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ABSTRACT
More and more people rely on mobile devices to access the
Internet, which also increases the amount of private informa-
tion that can be gathered from people’s devices. Although
today’s smartphone operating systems are trying to provide
a secure environment, they fail to provide users with ade-
quate control over and visibility into how third-party appli-
cations use their private data.

Whereas there are a few tools that alert users when ap-
plications leak private information, these tools are often
hard to use by the average user or have other problems.
To address these problems, we present PrivacyGuard, an
open-source VPN-based platform for intercepting the net-
work traffic of applications. PrivacyGuard requires neither
root permissions nor any knowledge about VPN technology
from its users. PrivacyGuard does not significantly increase
the trusted computing base since PrivacyGuard runs in its
entirety on the local device and traffic is not routed through
a remote VPN server. We implement PrivacyGuard on the
Android platform by taking advantage of the VPNService

class provided by the Android SDK.
PrivacyGuard is configurable, extensible, and useful for

many different purposes. We investigate its use for detect-
ing the leakage of multiple types of sensitive data, such as
a phone’s IMEI number or location data. PrivacyGuard
also supports modifying the leaked information and replac-
ing it with crafted data for privacy protection. According
to our experiments, PrivacyGuard can detect more leakage
incidents by applications and advertisement libraries than
TaintDroid. We also demonstrate that PrivacyGuard has
reasonable overhead on network performance and almost no
overhead on battery consumption.

1. INTRODUCTION
Mobile devices such as smartphones and tablets have be-

come popular and powerful. Such devices can have many
sensors, for example, gyroscopes, GPS, fingerprint sensors
and even heart rate sensors embedded in some wearable de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SPSM’15, October 12, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3819-6/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808117.2808120.

vices. These sensors collect a great deal of personal informa-
tion. Since people carry their devices all day and use them
to communicate or work, these devices can contain much
private information. This information makes it possible to
track, identify or profile users.

All popular mobile operating systems come with a mech-
anism to control access to this information by applications.
The App Store has a review process to avoid malicious ap-
plications. iOS, Windows Phone, and upcoming Android M
have a first-time use confirmation prompt for access to lo-
cation and microphone among others. Users can also man-
ually set the access policy for each application later in the
settings. The current versions of Android use a permission-
based security model to restrict applications from accessing
private data and privileged resources. When users install an
application, they are prompted to grant the permissions or
cancel the installation. However, none of these approaches is
satisfactory, especially when users do not understand what
happens. Significant efforts have been made to explore these
challenges [3][4][14].

The other problem with the approaches employed by ex-
isting platforms is that they are all-or-nothing. Users can
control only whether an application can access a certain type
of private data. Intuitively, there will be an information
leakage only if the application also outputs this informa-
tion, like in a network transmission. However, the existing
mechanisms block access no matter how this data is used by
the application and how it is processed before being trans-
mitted. The mechanisms may block even if this data is not
transmitted at all. For example, an application may ac-
cess the location to obtain the current time zone, or it may
implement an anonymization algorithm and send out a well-
crafted location that does not leak any essential information.
These all-or-nothing approaches therefore can affect the us-
ability of benign applications.

Much existing work cannot address the problems described
above. For example, some tools [2][8] leverage taint analy-
sis, which sets a taint flag on the data returned by privacy-
sensitive methods and checks if the data reaching a sink,
such as the network, has the flag set. However, the taint
will be propagated no matter how the data is processed by
an application. Application-rewriting approaches [5] [7] [14],
which modify an application to achieve better access control,
also do not consider how applications use the private data.
All these methods usually also have some other problems,
such as the requirement of root permissions or of modifi-
cations to the Android kernel. In turn, these requirements
make these approaches hard to use for the average user.
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Most information leakage occurs over the network and
could likely be detected by inspecting network traffic. We
present PrivacyGuard, a VPN-based platform for intercept-
ing the network traffic of applications. PrivacyGuard re-
quires neither root permissions nor any knowledge about
VPN technology from its users. PrivacyGuard does not sig-
nificantly increase the trusted computing base since Priva-
cyGuard runs in its entirety on the local device and traffic
is not routed through a remote VPN server. We implement
PrivacyGuard on the Android platform by taking advantage
of the VPNService class provided by the Android SDK.

