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Workshops/Conferences of Interest
 Mobile Security and Privacy: SPSM, MoST, WiSec
 Security: USENIX Security, ACM CCS, IEEE Security 

& Privacy, NDSS
 Privacy: PETS
 Usability: SOUPS (including this year’s authentication 

workshop), CHI, USEC (NDSS workshop)
 Pervasive/mobile computing: UbiComp, PerCom, 

Pervasive, MobiSys
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Survey Articles on 
Mobile Privacy And Security

 SoK: Privacy on Mobile Devices – It’s Complicated, 
Spensky et al., PETS 2016
 Very readable, but quite brief

 SoK: Lessons Learned From Android Security 
Research For Appified Software Platforms, Acar et al., 
Oakland 2016
 Good discussion of solved/still unsolved problems

 Securing Android: A Survey, Taxonomy, and 
Challenges and Toward Engineering a Secure Android 
Ecosystem: A Survey of Existing Techniques, ACM 
Computing Surveys
 Very dense, but good coverage and useful if there’s a 

particular topic that you are interested in
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Cryptography/Security Books
 Pfleeger & Pfleeger, Security in Computing
 Doug Stinson, Cryptography- Theory and Practice
 Bruce Schneier, Applied Cryptography
 Ross Anderson, Security Engineering

http://www.cl.cam.ac.uk/~rja14/book.html
 Viega & McGraw, Building Secure Software
 Cranor & Garfinkel, Security and Usability
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Survey Articles on 
Mobile Privacy And Security

 Previous articles all ignore smartphone authentication

 Continuous User Authentication on Mobile Devices: 
Recent progress and remaining challenges, Patel et 
al., IEEE Signal Processing Magazine

 Surveying the Development of Biometric User 
Authentication on Mobile Phones, Meng et al., IEEE 
Communications Surveys Tutorials
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Android Security
 Android Security, Google

 Understanding Android Security, Enck et al., IEEE 
Security and Privacy

Presentations:
 Android Security Essentials, Pragati, Oscon
 Understanding Android's Security Framework , Enck
 Android’s security architecture, Elenkov, Android 

Security Symposium
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iOS Security
 iOS Security, Apple

 Behind the Scenes with iOS Security, Krstic, Blackhat
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Related Courses

 Every term
 CS 658 – Computer Security and Privacy

 Fall 2016:
 CS 858 – Computing on Encrypted Data

 C&O 485/685 The Mathematics of Public-Key 
Cryptography

 C&O 487 Applied Cryptography
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What is Security?
 In the context of computers, security generally means 

three things:
 Confidentiality: Access to systems or data is limited to 

authorized parties
 Integrity: When you ask for data, you get the “right" 

data
 Availability: The system or data is there when you 

want it

 A computing system is said to be secure if it has all 
three properties
 Well, usually
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What is Privacy?
 There are many definitions of privacy
 A useful one: “informational self-determination“
 This means that you get to control information about 

you
 “Control" means many things:

 Who gets to see it
 Who gets to use it
 What they can use it for
 Who they can give it to
 etc.



11

How secure should we make it?
 Principle of Easiest Penetration

 “A system is only as strong as its weakest link“
 The attacker will go after whatever part of the system is 

easiest for him, not most convenient for you
 In order to build secure systems, we need to learn how 

to think like an attacker!

 Principle of Adequate Protection
 “Security is economics“
 Don't spend $100,000 to protect a system that can only 

cause $1,000 in damage



12

Access Control
 In general, access control has three goals:

 Check every access: Else system might fail to notice 
that access has been revoked

 Enforce least privilege: Grant program access only to 
smallest number of objects required to perform a task
 Often violated for Android apps, see “Android 

Permissions Demystified” by Felt et al.
 Verify acceptable use: Limit types of activity that can be 

performed on an object
 E.g., for integrity reasons (ADTs)
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User Authentication
 Computer systems often have to identify and 

authenticate users before authorizing them
 Identification: Who are you?
 Authentication: Prove it!
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Authentication Factors
 Four classes of authentication factors
 Something the user knows

 Password, PIN, pattern, answer to “secret question”
 Something the user has

 ATM card, badge, browser cookie, physical key, 
uniform, smartphone

 Something the user is
 Biometrics (fingerprint, voice pattern, face,…), 

behaviour (swiping pattern, visited websites,…)
 Something about the user's context

