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ABSTRACT
The average computer user is no longer restricted to one
device. They may have several devices and expect their ap-
plications to work on all of them. A challenge arises when
these applications need the cryptographic private key of the
devices’ owner. Here the device owner typically has to man-
age keys manually with a “keychain” app, which leads to
private keys being transferred insecurely between devices –
or even to other people. Even with intuitive synchroniza-
tion mechanisms, theft and malware still pose a major risk
to keys. Phones and watches are frequently removed or set
down, and a single compromised device leads to the loss of
the owner’s private key, a catastrophic failure that can be
quite difficult to recover from.

We introduce Shatter, an open-source framework that runs
on desktops, Android, and Android Wear, and performs
key distribution on a user’s behalf. Shatter uses thresh-
old cryptography to turn the security weakness of having
multiple devices into a strength. Apps that delegate crypto-
graphic operations to Shatter have their keys compromised
only when a threshold number of devices are compromised
by the same attacker. We demonstrate how our framework
operates with two popular Android apps (protecting iden-
tity keys for a messaging app, and encryption keys for a
note-taking app) in a backwards-compatible manner: only
Shatter users need to move to a Shatter-aware version of
the app. Shatter has minimal impact on app performance,
with signatures and decryption being calculated in 0.5s and
security proofs in 14s.

1. INTRODUCTION
With breaches of personal data becoming a daily occur-

rence, and in the wake of the Snowden revelations of mass
government spying [18], consumer interest in strong cryptog-
raphy to protect their data and transactions is at an all-time
high. In particular, end-to-end cryptography allows users to
obtain strong privacy and authentication properties for their
communications without the need to trust any intermedi-
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ate parties. However, there are numerous unsolved chal-
lenges standing in the way of incorporating such protections
into traditional user-facing products [7, 16, 32]. Whitten
and Tygar [40] showed in their seminal paper “Why Johnny
Can’t Encrypt”that major usability flaws prevent users from
widely adopting PGP email encryption software. A signif-
icant aspect of this is requiring users to interact manually
with a keychain; the concept of managing keys is not an
intuitive one for most non-technical users.

Using end-to-end encryption necessitates the creation and
handling of long-term identity keys for each user, with both
a private component that must be handled with care, and
a public component that must be distributed to and veri-
fied by others. Usability literature has widely revealed that
the average computer user is not comfortable managing such
keys manually, and necessitated placing trust in third par-
ties instead (such as the public key infrastructure, or inter-
mediate message-routing services). These key management
problems include distributing one’s public keys (and only
the public keys) to communication peers, as well as pro-
tecting private keys from adversaries while also enabling ac-
cess to them from any location the user wishes to use their
software. While the former is being addressed by other re-
searchers [25], we are interested in tackling the latter.

The most recognizable form of this problem is posed by
users wishing to use the same software on multiple different
devices. For example, it is common for users to own at
least a smartphone and a personal computer; other common
devices include tablets, work computers, smartwatches, a
variety of Internet of Things devices, and access to various
cloud computing services. In order for a user to authenticate
themselves with a consistent identity across all devices, or
read their encrypted messages from any location, they need
to share access to secret keys that are intended to remain
secure and moved around as little as possible. If any single
device with access to these keys is stolen or compromised by
malware, the data on every device becomes vulnerable and
the key itself must be revoked (a costly process). The keys
can be partially protected—for example, with a password
entered by the user—but they are still vulnerable to attacks
such as pulling them from memory while in use, phishing,
or offline password cracking. Although practitioners have
developed some partial solutions to this problem [1, 19, 35],
we believe a more promising approach lies in using threshold
cryptography to distribute cryptographic operations across
the user’s very devices that are creating the problem in the
first place.
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In this scenario, the user is able to perform actions re-
quiring private keys from any of their devices, but the theft
of a single device (or more, up to some user-defined thresh-
old number) does not result in the loss of the private key.
For example, identity authentication mechanisms in com-
munication platforms such as instant messaging and email
typically rely on digital signatures generated from the user’s
private key. If a single copy of that private key is stolen,
the user must generate a new key for themselves, inform ev-
eryone they communicate with that the old key has been
compromised, and somehow securely distribute the new key
to everyone. If the signature were generated using threshold
cryptography, however, then no individual device contains
the private key any longer – it contains a share of the key.
Even if a device is compromised by sophisticated malware
that initiates these threshold signature operations on be-
half of the user, the user will notice the unsolicited requests
on her uncompromised devices and simply reject them. Fur-
thermore, even if the user’s devices automatically acquiesced
to such requests (for the sake of convenience), the attacker
would not actually gain the private key itself, and the re-
quests generated by the attacker must still show up in the
logs of the other devices. We are not simply distributing
cryptographic keys across devices – we are distributing the
cryptographic operations themselves. In this case, the at-
tacker would obtain digital signatures for some number of
messages, but still not possess the private key to generate
more after the user has noticed the compromise (which is
easily visible in the logs of all other, uncompromised de-
vices).

Our work makes the following contributions:

• We show that using threshold cryptography is a viable
way of allowing users to distribute private keys and
cryptographic operations amongst their many devices,
while leveraging what was once a vulnerability into
protection against device theft.

• We provide Shatter, the first (to our knowledge) free
and open-source 1 cross-platform framework for easily
managing private keys on multiple devices, and provid-
ing threshold cryptographic protections to applications
using strong cryptography.

• We demonstrate how Shatter can be used to protect
identity keys in the ChatSecure instant messaging app,
and encryption keys in the OmniNotes note-taking app.