PrivacyGuard can be used for many purposes. Apart from
leakage detection, it could also be used to, for example, char-
acterize the network traffic of an application, block adver-
tisements, or filter cookies. We focus on its use for detecting
the leakage of multiple types of sensitive data, such as a
phone’s IMEI number or location data. PrivacyGuard also
supports modifying the leaked information and replacing it
with crafted data for privacy protection. Our existing filters
for detecting information leakage and our strategies for alert-
ing users of a leakage are simple, but sufficient to serve as
proof-of-concept. This makes PrivacyGuard an attractive
platform for privacy researchers to explore more sophisti-
cated filtering and user notification strategies [1].

We make the following contributions:

• We present the design of PrivacyGuard, which we be-
lieve to be the first open-source1 VPN-based platform
for Android that can intercept the network traffic of
applications without requiring a remote VPN server.

• We describe the implementation of PrivacyGuard based
on our design and the challenges we had to overcome.

• Our effectiveness experiments demonstrate that Pri-
vacyGuard can detect information leakage in most ap-
plications effectively and has better detection results
than TaintDroid [8], a popular taint-based approach.

• Our performance experiments show that PrivacyGuard
introduces acceptable overhead in network performance
and little overhead in battery consumption.

During the development of PrivacyGuard, we learned about
an open-source proxy-based network interception tool for
Android called SandroProxy2. (We discuss the disadvan-
tages of a proxy-based approach in section 3.) We had
several discussions with its author and benefited from his
experience. We shared the source code of PrivacyGuard
with him, and he provided advice about fixing problems in
PrivacyGuard. PrivacyGuard uses some TLS interception
code from SandroProxy (see section 4.5.2). The author of
SandroProxy recently also added VPN-based network inter-
ception to his tool.

2. RELATED WORK

2.1 Taint Analysis
Taint analysis detects information leakage by analyzing

applications. The analysis tool adds taint to the data re-
turned by a source method and tracks how the taint prop-
agates until it reaches a sink method. In general, there are

1https://bitbucket.org/Near/privacyguard
2https://code.google.com/p/sandrop/

two kinds of approaches: dynamic taint analysis and static
taint analysis.

2.1.1 Dynamic Taint Analysis
Dynamic taint analysis monitors the data flow while appli-

cations are running. The real-time monitoring is often done
by modifying the Android kernel. The code of all source
methods is changed to add taint flags to the return values.
In all other methods or operators whose output should have
taint flags if their input has taint flags, code for taint prop-
agation is added. Sink methods are also modified to check if
the arguments, class members or static variables that these
methods use are tainted. The advantages of dynamic taint
analysis are that there is a report only when there is a data
flow from a source to a sink and that it is relatively easy to
use once set up. The disadvantages are false positives, where
a leak may be reported even if the leaked data has been pro-
cessed and is no longer sensitive or even if the data needs
to be transmitted to provide an application’s functionality.
In addition, this approach requires root permissions, which
introduces vulnerabilities, and requires re-flashing a device,
which makes the approach less usable. Porting it to differ-
ent devices or different Android versions may also be diffi-
cult. A popular dynamic taint analysis tool is TaintDroid [8].
Currently TaintDroid cannot handle applications that come
with native libraries. There have also been some simple
approaches to bypass TaintDroid [18]. BayesDroid [19] is
an enhancement to TaintDroid and addresses the problem
with false positives. BayesDroid does Bayes classifications
on data reaching sink methods. It computes the distance
between the data to be sent and the original sensitive data.
Given the distance, BayesDroid computes the probability
that the leakage is legitimate.

