won't necessarily know what the message says, 

but can still change it in an undetectable way
 e.g. bit-flipping attack on stream ciphers

 This is counterintuitive, and often forgotten
 How do we make sure that Bob gets the same message 

Alice sent?
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Integrity components
 How do we tell if a message has changed in transit?
 Simplest answer: use a checksum

 For example, add up all the bytes of a message
 The last digits of serial numbers (credit card, ISBN, etc.) 

are usually checksums
 Alice computes the checksum of the message, and sticks 

it at the end before encrypting it to Bob.  When Bob 
receives the message and checksum, he verifies that the 
checksum is correct
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This doesn't work!
 With most checksum methods, Mallory can easily 

change the message in such a way that the checksum 
stays the same

 We need a “cryptographic” checksum
 It should be hard for Mallory to find a second message 

with the same checksum as any given one
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Cryptographic hash functions
 These cryptographic checksums are called hash 

functions
 Common examples: MD5, SHA-1, SHA-256

 Hash functions generally have two properties:
 One-way:

 Given a hash value, it's hard to find a message which 
hashes to that value (a “preimage”)

 Collision-resistant:
 It's hard to find two messages which hash to the same value 

(a “collision”)
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What is “hard”?
 For SHA-1, for example, it takes 2160 work to find a 

preimage, and 280 work to find a collision
 Well, that's what we thought until last year
 It turns out finding collisions in SHA-1 may be easier 

than we thought

 The difference is due to the well-known birthday 
paradox
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Cryptographic hash functions
 You can't just send an unencrypted message and its 

hash to get integrity assurance
 Even if you don't care about secrecy!

 Mallory can change the message and just compute the 
new hash value himself
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Cryptographic hash functions
 Hash functions are useful only when there is a secure 

way of sending the hash value
 For example, Bob can publish a hash of his public key on 

his business card
 Putting the whole key on there would be too big
 But Alice can download Bob's key from the Internet, hash 

it herself, and verify that the hash matches the one on 
Bob's card

 What if there's no external channel to be had?
 For example, you're using the Internet to communicate
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Message authentication codes
 We do the same trick as for encryption: have a large 

class of hash functions, and use a shared secret to pick 
the right one

 Only those who know the secret can generate, or even 
check, the hash values

 These “keyed hashes” are usually called Message 
Authentication Codes, or MACs

 Common examples:
 SHA-1-HMAC, SHA-256-HMAC, CBC-MAC
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Message authentication codes

MAC

MAC

M

T

KK

=?
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Message authentication codes
 Suppose Alice and Bob share a MAC key, and Bob 

receives a message with a correct MAC using that key
 Then Bob can be assured that Alice is the one who sent 

that message, and that it hasn't been modified since she 
sent it!

 This is like a “signature” on the message
 But it's not quite the same!
 Bob can't show that signature to Carol to prove Alice sent 

the message
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Message authentication codes
 Alice can just claim that Bob made up the message, 

and calculated the MAC himself
 This is called repudiation; and we sometimes want to 

avoid it
 Some interactions should be repudiable

 Private conversations
 Some interactions should be non-repudiable

 Electronic commerce
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Digital signatures
 For non-repudiation, what we want is a true digital 

signature, with the following properties:
 If Bob receives a message with Alice's digital signature 

on it, then:
 Alice, and not an impersonator, sent the message,
 the message has not been altered since it was sent, and
 Bob can prove these facts to a third party.

 How do we arrange this?
 Use similar techniques to public-key cryptography
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Making digital signatures
 Remember public-key crypto:

 Separate keys for locking and unlocking
 Give everyone a copy of the locking key
 Keep the unlocking key secret

 To make a digital signature:
 Alice signs the message with her private signature key

 To verify Alice's signature:
 Bob verifies the message with his copy of Alice's public 

verification key
 If it verifies correctly, the signature is valid
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Making digital signatures

Sign
Verify

M

Sig

VV

T/F

S
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Hybrid signatures
 Just like public-key crypto, signing large messages is 

slow
 We can also hybridize signatures to make them faster:

 Alice sends the (unsigned) message, and also a signature 
on a hash of the message

 The hash is much smaller than the message, and so faster 
to sign and verify

 Remember that authenticity and secrecy are separate; if 
you want both, you need to do both
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Combining public-key encryption 
and digital signatures

 Alice has two different key pairs: an (encryption, 
decryption) key pair and a (signature, verification) key 
pair
 So does Bob

 Alice uses Bob's encryption key to encrypt a message 
destined for Bob

 She uses her signature key to sign the ciphertext
 Bob uses Alice's verification key to check the 

signature
 He uses his decryption key to decrypt the ciphertext
 Similarly for reverse direction
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Relationship between key pairs
 Alice's (signature, verification) key pair is long-lived, 

whereas her (encryption, decryption) key pair is short-
lived
 Gives perfect forward secrecy 

 When creating a new (encryption, decryption) key pair, 
Alice uses her signing key to sign her new encryption 
key and Bob uses Alice's verification key to verify the 
signature on this new key

 If Alice's communication with Bob is interactive, she 
can use secret-key encryption and does not need an 
(encryption, decryption) key pair at all (see TLS/SSH)



65

The Key Management Problem
 One of the hardest problems of public-key cryptography 

is that of key management
 How can Bob find Alice's verification key?

 He can know it personally (manual keying) 
 SSH does this

 He can trust a friend to tell him (web of trust) 
 PGP does this

 He can trust some third party to tell him (CA's) 
 SSL does this
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Certificate authorities
 A CA is a trusted third party who keeps a directory of 

people's (and organizations') verification keys
 Alice generates a (signature, verification) key pair, and 

sends the verification key, as well as a bunch of personal 
information, both signed with Alice's signature key, to the 
CA

 The CA ensures that the personal information and Alice's 
signature are correct

 The CA generates a certificate consisting of Alice's 
personal information, as well as her verification key. The 
entire certificate is signed with the CA's signature key
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Certificate authorities
 Everyone is assumed to have a copy of the CA's 

verification key, so they can verify the signature on the 
certificate

 There can be multiple levels of certificate authorities; 
level n CA issues certificates for level n+1 Cas
 Public-key infrastructure (PKI)

 Need to have only verification key of root CA to verify 
certificate chain
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TLS / SSL
 In the mid-1990s, Netscape invented a protocol called 

Secure Sockets Later (SSL) meant for protecting 
HTTP (web) connections
 The protocol, however, was general, and could be used 

to protect any TCP-based connection
 HTTP + SSL = HTTPS

 SSL went through a few revisions, and was eventually 
standardized into the protocol known as TLS
(Transport Layer Security, imaginatively enough) 
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TLS at a high level
 Client connects to server, indicates it wants to speak 

TLS, and which ciphersuites it knows
 Server sends its certificate to client, which contains:

 Its host name
 Its verification key
 Some other administrative information
 A signature from a Certificate Authority (CA)

 Server also chooses which ciphersuite to use
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TLS at a high level (cont.)
 Client validates server's certificate

 Is its signature from a CA whose public key is 
embedded in the client (e.g., browser, app)?

 Does the host name in the certificate match the host 
name of the web site that client wants to access?

 Client and server run a key agreement protocol to 
establish keys for symmetric encryption and MAC 
algorithms from the chosen ciphersuite
 Server signs its protocol messages with its signature 

key
 Communication now proceeds using chosen 

symmetric encryption and MAC algorithms
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Security properties provided by TLS
 Server authentication
 Message integrity
 Message confidentiality
 Client authentication (optional)