• We show that Shatter-compatible apps can be used
with existing communication platforms without requir-
ing non-Shatter users to adopt our new software whole-
sale (or even being made aware that it exists), facili-
tating easy adoption.

We define our version of the multi-device problem in Sec-
tion 2 as well as how the use of threshold cryptography ad-
dresses it. Section 3 describes Shatter, our framework for
providing protections of threshold cryptography to end-user
applications. We have integrated Shatter with two exam-
ple Android applications, and this integration is described
in Section 4. A performance evaluation is provided in Sec-
tion 5. Related work is discussed in Section 7, and Section 8
concludes.

1https://crysp.uwaterloo.ca/software/shatter/

2. PROBLEM SETTING
This section describes the multi-device problem as we

seek to address it. Section 2.1 describes the problem itself,
and Section 2.2 enumerates the properties our ideal solution
would have. Section 2.3 describes how threshold cryptogra-
phy can be employed as a solution, and Section 2.4 walks
through a real-world example. Section 2.5 defines the threat
model we use for this paper.

2.1 The multi-device problem
As discussed above, it has become common for users to

own and even carry several different computing devices at a
time. Cryptographic keys that are traditionally stored on a
user’s sole computer are now needed from each of these de-
vices. In order for a user to authenticate themselves with a
consistent identity across all devices, or read their encrypted
messages from any location, they need to share access to
secret keys that are intended to remain secure and moved
around as little as possible. The keys can be partially pro-
tected with e.g. a password entered by the user, but they are
still vulnerable to attacks such as pulling them from memory
while in use, phishing, or offline password cracking.

The simplest approach to solving this problem is simply to
sync private keys between devices, protected during trans-
port with, for example, the user’s password for logging into
the software. However, this solution engenders a new set of
problems. For example, if a user transfers their private key
to their smartphone, and the phone is subsequently stolen
or lost, the user’s key has been compromised for all the de-
vices they were using it on. They are required to revoke
the lost key, generate a new one, update all their remaining
devices with the new one, and communicate the revocation
and new key to all parties they are in contact with. Pro-
tecting the keychain with a password, as mentioned above,
does not change this scenario in the event that the keychain
is somehow compromised.

Another approach is to use multiple keys, such as the case
with“manual” threshold schemes2: a different identity key is
generated for each of the user’s devices, and remote parties
must be made aware of all of them (or a hierarchical scheme
could be used to issue keys from a central dealer). This ap-
proach also has its problems. For one, it exposes details of
how a user uses their individual devices to the recipient (such
as whether they are currently sending an email from their
phone, instead of their workstation). For another, a stolen
device still results in a stolen key that must be revoked. It
also places a burden on the communication partner: they
must now run software that is compatible with the multi-
key scheme chosen by the sender, in order to encrypt each
message to all the user’s devices simultaneously (or to ver-
ify more complex conditions such as “require at least three
signatures on all messages”, as discussed below). This is a
significant barrier to real-world deployment, as it necessi-
tates all members of a communication system to upgrade
and adopt the system. Group signature schemes, where one
device generates a signature on behalf of all the devices in
the group [3], can solve several of these issues, but not all of
them; primarily, they are still vulnerable to the problem of
single stolen devices.

2http://crypto.stackexchange.com/q/15520
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2.2 Goals
To motivate our own work, we must first consider other

various potential solutions to the multi-device problem. Be-
low, we enumerate various approaches to performing digital
signature operations for the same user on multiple devices.
Encryption, depending on implementation, tends to have the
same single/multiple device cooperation properties, and re-
quires remote parties to encrypt for multiple keys in schemes
where a single key is not somehow distributed amongst de-
vices.

Per-device keys The user has an independently generated
key on each of their devices.

Key sync The user generates a single key and copies it to
their other devices.

Manual thresholding As per-device keys, but the user
also embeds a “policy” in each signature, instructing
verifiers to look for multiple signatures (from the user’s
other devices) on each message.

Personal PKI As ‘key sync’, but the user also has a single
“master” key, stored on one device, which signs the
keys on each other device. This can also be used in
combination with ‘manual thresholding’.

Group signatures Group signature schemes allow any one
member of a group to sign messages on behalf of the
entire group. These schemes present a single public key
to the world, but each member has a unique “share” of
the private key.

Secret-shared keys As ‘key sync‘, but a threshold secret
sharing scheme is used to protect the private key. When-
ever it is required for a cryptographic operation, a user-
defined threshold number t of their n devices (t ≤ n)
work together to recover the original private key.

Threshold cryptography As ‘secret-shared keys’, but the
private key is not regenerated for normal operations
(signature generation). Instead, the cryptographic op-
eration itself is distributed amongst the t user devices.
This is our approach, as described above.

Figure 1 summarizes the properties provided by each of
these schemes, which are defined as follows:

Backwards compatibility The scheme can be used to com-
municate with people who are using unmodified soft-
ware. Schemes are listed as “potentially” having this
property if a modified version of the original cryptog-
raphy algorithm is required.

Weak theft resistance If only 0 < x < t devices are com-
promised, the long-lived private keys remain uncom-
promised and do not need to be revoked (as long as
devices do not automatically participate in requests
from other devices).

Strong theft resistance If only 0 < x < t devices are
compromised, the long-lived private keys remain un-
compromised and do not need to be revoked (even if
devices do automatically participate in requests from
other devices). For example, in the secret-shared keys
scheme, a single request is all the attacker needs to
perform in order to recover the private key.

Only one active device The scheme does not require mul-
tiple devices to be powered on and in communication
with each other in order to perform a necessary opera-
tion (initial enrolment and revocation do not count for
this purpose).