 Location, time, devices in proximity
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Combination of Auth. Factors
 Different classes of authentication factors can be 

combined for more solid authentication
 Two- or multi-factor authentication
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Cryptography
 What is cryptography?
 Related fields:

 Cryptography (“secret writing”): Making secret 
messages
 Turning plaintext (an ordinary readable message) into 

ciphertext (secret messages that are “hard” to read) 
 Cryptanalysis: Breaking secret messages

 Recovering the plaintext from the ciphertext
 Cryptology is the science which studies these both
 The point of cryptography is to send secure 

messages over an insecure medium (like the 
Internet)
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Dramatis Personae
When talking about cryptography, we often use a 
standard cast of characters

 Alice, Bob, Carol, Dave
 People (usually honest) who wish to communicate

 Eve
 A passive eavesdropper, who can listen to any transmitted 

messages
 Mallory

 An active Man-In-The-Middle, who can listen to, and modify, insert, 
or delete, transmitted messages

 Trent
 A Trusted Third Party
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Building blocks
 Cryptography contains three major types of components

 Secrecy components
 Preventing Eve from reading Alice's messages

 Integrity components
 Preventing Mallory from modifying Alice's messages

 Authenticity components
 Preventing Mallory from impersonating Alice
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Kerckhoffs' Principle (19th c.) 
The security of a cryptosystem should not rely on a 
secret that's hard (or expensive) to change

 So don't have secret encryption methods
 Then what do we do?
 Have a large class of encryption methods, instead

 Hopefully, they're all equally strong
 Make the class public information
 Use a secret key to specify which one you're using
 It's easy to change the key; it's usually just a smallish 

number
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Kerckhoffs' Principle (19th c.) 
 This has a number of implications:

 The system is at most as secure as the number of keys
 Eve can just try them all, until she finds the right one
 A strong cryptosystem is one where that's the best Eve 

can do
 With weaker systems, there are shortcuts to finding the key

 Example: newspaper cryptogram has 
403,291,461,126,605,635,584,000,000 possible keys

 But you don't try them all; it's way easier than that!
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Strong cryptosystems
 What information do we assume the attacker (Eve) 

has when she's trying to break our system?
 She may:

 Know the algorithm (the public class of encryption 
methods) 

 Know some part of the plaintext
 Know a number (maybe a large number) of 

corresponding plaintext/ciphertext pairs
 Have access to an encryption and/or decryption oracle

 And we still want to prevent Eve from learning the key!
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Symmetric encryption
 Symmetric encryption is the simplest form of 

cryptography
 Used for thousands of years
 The key Alice uses to encrypt the message is the 

same as the key Bob uses to decrypt it

Encrypt Decrypt
P C

K

P

K



23

Symmetric encryption
 Eve, not knowing the key, should not be able to 

recover the plaintext

Encrypt Decrypt
? C ?
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Perfect symmetric encryption
 Is it possible to make a completely unbreakable 

cryptosystem?

 Yes: the One-Time Pad

 It's also very simple:
 The key is a truly random bitstring of the same length 

as the message
 The “Encrypt” and “Decrypt” functions are each just 

XOR
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One-time pad
 But!  It's very hard to use correctly

 The key must be truly random, not pseudorandom
 The key must never be used more than once!

 A “two-time pad” is insecure!

 Used in the Washington / Moscow hotline for many 
years

 Q: Why does “try every key” not work here?

 Q: How do you share that much secret key?
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Computational security
 In contrast to OTP's “perfect” or “information-theoretic” 

security, most cryptosystems have “computational” 
security
 This means that it's certain they can be broken, given 

enough work by Eve

 How much is “enough”?

 At worst, Eve tries every key
 How long that takes depends on how long the keys are
 But it only takes this long if there are no “shortcuts”!
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Some data points
 One computer can try about 17 million keys per second
 A medium-sized corporate or research lab may have 100 

computers
 The BOINC project has 2 million computers

 Remember that most computers are idle most of the time 
(they're waiting for you to type something); getting them 
to crack keys in their spare time doesn't actually cost 
anything extra

Berkeley Open Infrastructure
for Network Computing
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40-bit crypto
This was the US legal export limit for a long time
240 = 1,099,511,627,776 possible keys