2.1.2 Static Taint Analysis
Static taint analysis tools usually decompile application

APKs first to obtain the source code of these applications.
Based on the code, the tools reconstruct control flow graphs
and build a model of the run-time execution. With the
model, the tools can detect if there are any data flows from
source methods to sink methods statically. The advantages
are that static analysis can make a more thorough analy-
sis of the code in one run. The disadvantages are that the
approach runs offline and maybe on a separate machine,
which makes the approach difficult to be used by average
users. Alternatively, the analysis could be done by an app
store. The analysis also tends to be time consuming and
may suffer from false positives if a detected flows does not
happen in real use. The approach can be imprecise because
it needs to abstract from program inputs and approximate
run-time objects. Static analysis typically also does not deal
with dynamic code loading or native code. FlowDroid [2],
EdgeMiner [6], and IFT [9] are three example static taint
analysis tools.

2.2 Access Interception
We next discuss approaches that intercept an application’s

access to sensitive data and that block these accesses or mod-
ify the data before handing it over to applications.

2.2.1 Android Refitting
One way to intercept these accesses is to retrofit Android.

AppFence [13] and LP-Guardian [10] are two examples. The
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advantage of this approach is no need to modify existing ap-
plications, whereas the approach suffers from the disadvan-
tages of having to modify Android, as discussed earlier, and
from breaking applications if an application does not expect
accesses to be blocked.

2.2.2 Application Rewriting
Application rewriting intercepts accesses by modifying ap-

plications. It is usually done via rewriting of an application’s
bytecode. The advantage of this approach is that the un-
derlying platform is unmodified and no flashing or rooting is
required. It provides flexible access policies, and there can
be different policies for different applications. It also sup-
ports different Android versions if the corresponding APIs
are not modified. The disadvantages are that applications
need to be rewritten before installation, which may be diffi-
cult for the average user unless the rewriting is done directly
on a device or by an app store. Since policy enforcement be-
comes part of an application, a malicious application may
be able to circumvent this enforcement. Rewriting may vio-
late an application’s or app store’s EULA. Care needs to be
taken when applications are upgraded since rewriting breaks
an application’s signature. RetroSkeleton [7], Dr. Android
and Mr. Hide [14], and AppGuard [5] are three example ap-
plication rewriting tools.

2.3 Heuristics
Fu et al. [11] use two heuristics to provide run-time loca-

tion access notifications. (1) The return value of getLast-

KnownLocation() will change if and only if any application
is requesting location updates; (2) the most likely applica-
tion requesting the location is the app the user is actively
using in the foreground. However, these heuristics are not
entirely correct since applications may use getLastKnownLo-
cation() themselves to obtain location fixes. Calling get-

LastKnownLocation() will not be noticed by this heuristic
approach because the return value of the function does not
change after calling it. Also, applications registering a loca-
tion listener can obtain location fixes while running in the
background.

2.4 VPN-based Approaches
ReCon [17] was developed concurrently with PrivacyGuard.

ReCon also uses a VPN-based approach to detect informa-
tion leakage. However, ReCon requires a remote VPN server
and therefore has a significantly larger trusted computing
base than PrivacyGuard.

Similar to PrivacyGuard, Disconnect3 uses the VPNSer-

vice class. However, Disconnect addresses a different threat,
namely, tracking by advertisement providers. The Discon-
nect application blocks all communication between applica-
tions running on the device and advertisement servers. In
particular, the VPN changes the configured DNS server to
a DNS server run by the provider of Disconnect, which re-
sponds with 127.0.0.1 to all DNS queries for servers run
by advertisement providers.

2.5 Discussion
All this related work has advantages. However, there are

some disadvantages compared to PrivacyGuard. (a) Most
work does not consider whether the accessed sensitive data
is sent out or in what form it is sent out. This causes false

3https://disconnect.me/

positives and affects usability. (b) Some of the work requires
rooting or flashing the device. Rooting is usually considered
to be a significant source of insecurity since applications with
root permissions can break the device easily. Flashing the
device is both difficult and inconvenient for average users.
(c) Application rewriting can be difficult for the average user
and can cause problems when updating applications.

PrivacyGuard does not have these problems. It works as
a regular Android application. Installing and updating Pri-
vacyGuard is easy and does not require root permissions.
PrivacyGuard runs continuously on the device and provides
real-time protection. Alerts are generated only when sensi-
tive data is sent out. Sensitive data that has been processed
and is no longer sensitive is ignored.