Device anonymity The remote party cannot distinguish
which of the user’s devices were used to perform an
operation.

Single public key Remote parties only see a single public
key representing the user, and do not need to consider
others when performing signature verification or en-
cryption.

No master device / CA All of the devices are treated
equally; there is no device that acts as a single point
of failure.

2.3 Proposed solution
This work proposes using threshold cryptography to aid

in solving the problems with sharing a single cryptographic
identity across multiple devices. Threshold cryptosystems
are usually presented as (t, n)−threshold algorithms, where
n parties are initially enrolled in a system, but any subset
of size t < n can subsequently work together to perform the
corresponding operation (typically decryption, or creation
of a digital signature).

Traditionally, threshold cryptography schemes have been
designed with organizations in mind: the authority to per-
form some action (such as “launch missiles”) is split amongst
high-ranking officials, and several of them must act in unison
in order to carry out said action. The rising prevalence of
individual users possessing multiple computing devices for
their own personal use, however, leads to an opportunity to
adapt such schemes for the single-user setting. Using thresh-
old schemes to distribute secrets, or the ability to perform
signing/decryption operations with a combination of devices
working in unison, solves many of the problems with the
schemes enumerated above. Theft of a (single) device no
longer necessitates revoking the key; the user simply has to
use a coalition of the remaining devices in their possession to
recover the original secret key, and they can generate new
shares without distributing one to the affected device. It
can also be implemented in a manner entirely application-
agnostic and invisible to the communication partner (as long
as threshold versions of the cryptographic algorithms used
in the original application exist). Corresponding parties do
not need to upgrade their software, and indeed do not even
need to be aware that the user is generating signatures or
performing decryption in a distributed manner. The draw-
back to this approach is that it now requires multiple de-
vices (a user-configurable threshold) to be powered on and
accessible to each other, be it by proximity or over the In-
ternet. This inconvenience can be mitigated by providing
many forms of interconnection between devices, and creat-
ing software that runs on a wide variety of platforms. In
this way, the user simply has to set the threshold number t
to something that is convenient for them and their particu-
lar set of devices (which can be as low as only two devices),
many of which are left powered on at all times anyway.

Going forward, we are interested in the applications of
both threshold signature and threshold encryption algorithms.
Signatures are frequently used as components to provide
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Figure 1: Attributes provided by various solutions or proposed solutions to the multi-device problem

authentication to security protocols, including email (e.g.,
PGP and S/MIME), instant messaging (e.g., OTR and Text-
Secure), and authentication itself (e.g., FIDO and SQRL).
Encryption is used to provide confidentiality to user commu-
nications (e.g., email), backend communications (e.g., soft-
ware updates), and user data-at-rest (e.g., password man-
agers). Each of these applications would interact with thresh-
old versions of their cryptography in (sometimes subtly) dif-
ferent ways, posing their own questions, all of which must
be answered by the framework we define.

2.4 Walked-through example
To illustrate how this solution would work in practice, let

us consider the example of a user Alice using an instant
messaging app to talk to her friend, Bob. Alice has three
devices: a smartphone, a laptop she uses for school, and a
desktop at her home. Alice’s first step is to install Shatter
on each of her devices. After installation is complete, the
three devices discover each other through her home network
and ask if she would like to add them all to her personal
set of devices. She agrees, and decides to set the threshold
t to two. Upon doing so, one of the devices generates a
new public/private keypair and splits the private key into
three shares. It distributes a share to each of Alice’s devices,
keeping one for itself, and then erases the original private key
from its memory. Finally, Alice installs a Shatter-compatible
version of the IM app onto her smartphone.

Later, Alice is traveling and has only her phone with her.
Bob, who is using a normal version of the IM app and has
never heard of Shatter, tries to initiate a secure conversation
with her. The IM app uses digital signatures for authenti-
cation, so it sends a request for a signature to the Shat-
ter process running on the phone. Shatter prompts Alice
to accept the request via a notification on her phone, and
also connects to her desktop and laptop over the Internet
to request participation. Although Alice has left her laptop
running at home, she has it configured to show a prompt
requiring her to approve incoming requests. Her desktop,
however, is configured to automatically accept all requests,
and so the Shatter process on the phone communicates with
the desktop to generate a threshold signature and returns it

to the IM app. On Bob’s end, he sees that a secure connec-
tion has been established without knowing anything unusual
happened, and proceeds to chat with Alice.

After their conversation, Alice sets her phone down on
a table in a coffee shop and accidentally leaves it behind.
When she gets home, she realizes it is gone. If someone at
the coffee shop were to pick up her phone and try to initiate
a new conversation with Bob, it would only be possible be-
cause Alice has configured her desktop to automatically ac-
cept requests, and Alice would be able to look at the request
log on her other two devices to see that it had happened.
Even if the thief were aware that Shatter was installed on the
phone and accessed its control panel, they would be unable
to obtain Alice’s private key – it is not stored on the phone,
it is not regenerated in the process of creating a threshold
signature, and neither the desktop nor the laptop will agree
to regenerate the key without explicit user authorization.

At home, Alice is able to see whether or not her phone
was used to perform any privileged operations. She then
accesses the Shatter control panel on her desktop, and initi-
ates a revocation of the smartphone. The revocation request
appears on her laptop, which she accepts, and the laptop
sends its secret share to the desktop, where they are recom-
bined to recover the original private key. The desktop then
creates a new set of secret shares for only the desktop and
laptop. It sends a courtesy message to Shatter running on
the smartphone (if it is able to reach it over the Internet)
alerting it to the revocation. It is not imperative that this
notification reaches the smartphone, however – the desktop
and laptop will no longer accept signature requests from the
smartphone. Indeed, even if the same thief were to then
steal Alice’s laptop, now possessing two of her devices, he
would still be unable to recover her private key. Despite
having two of Alice’s three devices in such a situation, Alice
was able to revoke the phone’s keys first, essentially starting
a new epoch the moment she did so.