 One computer: 18 hours

 One lab: 11 minutes

 BOINC: 30 ms
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56-bit crypto
This was the US government standard (DES) for a long 

time
256 = 72,057,594,037,927,936 possible keys

 One computer: 134 years

 One lab: 16 months

 BOINC: 36 minutes
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Cracking DES

“DES cracker” machine of Electronic Frontier Foundation
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128-bit crypto
This is the modern standard
2128 = 340,282,366,920,938,463,463,374,607,

431,768,211,456 possible keys

 One computer: 635 thousand million million million years

 One lab: 6 thousand million million million years

 BOINC: 300 thousand million million years
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Well, we cheated a bit
 This isn't really true, since computers get faster over time

 A better strategy for breaking 128-bit crypto is just to wait 
until computers get 288 times faster, then break it on one 
computer in 18 hours.

 How long do we wait?  Moore's law says 132 years.

 If we believe Moore's law will keep on working, we'll be 
able to break 128-bit crypto in 132 years (and 18 hours) :-) 
 Q: Do we believe this?
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An even better strategy
 Don't break the crypto at all!

 There are always weaker parts of the system to attack

 The point of cryptography is to make sure the 
information transfer is not the weakest link
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Types of symmetric ciphers
 Symmetric ciphers come in two major classes

 Stream ciphers

 Block ciphers
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Stream ciphers
 A stream cipher is what you get if you take the

One-Time Pad, but use a pseudorandom keystream 
instead of a truly random one

 RC4 is the most commonly used stream cipher on the 
Internet today

Pseudorandom
Keystream
Generator

Keystream
XOR

Plaintext

Ciphertext
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Stream ciphers
 Stream ciphers can be very fast

 This is useful if you need to send a lot of data securely

 But they can be tricky to use correctly!

 What happens if you use the same key to encrypt two 
different messages?

 How would you solve this problem without requiring a 
new shared secret key for each message?  

 WEP, PPTP are great examples of how not to use 
stream ciphers
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Block ciphers
 Notice what happens in a stream cipher if you change 

just one bit of the plaintext
 This is because stream ciphers operate on the 

message one bit at a time

 We can also use block ciphers
 Block ciphers operate on the message one block at a 

time
 Blocks are usually 64 or 128 bits long

 AES is the block cipher everyone should use today
 Unless you have a really, really good reason
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Modes of operation
 Block ciphers work like this:

 But what happens when the plaintext is larger than 
one block?
 The choice of what to do with multiple blocks is called 

the mode of operation of the block cipher

Encrypt

1 block of plaintext

1 block of ciphertext
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Modes of operation
 The simplest thing to do is just to encrypt each 

successive block separately.
 This is called Electronic Code Book (ECB) mode

 But if there are 
repeated blocks 
in the plaintext, 
you'll see the 
same repeating 
patterns in the 
ciphertext:
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Modes of operation
 There are much better modes of operation to choose 

from
 Common ones include Cipher Block Chaining (CBC) 

and Counter (CTR) modes

 Patterns in the 
plaintext are no 
longer exposed

 But you need 
an IV (Initial 
Value), which 
acts much like 
a salt
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Key exchange
 The hard part of symmetric ciphers is:

 How do Alice and Bob share the secret key?
 Meet in person; diplomatic courier

 In general this is very hard

 Or, we invent new technology...
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Public-key cryptography
 Invented (in public) in the 1970's

 Allows Alice to send a secret message to Bob without any 
prearranged shared secret!

 In symmetric crypto, the same key “locks” the message as 
“unlocks” it

 In asymmetric (or “public-key”) crypto, there's one key for 
locking, and a different key for unlocking!

 Some common examples:
 RSA, ElGamal, ECC
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Public-key cryptography
 How does it work?

 Bob gives everyone a copy of his public locking key.  Alice 
uses it to lock (encrypt) a message, and sends the locked 
message to Bob

 Bob uses his private unlocking key to unlock (decrypt) the 
message.
 Eve can't unlock it; she only has the locking key.
 Neither can Alice!