3. DESIGN OPTIONS
We are concerned with information leakage over a net-

work. Intercepting and inspecting the network traffic of ap-
plications could therefore allow us to detect this leakage.

3.1 Goals
We argue that a solution for intercepting network traffic

should at least have the following properties:

• Functionality: The solution should intercept all net-
work traffic of an application, including traffic encrypted
with TLS.

• Usability: The solution should not require root per-
missions and should work like a typical application. It
should not require much configuration or any specific
knowledge about security and privacy from users. It
should be portable to Android version 4.0 or later and
to any Android device.

• Acceptable overhead: The solution monitors all
network traffic and runs continuously on a device. There-
fore, it should not use much battery power. Since it
provides real-time analysis of the network traffic, it
should have limited effect on network performance.

• Extensibility: The solution should be extensible. De-
velopers should be able take advantage of the access
to network traffic provided by the solution to develop
their own network filtering plugins. Privacy researchers
should be able to use the solution to prototype their
algorithms to detect information leakage or to alert
users of this leakage.

We require an approach that gives us access to all network
traffic, similar to tcpdump or wireshark. Since Android is
based on Linux, porting tcpdump is feasible (in fact, there
is a tcpdump for Android4). However, running tcpdump re-
quires root permissions, which is unacceptable to us.

There are two alternative ways ways to gain access to
network traffic: using a proxy or using a VPN.

A proxy is a computer system or an application that acts
as an intermediary for requests from clients seeking resources
from other servers. Proxies can have several types, such as
a Web proxy or a SOCKS proxy. A web proxy cannot fulfill
our requirements because it can forward only HTTP pack-
ets. A SOCKS proxy supports both TCP and UDP. Due
to restrictions of Android, no application can configure a

4http://www.androidtcpdump.com
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proxy automatically without root permissions. It is neces-
sary to manually configure the proxy for every WiFi con-
nection. This manual configuration can be a problem for
average users.

We choose to use a VPN, which refers to a virtual private
network. VPNs extend a private network across a public
network such as the Internet. VPNs are created by estab-
lishing a virtual point-to-point tunnel through the use of
dedicated connections. VPNs work on the IP layer. An-
droid has built-in support for making applications send their
traffic through a VPN tunnel. Also, an Android application
can programmatically set up a VPN tunnel that will be used
by all applications, and the only required user interaction is
tapping OK on a prompt once.

3.2 Remote VPN Server
The easiest way is by setting up a remote VPN server

and having the VPN application route all traffic through
this server. The server analyzes the traffic and reports all
information leakage to the users. A remote VPN server is
easy to set up and use, but the approach has some problems:

• The network traffic is sent to a remote server, which
users may not trust.

• All data is revealed if the server is compromised.

• There may be a high load for the server if there are
many users.

• Network overhead is introduced.

To avoid these problems, we propose the second option.

3.3 Local VPN Server
A VPN server that runs locally on the device does not

have the problems mentioned above. All network traffic is
available only to the device. The approach is promising, but
it has the following problem: Since the VPN server runs
on the IP layer, we need to use raw sockets to transmit
IP datagrams directly. However, without root permissions,
using raw sockets is not allowed by Android.

Again, rooting the device is unacceptable to us. In addi-
tion, we observe that we do not need a fully-featured VPN
server. We need access to all network traffic, but do not
need any other features typically provided by a VPN, such
as encryption.

3.4 Fake VPN Server
We can use the VPNService class provided by the Android

SDK starting with version 4.0. The VPNService class is a
base class for applications to extend and build their own
VPN solutions. In general, it creates a virtual network in-
terface, configures addresses and routing rules, and returns
a file descriptor to the application. Each read from the de-
scriptor retrieves an outgoing packet that was routed to the
interface. Each write to the descriptor injects an incoming
packet such as that received from the interface. The inter-
face is running on the IP layer, so packets always start with
IP headers. The application then completes a VPN connec-
tion by processing and exchanging packets with the remote
VPN server over a tunnel.

In our case, there is no remote VPN server. The VPNSer-

vice only pretends that it has connected to such a server.