Alice then purchases a new phone, installs Shatter and the
IM app on it, and enrols it with her desktop and laptop using
a similar recover-and-reshare process as used for revocation.
This process does not change her public key, and she is able
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to initiate new secure conversations with Bob without him
having any way of knowing she had lost a key share.

2.5 Threat model
Our threat model is primarily restricted to less than some

user-specified threshold t of that user’s n devices being com-
promised by colluding adversaries. “Compromise” for our
purposes is defined to include physical theft, privileged mal-
ware running on the device, and remote code execution. In
the event that x ≥ t devices are compromised, private keys
are able to be regenerated by the adversary and should be
considered lost by the user.

In this threat model, two considerations must be made for
damage mitigation and recovery in the event of device com-
promise. The first is in the case of data recovery by the user:
in the event that t ≤ x ≤ n − t, any data protected by the
private key should be considered compromised, but it is pos-
sible for the user to recover that data as well. However, for
x > n− t, the user will no longer be able to recover the pri-
vate data. For example, if an application is designed to pro-
tect a user’s personal notes with threshold encryption, both
the user and the adversary would have access to the notes
with t ≤ x ≤ n−t; with x > n−t only the adversary has ac-
cess to the notes. In our threat model, another consideration
is for the harm possible by x < t devices being compromised
when some of the user’s other devices automatically partici-
pate in threshold operations. In this instance, the adversary
is limited to performing the pre-designed cryptographic op-
erations but cannot obtain the long-lived private keys of the
user. This creates a window of opportunity wherein the
adversary can cause harm by imitating the user (such as ac-
cessing plaintext or impersonating the user), but results in
a user-auditable log of operations performed. It also does
not preclude the user from subsequently revoking the lost
device and continuing to use the same private keys.

We also consider the case of using untrusted cloud providers
as participants in the user’s threshold scheme. Such a cloud
provider would accept threshold participation requests from
the user’s devices prerequisite on the user authentication
with the service through some separate mechanism (which
may be persistent, e.g. “stay logged in” cookies). Third-
party cloud services should be barred from initiating re-
quests (by having the user’s devices ignore requests gener-
ated by cloud services), and should require re-authentication
from the user before participating in key recovery opera-
tions. The user should not add more than one third-party
service to their group of threshold participants, as collusion
between two or more such services cannot be prevented and
would compromise the scheme as described above. How-
ever, cloud services acting as part of the user’s device group
provide an always-on party that can participate in thresh-
old cryptographic operations, and can even allow users with
only a single internet-connected device (e.g., a smartphone)
to gain the protections afforded by our solution by setting
t = n = 2.

3. SHATTER ARCHITECTURE
Shatter’s primary component is a library that implements

various threshold cryptography protocols, as well as provid-
ing convenience functions and platform-specific operations
for easily incorporating the library into client applications.
It contains a daemon that can be run by client applications,
although this daemon is intended to be run by a dedicated

Shatter app, with client apps in turn communicating with
the dedicated app to have it perform operations on their
behalf. This software pattern allows users to use multiple
client applications while only having to maintain their de-
vice configuration in a single location. Figure 2 illustrates
this organization and how the components interact with each
other. The following sections give an overview of the archi-
tecture and role of the individual components themselves.

3.1 Crytographic algorithms
The first threshold algorithm we have implemented is a

(t, n)-Threshold-DSA signature scheme proposed by Gen-
naro et al. [14]. DSA was chosen as it provides the authen-
tication in most OTR (Off-The-Record messaging) protocol
implementations, which we later aim to provide threshold
cryptography support to. OTR uses end-to-end cryptogra-
phy to give instant messaging protocols authentication, en-
cryption, and deniability [6]. The Gennaro scheme consists
of six rounds that can be performed in parallel by all of the
participating devices, each either broadcasting their result
for the round when complete or, in the case of the last two
rounds, sending it to the initiating device. This means that
the algorithm runs in time independent of the values of t or
n. Some of the interim calculations in the protocol are per-
formed under additively homomorphic encryption, in order
to hide secret information from other participants. There
is some choice available as to precisely which encryption
scheme is used.

The second threshold algorithm implemented is the Dam-
gaard-Jurik (t, n)-threshold version of Paillier’s additively
homomorphic encryption algorithm [10]. This algorithm
provides the properties required of the encryption algorithm
used as a component of the Gennaro signature algorithm.
For convenience, we also make the algorithm available for
general-purpose use to other Shatter applications. For ex-
ample, one of our example applications in Section 4 uses it
to encrypt the contents of a user’s personal notes.