 So with this, Alice just needs to know Bob's public key in 
order to send him secret messages
 These public keys can be published in a directory somewhere
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Public-key cryptography

Encrypt Decrypt
P C

D
P

E

E
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Public key sizes
 Recall that if there are no shortcuts, Eve would have to 

try 2128 things in order to read a message encrypted 
with a 128-bit key

 Unfortunately, all of the public-key methods we know 
do have shortcuts
 Eve could read a message encrypted with a 128-bit 

RSA key with just 233 work, which is easy!
 If we want Eve to have to do 2128 work, we need to use 

a much longer public key
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Public key sizes
Comparison of key sizes for roughly equal strength

AES

80
116
128
160
256

RSA

1024
2048
2600
4500
14000
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Hybrid cryptography
 In addition to having longer keys, public-key crypto takes 

a long time to calculate (as compared to symmetric-key 
crypto) 
 Using public-key to encrypt large messages would be too 

slow, so we take a hybrid approach:
 Pick a random 128-bit key for a symmetric-key cryptosystem
 Encrypt the large message with that symmetric key (AES) 
 Encrypt the 128-bit key with a public-key cryptosystem
 Send the symmetric-encrypted message and the public-

encrypted key to Bob
 This hybrid approach is used for almost every 

cryptography application on the Internet today
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Is that all there is?
 It seems we've got this “sending secret messages” thing 

down pat.  What else is there to do?
 Even if we're safe from Eve reading our messages, there's 

still the matter of Mallory
 It turns out that even if our messages are encrypted, 

Mallory can sometimes modify them in transit!
 Mallory won't necessarily know what the message says, 

but can still change it in an undetectable way
 e.g. bit-flipping attack on stream ciphers

 This is counterintuitive, and often forgotten
 How do we make sure that Bob gets the same message 

Alice sent?
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Integrity components
 How do we tell if a message has changed in transit?
 Simplest answer: use a checksum

 For example, add up all the bytes of a message
 The last digits of serial numbers (credit card, ISBN, etc.) 

are usually checksums
 Alice computes the checksum of the message, and sticks 

it at the end before encrypting it to Bob.  When Bob 
receives the message and checksum, he verifies that the 
checksum is correct
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This doesn't work!
 With most checksum methods, Mallory can easily 

change the message in such a way that the checksum 
stays the same

 We need a “cryptographic” checksum
 It should be hard for Mallory to find a second message 

with the same checksum as any given one
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Cryptographic hash functions
 These cryptographic checksums are called hash 

functions
 Common examples: MD5, SHA-1, SHA-256

 Hash functions generally have two properties:
 One-way:

 Given a hash value, it's hard to find a message which 
hashes to that value (a “preimage”)

 Collision-resistant:
 It's hard to find two messages which hash to the same value 

(a “collision”)
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What is “hard”?
 For SHA-1, for example, it takes 2160 work to find a 

preimage, and 280 work to find a collision
 Well, that's what we thought until last year
 It turns out finding collisions in SHA-1 may be easier 

than we thought

 The difference is due to the well-known birthday 
paradox
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Cryptographic hash functions
 You can't just send an unencrypted message and its 

hash to get integrity assurance
 Even if you don't care about secrecy!

 Mallory can change the message and just compute the 
new hash value himself
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Cryptographic hash functions
 Hash functions are useful only when there is a secure 

way of sending the hash value
 For example, Bob can publish a hash of his public key on 

his business card
 Putting the whole key on there would be too big
 But Alice can download Bob's key from the Internet, hash 

it herself, and verify that the hash matches the one on 
Bob's card

 What if there's no external channel to be had?
 For example, you're using the Internet to communicate
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Message authentication codes
 We do the same trick as for encryption: have a large 

class of hash functions, and use a shared secret to pick 
the right one

 Only those who know the secret can generate, or even 
check, the hash values

 These “keyed hashes” are usually called Message 
Authentication Codes, or MACs

 Common examples:
 SHA-1-HMAC, SHA-256-HMAC, CBC-MAC



56

Message authentication codes

MAC

MAC

M

T

KK

=?
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Message authentication codes
 Suppose Alice and Bob share a MAC key, and Bob 

receives a message with a correct MAC using that key
 Then Bob can be assured that Alice is the one who sent 

that message, and that it hasn't been modified since she 
sent it!

 This is like a “signature” on the message
 But it's not quite the same!
 Bob can't show that signature to Carol to prove Alice sent 

the message
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Message authentication codes
 Alice can just claim that Bob made up the message, 

and calculated the MAC himself
 This is called repudiation; and we sometimes want to 

avoid it
 Some interactions should be repudiable

 Private conversations
 Some interactions should be non-repudiable

 Electronic commerce
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Digital signatures
 For non-repudiation, what we want is a true digital 

signature, with the following properties:
 If Bob receives a message with Alice's digital signature 

on it, then:
 Alice, and not an impersonator, sent the message,
 the message has not been altered since it was sent, and
 Bob can prove these facts to a third party.