Application
Socket 

IP:src_port VirtualNetworkInterface

TunReadThread

Dispatcher

TunWriteThread

Read

Write

TCPForwarder
Worker

TCPForwarder
Worker

LocalServer
Socket 

Forwarder
Socket 

Forwarder

client target Internet

Plugins

PrivacyGuard

FakeVPNService

Figure 1: Architecture of PrivacyGuard.

PrivacyGuard obtains network traffic from the virtual net-
work interface provided by VPNService and retransmits it
after the analysis. The details can be found in section 4.

3.5 Challenges
While developing PrivacyGuard, we need to overcome the

following challenges:

• Because a VPN server works on the IP layer, we need
to implement an IP and TCP/UDP stack in Java. The
implementation should follow the protocol specifica-
tions and also be efficient.

• All analysis requires network traffic in plain text. Pri-
vacyGuard should be able to analyze traffic that is
transmitted by applications in encrypted form with the
TLS protocol.

4. IMPLEMENTATION
Figure 1 presents the five main components of Privacy-

Guard: FakeVPNService, TCPForwarder (or UDPForwarder),
LocalServer, SocketForwarder, and Plugins.

Because all components except the forwarders are simi-
lar between TCP and UDP and the forwarding for TCP is
more important and complex, the following explanations are
based on TCP unless explicitly specified.

4.1 Basic Work Flow
The following is the basic work flow of PrivacyGuard:

1. An application sends a request to a server. The request
is then retrieved from the virtual network interface in
the FakeVPNService.

2. The FakeVPNService parses the request contained in
an IP datagram and dispatches the request to the cor-
responding forwarder. In the TCP case, a TCPFor-

warder will handle the request.

3. The TCPForwarder implements TCP. The TCPForwarder
communicates with the LocalServer, which is running
on the TCP layer. The LocalServer acts like a man-
in-the-middle proxy.
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4. For each request received from a TCPForwarder, the
LocalServer retransmits the request to the intended
server in the Internet (from now on called“real server”)
and also retransmits the response from the real server
to the TCPForwarder. In this step, all installed Plugins
are invoked to filter outgoing and incoming data.

5. The TCPForwarder packages the response from the Lo-

calServer into an IP datagram and sends the data-
gram through the virtual interface to the application.

All components are explained in the following sections.

4.2 The FakeVPNService Class
The class VPNService5 has been part of the Android SDK

since API level 14 (Android 4.0). It creates a virtual network
interface, configures addresses and routing rules, and returns
a file descriptor to the application. From the descriptor, the
application can read all network traffic.

The class FakeVPNService extends the class VPNService.
FakeVPNService establishes a virtual network interface with
the IP address 10.8.0.1. It also defines routing rules to
route network traffic sent to all IP addresses to the interface.
After properly setting up FakeVPNService, the Android sys-
tem will route all network traffic from all other applica-
tions to this virtual network interface in FakeVPNService.
FakeVPNService sets up several threads. These threads are
described next.

The TunReadThread thread reads all requests from the vir-
tual network interface. Because many applications and ser-
vices can run on the device, the amount of requests can be
large. There would be heavy performance overhead due to
the high network I/O cost if the TunReadThread thread han-
dled the transmission to other components as well. To avoid
this cost, this thread only adds these requests to a queue.

The Dispatcher thread is created by the TunReadThread

thread. The Dispatcher thread keeps reading requests, which
are IP datagrams since VPN works on the IP layer, from
the queue mentioned above. The Dispatcher thread parses
these IP datagrams and retrieves the protocol field from the
IP header to see whether the datagram wraps a TCP packet
or a UDP packet. If the datagram contains a TCP packet,
a TCPForwarder thread bound to the source port number of
the packet is used to handle this packet. If there has al-
ready been a forwarder for the port number, this forwarder
is used. Otherwise, a new forwarder is created and bound to
that port number. The reason for using the old forwarder is
that a TCP connection is stateful. The forwarder maintains
the state of the TCP connection.