3.2 libShatter
The library provides the actual implementation of the

threshold cryptography protocols, as well as classes for facil-
itating network communication between clients, loading and
storing configurations, and a variety of other functions useful
to client applications. It is implemented in Java (targetting
versions 1.7+), and is thus easily portable to all major desk-
top platforms. It also compiles to an Android app library,
allowing it to be easily imported and used in any Android
app.

libShatter consists of the following major components:
ThresholdAgent: Daemon that performs the core op-

erations of a threshold cryptography operation, as well as
device management. The ThresholdAgent daemon is re-
sponsible for managing network connections (via delegation
to the NetworkAgent, below), incoming packets, and any
received or pending requests. Client applications are in-
tended to instantiate a ThresholdAgent thread and register
a callback handler with it in order to implement any opera-
tions they require. For example, a client application would
register a ConfigEventListener to take over loading/storing
any configuration changes required by the daemon (such as
changing keys or enrolled devices). It would register a Sig-
natureEventHandler in order to be notified of new requests
for distributed operations (to which it should respond by ei-
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Figure 2: High-level architecture of the Shatter library. Android Wear devices run a Shatter client similar to
the Android implementation (left), while Windows and OSX machines use an analogous setup to the linux
example (right).

ther agreeing or declining to participate), progress updates,
and the result of completed threshold operations.

NetworkAgent: Daemon that manages connections to
the user’s other devices, and performs all network commu-
nication between them. Currently, the NetworkAgent finds
other devices by periodically broadcasting a multicast mes-
sage advertising its presence to other devices on the local
network, and keeping track of recent advertisements from
other like devices. These advertisements contain the device
identity (for determining if it is part of the user’s personal
set of devices), as well as instructions for which address and
port it listens for messages on. It is also responsible for pro-
viding transport layer encryption, and authenticating mes-
sages received from other devices. Currently, this is done
using client-authenticating TLS.

The NetworkAgent listens on this port for incoming con-
nections, reads a single JSON-formatted message from the
initiating party, and closes the connection. The JSON mes-
sage is then passed back to the ThresholdAgent for process-
ing. Although incurring some additonal overhead by not
using long-lasting connections, this pattern means that the
application is not weak in the presence of poor-quality net-
work conditions or roaming users, which is frequently the
case in mobile environments. Finally, while the Network-
Agent currently operates only via local network connections,
it is architected in such a way that new network modali-
ties can easily be dropped-in. For example, future network
adapters might allow connecting devices over Bluetooth, or
via a third-party or user-hosted cloud server as a proxy to
allow easy firewall piercing and long-distance roaming (we
are currently developing both of these options). The Multi-
cast classes can be replaced with any program that adver-
tises and finds other active devices; the LocalServer class
with anything that receives JSON-formatted messages; and
finally a PacketSendHelper with anything that allows send-
ing JSON-formatted messages to an address compatible with
the two Server classes.

Platform Adapters: Package containing adapters for
platform-specific operations. This includes a set of conve-
nience classes for manipulating and storing persistent con-
figuration information with a uniform interface on various
platforms. There is also an implementation of several Broad-
castReceivers to be used by Android apps. Android apps
simply need to add this receiver to their manifest files, and
it will listen for Shatter-specific broadcast intents from other
apps. It also registers event handlers with the ThresholdA-
gent when instantiated, allowing it to communicate the re-
sult of threshold operations back to the app that made the
original request.

Crypto: Package containing the actual implementations
of cryptographic protocols (although not the network proto-
cols, which are done by ThresholdAgent). These operations
are called by ThresholdAgent in order to perform thresh-
old DSA operations, as well as (currently) distributed and
non-distributed Paillier operations. It also contains miscella-
neous convenience utilities, such as a central class for gener-
ating secure random numbers. For non-threshold operations
(such as DSA verification and storing DSA keys/parameters),
it imports SpongyCastle as a dependency (SpongyCastle
is a full version of the BouncyCastle cryptography library,
with its namespaces changed in order not to conflict with
the pared-down version of BouncyCastle included with An-
droid).

3.3 Shatter desktop app
This is the reference implementation for a Shatter client

application. It is implemented in Java as an interactive
command-line application, and allows making all possible
calls to ThresholdAgent, displaying and responding to re-
quests, and maintaining configurations using flat files. The
source code for the application shows how a developer need
only implement a thin UI that binds to the various ex-
posed API functions: it primarily consists of a switch state-
ment driving a menu displaying the available API calls, and
several methods designed to handle the callbacks required
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for it to act as both a ThresholdEventListener and Con-
figEventListener.

3.4 Shatter Android app
In addition to replicating the basic driver functionality of

the desktop application, the Android app acts as the host
service for the ThresholdAgent for all other apps on the
device. This provides a central device management inter-
face for the user, who may have multiple distributed apps
installed on their phone. Apps that want to perform dis-
tributed operations communicate with the central app via
intents. The app itself communicates with any other Shat-
ter clients (desktop or Android) to perform requested oper-
ations, and communicates the result back to the requestor
via intents.

3.5 Device group management
Any number of Shatter-compatible apps can connect to

a single instance of a Shatter client application, giving the
user the convenience of only have to manage their devices
from one place. The Shatter client takes care of group for-
mation, new device enrolment, and old/lost device revoca-
tion. Initial formation of a group involves showing the user
all discovered devices, asking which ones should be included
in the group, generating a set of key shares for the group,
and asking the user to securely pair each of the devices in
order to receive those shares. Currently, the user has two
choices for secure pairing: scanning a QR code, or verify-
ing a displayed code on both screens (both of which contain
a cryptographic hash of the public key for the central de-
vice, allowing the devices to authenticate each other from
then on). For both revocation and enrolment, the user must
gather at least the threshold number of the devices in their
group together. The process is initiated on one device, which
then sends the request to the other devices in the group. The
user must accept this request (Shatter clients should never
accept these requests automatically) on each other device,
which causes them to send their shares directly to the initi-
ating device. The shares are then combined to recover the
original private key, which can then be used to generate a
new set of shares (plus or minus the targeted device).