 How do we arrange this?
 Use similar techniques to public-key cryptography
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Making digital signatures
 Remember public-key crypto:

 Separate keys for locking and unlocking
 Give everyone a copy of the locking key
 Keep the unlocking key secret

 To make a digital signature:
 Alice signs the message with her private signature key

 To verify Alice's signature:
 Bob verifies the message with his copy of Alice's public 

verification key
 If it verifies correctly, the signature is valid
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Making digital signatures

Sign
Verify

M

Sig

VV
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Hybrid signatures
 Just like public-key crypto, signing large messages is 

slow
 We can also hybridize signatures to make them faster:

 Alice sends the (unsigned) message, and also a signature 
on a hash of the message

 The hash is much smaller than the message, and so faster 
to sign and verify

 Remember that authenticity and secrecy are separate; if 
you want both, you need to do both
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Combining public-key encryption 
and digital signatures

 Alice has two different key pairs: an (encryption, 
decryption) key pair and a (signature, verification) key 
pair
 So does Bob

 Alice uses Bob's encryption key to encrypt a message 
destined for Bob

 She uses her signature key to sign the ciphertext
 Bob uses Alice's verification key to check the 

signature
 He uses his decryption key to decrypt the ciphertext
 Similarly for reverse direction
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Relationship between key pairs
 Alice's (signature, verification) key pair is long-lived, 

whereas her (encryption, decryption) key pair is short-
lived
 Gives perfect forward secrecy 

 When creating a new (encryption, decryption) key pair, 
Alice uses her signing key to sign her new encryption 
key and Bob uses Alice's verification key to verify the 
signature on this new key

 If Alice's communication with Bob is interactive, she 
can use secret-key encryption and does not need an 
(encryption, decryption) key pair at all (see TLS/SSH)
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The Key Management Problem
 One of the hardest problems of public-key cryptography 

is that of key management
 How can Bob find Alice's verification key?

 He can know it personally (manual keying) 
 SSH does this

 He can trust a friend to tell him (web of trust) 
 PGP does this

 He can trust some third party to tell him (CA's) 
 SSL does this
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Certificate authorities
 A CA is a trusted third party who keeps a directory of 

people's (and organizations') verification keys
 Alice generates a (signature, verification) key pair, and 

sends the verification key, as well as a bunch of personal 
information, both signed with Alice's signature key, to the 
CA

 The CA ensures that the personal information and Alice's 
signature are correct

 The CA generates a certificate consisting of Alice's 
personal information, as well as her verification key. The 
entire certificate is signed with the CA's signature key
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Certificate authorities
 Everyone is assumed to have a copy of the CA's 

verification key, so they can verify the signature on the 
certificate

 There can be multiple levels of certificate authorities; 
level n CA issues certificates for level n+1 Cas
 Public-key infrastructure (PKI)

 Need to have only verification key of root CA to verify 
certificate chain
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TLS / SSL
 In the mid-1990s, Netscape invented a protocol called 

Secure Sockets Later (SSL) meant for protecting 
HTTP (web) connections
 The protocol, however, was general, and could be used 

to protect any TCP-based connection
 HTTP + SSL = HTTPS

 SSL went through a few revisions, and was eventually 
standardized into the protocol known as TLS
(Transport Layer Security, imaginatively enough) 
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TLS at a high level
 Client connects to server, indicates it wants to speak 

TLS, and which ciphersuites it knows
 Server sends its certificate to client, which contains:

 Its host name
 Its verification key
 Some other administrative information
 A signature from a Certificate Authority (CA)

 Server also chooses which ciphersuite to use
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TLS at a high level (cont.)
 Client validates server's certificate

 Is its signature from a CA whose public key is 
embedded in the client (e.g., browser, app)?

 Does the host name in the certificate match the host 
name of the web site that client wants to access?

 Client and server run a key agreement protocol to 
establish keys for symmetric encryption and MAC 
algorithms from the chosen ciphersuite
 Server signs its protocol messages with its signature 

key
 Communication now proceeds using chosen 

symmetric encryption and MAC algorithms
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Security properties provided by TLS
 Server authentication
 Message integrity
 Message confidentiality
 Client authentication (optional)