4. MOBILE APPLICATIONS
To demonstrate the feasibility of adding support for our

library to end-user applications, we added Shatter support
to two open-source Android apps: one which provides off-
the-record messaging with strong participant identity ver-
ification, and one which allows a user to write and store
arbitrary plaintext notes on their device. Screenshots of the
Shatter client and Shatter-compatible apps are presented in
Figure 3.

4.1 ChatSecure
We added Shatter support to ChatSecure3, an app by The

Guardian Project that allows the user to connect to arbi-
trary Jabber servers, and optionally to use Off-the-Record
(OTR) messaging over them. In the OTR protocol, parties
in a conversation authenticate each other once (at the be-
ginning of the conversation) by way of DSA signatures. The
implementation of OTR used by ChatSecure is called otr4j,

3https://chatsecure.org/

which is originally developed and maintained by Jitsi, an
open-source videochat and IM application.

We replaced calls to sign() in otr4j with a request for a dis-
tributed DSA signature from the Shatter app. This required
a slight refactoring of the library – it originally expected
signature operations to complete near-instantaneously, and
thus simply blocked on calls to the method. This was re-
placed with a request+callback pattern, so the encryption
resumes once the user has assembled the requisite number of
other devices and permitted them to generate a signature.
The refactoring was accomplished by adding new message
types to the otr4j incoming message handler, and putting
the OTR engine into a ”waiting for callback” state in the
meantime. Thus even though calls to the sign() method may
be made on the main thread, they will return immediately
without causing the UI to hang.

4.2 OmniNotes
We also added Shatter support to OmniNotes v5.1.34, the

most popular open-source Android note-taking application
at the time of this writing. OmniNotes supports very basic
(password-keyed) encryption on a per-note basis, which we
improve by generating strong random keys and protecting
them with a threshold encryption scheme.

OmniNotes’ default encryption behaviour is to display a
prompt for the user to enter their password whenever open-
ing a “locked” note. We removed the text field from this
prompt and replaced it with a call to Shatter asking to de-
crypt the symmetric encryption key for the current note (en-
crypted keys are stored prepended to encrypted notes, as is
typical with hybrid encryption). This effectively turns the
password prompt into a loading screen for the note, while
the Shatter client sends requests to the user’s other devices
requesting their participation. When the decryption is com-
pleted, the callback closes the loading screen and supplies
the decrypted text of the note to be displayed.

We note that, if the user’s other devices are accessible
and configured to automatically participate in decryption
requests, the final experience is actually easier with Shat-
ter. Whereas previously the user had to stop, remember, and
type their password, they now have to wait only a second
or two for a loading screen (see Section 5). It also provides
significantly stronger encryption for the user’s notes. Pre-
viously, all notes were protected with a single key derived
from a password that generally needs to be simple enough
for users to remember. With Shatter support, each note has
a different, randomly-generated 128-bit key.

5. EVALUATION
This section provides an evaluation of the algorithms cur-

rently implemented by Shatter. It should be noted that
performance is generally particular to the cryptographic al-
gorithms being used, and not the implementation itself.

5.1 Procedure
We ran our threshold signature and decryption algorithms

on a desktop running Ubuntu 14.04 with an AMD FX-6100
3.3GHz 6-core processor, Nexus 5 smartphones running An-
droid 5.1.1, and a Moto 360 smartwatch running Android
Wear v5.0.1. These devices can be combined in any permu-

4https://play.google.com/store/apps/details?id=it.feio.
android.omninotes
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Figure 3: The Shatter client app for Android (left); Shatter-aware ChatSecure conversation with a non-
Shatter aware remote participant (middle); Shatter client running on an Intel Edison with OLED display
(top-right); Shatter client running on a Moto 360 (bottom-right).

tation; we restrict our evaluation to all-desktop, all-phone,
and all-unique (that is, phone-watch-desktop) configurations
with n = t = 3. As mentioned above, the performance of
both algorithms is independent of the number of devices par-
ticipating. Although the desktop clients are run on the same
machine, in practice each instance runs on a single core and
so the performance slowdown on our 6-core machine is negli-
gible. We provide numbers both with and without checking
of the zero-knowledge proofs that the algorithms require in
order to detect malicious parties, but not in order to proceed
with functionality. If an app is able and willing to provide
latent detection of adversaries, it can get away with defer-
ring the checking of proofs until the actual result has been
computed, and the user will experience a shorter interrup-
tion.

Computation times are averaged across 20 runs of the al-
gorithm. These times include some periods of network trans-
mission, but this is performed over a local network and is
negligible. The timer is started once a threshold number
of devices have agreed to participate in a threshold opera-
tion, and stopped once the result has been calculated and
delivered to the application requesting it. We use DSA pa-
rameters of L = 1024, N = 160, chosen to correspond to
ChatSecure’s DSA parameters, with the Paillier parameters
being derived from the DSA parameters to preclude needing
to use a block cipher mode of encryption.

5.2 Results & observations
Table 1 shows the computation time needed to perform

threshold signing and decryption operations. Both signa-
tures and decryption can be calculated in a quarter of a
second on all devices. If proofs cannot be deferred, decryp-

tion needs several seconds extra while signatures need up to
fourteen seconds extra.

We believe the delays are acceptable if proofs do not need
to be verified immediately. In the event that the app does
require up-front verification, the longer delay for signatures
is mitigated by the fact that signatures tend to be performed
only for infrequent operations. They only need to be calcu-
lated once at the beginning of a new OTR session with a
friend, and this is done immediately before the user typi-
cally sends a “hello” message and waits for the recipient to
notice it. Another common use of signatures is on outgo-
ing emails; in this scenario, users are already accustomed to
waiting a short period of time for an email to be sent (and
indeed, Gmail currently suggests adding an artificial delay of
ten seconds or more in order to provide “undo” functionality
to sending mail [8]). Decryption only needs to be performed
in OmniNotes when a note is first opened and, as we note
in Section 4.2, this can actually result in a shorter delay
for the user. Encryption is performed when closing/saving
notes, and does not need to be distributed since Damgaard-
Jurik is a public-key encryption algorithm.

As discussed in Section 3.1, we implemented a (t, n)-Thre-
shold-DSA signature scheme designed by Gennaro et al. be-
cause it was necessary to find a threshold equivalent of the
DSA algorithm in order to be backwards compatible with
existing OTR apps. In analyzing the performance of our
implementation, we found the homomorphic encryption and
decryption operations dominate the computation time. As
we outline in Section 3, the major calculations involved in
this particular threshold signature scheme are performed un-
der homomorphic encryption. This dominating factor, as
well as the ratio of encryption to decryption time, is ap-
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Device, role No proofs Proofs
Signature, 3 desktops 0.243 (0.01) 10.8 (1.09)
Signature, 3 phones 0.509 (0.01) 12.0 (1.09)
Signature, all unique 0.543 (0.02) 13.2 (1.11)
Decryption, 3 desktops 0.118 (0.01) 0.822 (0.10)
Decryption, 3 phones 0.249 (0.01) 1.941 (0.11)
Decryption, all unique 0.261 (0.01) 2.479 (0.11)

Table 1: Performance numbers, broken down by de-
vice combination (“all unique” means phone-watch-
desktop). Average times are given in seconds, with
standard deviations in parentheses. “No proofs”
refers to the time to complete before checking the
deferrable zero-knowledge proofs (see text for dis-
cussion).

proximately consistent with the analysis in Paillier’s original
paper [27].

Gennaro et al.’s scheme also requires several rounds wherein
a partial computation by one device is broadcast to the
other participants, and the broadcast from all other par-
ticipants must be received before continuing with the com-
putation. This results in t messages being sent in parallel
a total of six times in sequence, with most messages being
4kB and the largest being 16kB (including transport encryp-
tion). The scheme also uses the Damgaard-Jurik threshold
encryption scheme twice as a sub-operation, and therefore
its computation time can never be lower than that of the
encryption scheme by itself. For our threshold decryption
scheme, however, backwards-compatibility with other com-
munication partners is not a concern and so we can make
use of any algorithm we wish. We chose to re-use our im-
plementation for convenience and to demonstrate the utility
of our crypto library; in the future, we will investigate using
more appropriate algorithms for apps like OmniNotes.

6. LIMITATIONS
Shatter’s protections only apply within the limitations of

the threat model defined in Section 2.5. If an adversary
compromises more than the user-defined threshold t of that
user’s devices, they are able to regenerate any private keys
protected with threshold cryptography. Shatter does not al-
low the user to set t = 1, which would be essentially the
same as not using Shatter at all. We do not consider appli-
cation security vulnerabilities in our implementation to be
in scope; however, we note that even an exploit allowing de-
vice compromise still only results in a share of a private key
being stolen, and the attacker will still need to compromise
t or more devices in order to defeat Shatter.

Our ability to provide backwards compatibility with re-
mote communication partners is limited to apps using pro-
tocols for which there is a threshold version of any cryp-
tographic algorithms relying on private keys available. In
our current implementation, these are the DSA/ECDSA
signature scheme and the Paillier homomorphic encryption
scheme. Threshold cryptography is an active area of re-
search, however, and threshold versions of many popular
algorithms have already been published.

Shatter also introduces a requirement for t of the user’s
devices to be online and accessible to each other (e.g. over
the internet) whenever the user wishes to perform an oper-
ation relying on their private keys. The user is expected to

pick a value of t that is realistic for their normal usage (e.g.,
it would be annoying to pick t = 3 when one of the user’s
devices is a laptop that they typically leave off). We help
mitigate this inconvenience by supporting as many commu-
nications protocols as possible, making it easy to add new
ones, and implementing new ones ourselves as we are able
to. We also aim to support as many platforms as possi-
ble, with our current Java implementation easily running
on Windows, Linux, Mac OSX, Android, and Android Wear
(with an iOS implementation currently under development).

7. RELATED WORK
The idea of using threshold cryptography between a sin-

gle user’s cooperating devices has been proposed before. In
1979, Blakley et al. systematized the set of threats posed
against storage of sensitive private keys [5]. While one of
the authors later worked on using threshold cryptography
to help defend against some of these threats [4], it was two
decades later before Desmedt et al. proposed using threshold
cryptography to protect keys stored on “things that think“
(contemporarily, Internet of Things devices) [11]. Desmedt
et al. did not go so far as to offer comprehensive guidelines
on how this should be implemented, however; they merely
suggested that a set of standards should be developed to
allow a wide variety of different devices and different ap-
plications to interoperate. These recommendations built on
earlier work outlining the threat model addressed by thresh-
old cryptography schemes in general [20], discussing how it
might be adapted to the personal device scenario. The ear-
lier work remains relevant, however, in that it contains sug-
gestions and schemes that are applicable to our work (such
as methods of identifying misbehaving devices, and key ro-
tation schemes that reduce the damage done in the event of
a compromised share). Papers building on Desmedt et al.’s
work have investigated protocols for securing the underly-
ing communication between devices, focusing on such goals
as adding and removing devices from the threshold group
securely [29] or preventing eavesdroppers from tracking the
user via their device signatures [38]. More recent work has
focused on applications (as do we), using threshold schemes
to protect keys used for unlocking a device [39] or evaluating
the usability of various pairing schemes [22].

The key difference between the work in this section and
our proposed work is a lack of focus on real-world deploy-
ment issues. All of the aforementioned papers focus on us-
ing ordinary secret sharing to protect a secret key, and thus
lack desirable properties as discussed in Section 2.1. They
have no thought given to backwards compatibility or theft
protection against malware, which requires modifying ap-
plications to perform distributed cryptographic operations
and, in some cases, creating new cryptographic operations
themselves. With one exception [22], they also tend to ig-
nore the usability outcomes of their proposals, whereas we
are interested in facilitating a smooth experience for both
users of our software and the developers themselves.

The thread of work by Peeters et al. resembles our work
most closely, in that they are also interested in applica-
tions of threshold things that think. In 2008, they pre-
sented an adaptation of Shoup’s threshold RSA encryption
algorithm [33] intended to be run on things that think [30]
(including a proof-of-concept implementation). In a 2012
PhD thesis, Peeters discussed some of the ideas outlined
herein, and presented proposals for storing secret shares on
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devices without secure storage [28, 34]. The thesis also dis-
cussed methods of securely pairing devices [29], and pre-
sented a proposal using the location information available
on devices with a GPS [31, 36]. Stajano presented the
Pico/Picosiblings system in 2011 [37]. Picosiblings are IoT
devices intended to be worn by a user, which use threshold
cryptography to authenticate the user to remote services.
This application is similar to proposals like FIDO / SQRL,
but using threshold cryptography to offer theft-resistance.
Although Stajano does not explicitly consider Picosiblings
as a solution to the multi-device problem (only one device,
the Pico, is intended to permit user interaction), it is triv-
ial to envision how such a solution might be incorporated
into the existing work. Finally, Gennaro et al. present an al-
gorithm and software for distributing Bitcoin wallets across
multiple devices with threshold cryptography [14]. Their
work is discussed extensively in Section 3, as our current
work implements their proposed threshold-DSA algorithm.

Other researchers have proposed solutions to the multi-
device problem with alternative methods to threshold cryp-
tography. For example, Sinclair and Smith described a method
of sharing PKI credentials (signing keys) to mobile devices,
reducing the impact of stolen / compromised devices [35].
Their work essentially uses personal PKI to issue “proxy”
(short-lived) certificates from a master certificate on a cen-
tral workstation. As we discussed in Section 2, this approach
does not solve problems such as having to revoke stolen sign-
ing keys, and reveals details of the user’s device usage to cor-
respondents. Some researchers propose using multiple de-
vices for novel two-factor authentication mechanisms, such
as proximity detection [9, 21] or using a mobile phone to
authenticate on an untrusted (public) terminal [26]. In the
latter scheme, a trusted third party server is used to estab-
lish what is essentially a VNC connection via an untrusted
terminal, while authenticating to it using the phone’s in-
ternet connection (and issuing temporary credentials to the
untrusted device). While not directly addressing the prob-
lems we are facing, this work contains interesting and useful
discussion of the design issues that arise with such two-factor
authentication schemes on mobile devices.

Farb et al. [12] considered making personal key manage-
ment and distribution easier for smartphone users. While
we are working toward similar goals of user-friendliness and
easy adoption, they did not consider the case of users with
multiple devices. Other researchers have proposed proto-
cols for multiple users in proximity to communicate anony-
mously [17, 23, 24], and we are investigating using similar
schemes for the single-user setting in order to decrease po-
tential side-channel privacy invasions. Geambasu et al. [13]
presented Keypad, a filesystem which stores per-file keys on
a remote server. This provides some of the properties of our
OmniNotes app, such as remotely revoking access from lost
devices and creating a guaranteed audit log, but is not as
flexible in terms of combining multiple devices (which may
be local, thus not necessitating an internet connection).

There has been some non-academic work on sharing pri-
vate keys between a user’s personal devices, but these rarely
incorporate threshold cryptography and tend to rely on sim-
ply encrypting the private key and uploading it to a third-
party synchronization service. Such is the case with White-
out.io, which generates a long random password for the user
and requires them to write it down and manually enter it into
their devices during configuration [19]). Apple iMessage, a

widely-deployed instant messaging platform, uses another of
the approaches discussed in Section 2.1. Users have a sep-
arate keypair generated for each of their devices, and key
distribution is done by sending all of the user’s public keys
from Apple’s central server (and encryption by encrypting
to all of the user’s devices) [2]. Gil summarized common
community approaches to this problem in 2014 [15].

8. CONCLUSION
In this work, we presented Shatter, a free and open-source

library and set of applications for providing threshold cryp-
tographic protections to desktop and Android apps. As op-
posed to making users copy private keys to each of their
multiple devices, introducing a significant weakness to de-
vice theft and compromise, we instead leverage this mul-
titude of devices to provide significant protection against
a variety of adversaries. Shatter allows app developers to
easily perform distributed signature and encryption oper-
ations, by communicating with a central application that
takes care of enrolment and revocation of the user’s other
devices. We showed that Shatter has acceptable overhead in
the context of two real-world applications—ChatSecure and
OmniNotes—and that threshold cryptography is, indeed, a
feasible method of distributing and protecting “keys” across
a user’s different devices.

Shatter and its source code are available now, and are un-
der active development by our lab. Ongoing work includes
adding support for more cryptographic algorithms, improv-
ing the user experience to make it desirable by everyday de-
vice owners, and adding support for new technologies such
as Bluetooth LE and new Internet of Things platforms.
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