The TunWriteThread thread retrieves responses from a
queue and writes these responses to the virtual network in-
terface. The responses are added to the queue by forwarders
by calling the TunWriteThread.write() method. Because
this method requires IP datagrams as arguments, forwarders
need to reconstruct valid IP datagrams from TCP/UDP
data these forwarders have. The main part of the reconstruc-
tion is reversing the source and destination IP addresses in
the request and updating the IP checksum.

5http://developer.android.com/reference/android/
net/VpnService.html

4.3 The TCPForwarder Class

4.3.1 TCP Connection States
To maintain the connection states required by TCP, we

build a mapping relationship between one TCPForwarder and
one TCP connection. Since a TCP connection can be de-
termined by the source IP address, which is the same for all
applications, and the source port number, the relationship
is based on the source port number.
TCPForwarder implements the TCP state machine. The

following explains the implementation through a typical TCP
connection life cycle:

1. When a TCPForwarder is initialized, it is in the LIS-

TEN state and waiting for a 3-way handshake. When
the TCPForwarder receives a SYN packet from an ap-
plication, it will respond with a SYN_ACK packet to the
application and go into the SYN_ACK state.

2. After receiving the SYN_ACK packet, the application
will send an ACK packet, and the TCP connection is
established. The TCPForwarder will then go into the
DATA state after receiving that ACK packet. Also, the
TCPForwarder will connect to the LocalServer.

3. In the DATA state, the TCPForwarder transmits each
packet received from the Dispatcher to the LocalServer
and responds with an ACK packet to the application.
If the LocalServer sends anything back, the TCPFor-

warder will also transmit it to the application with an
appropriate sequence number.

4. Whenever the application sends a FIN packet, the TCP-
Forwarder goes to the HALF_CLOSE_BY_CLIENT state,
does some termination work, and then goes to the
CLOSED state.

5. Whenever the TCPForwarder receives a FIN packet from
the LocalServer, it goes to the HALF_CLOSE_BY_SERVER
state, does some termination work, and then goes to
the CLOSED state.

The TCP connection states and related information are
stored in TCPConnectionInfos. The TCPConnectionInfo class
implements all necessary methods to read and update the
states.

Because TCP is a stream delivery service, one request of a
protocol using TCP (e.g., HTTP) may be divided into mul-
tiple TCP packets. In this case, using blocking transmission
would be complex and introduce higher performance over-
head. In our implementation, we use two threads. One
thread sends requests to the LocalServer and the other
reads responses from the LocalServer when it is readable.

4.3.2 Connection with LocalServer

Each TCPForwarder communicates with the LocalServer

on behalf of an application running on the device. The mes-
sages transferred between these two classes are requests to
real servers (sent by the application) from the FakeVPNSer-

vice and responses from the real servers.
Each TCPForwarder connects to the LocalServer like it

would connect to a normal server by creating a socket and
connecting it to the LocalServer. The socket binds to
127.0.0.1 and the source port in the TCP packets, that
is, the port number used by the corresponding application.
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Figure 2: Configuration of the sockets used in PrivacyGuard.

Although the port numbers used by the application and
that socket are the same, the IP addresses are different (the
socket uses 127.0.0.1, and the application uses 10.8.0.1).
Figure 2 shows this configuration. The reason we use the
same port number is described in section 4.4.

The two directions for the transmissions between a TCP-

Forwarder and the LocalServer are treated differently.
For transmissions from a TCPForwarder to the LocalServer,

the TCPForwarder retrieves the TCP data from IP data-
grams and then passes the data through the socket.

For transmissions from the LocalServer to a TCPFor-

warder, we observe that since TCPForwarders and the Lo-

calServer communicate with sockets, the data read from
these sockets are payloads of TCP packets instead of IP
datagrams required by TunWriteThread.write() as argu-
ments (see section 4.2). We need to create an IP datagram
by using the data and the status we maintain in TCPCon-

nectionInfos (see section 4.3.1) and TCPForwarders. TCP
checksum recalculation is also necessary.

4.4 The LocalServer Class
From the point of view of applications, the LocalServer

is the real server. Applications communicate only with the
LocalServer. The LocalServer listens on a specific port,
which is known and connected to by all TCPForwarders (or
UDPForwarders).

When a TCPForwarder connects to the LocalServer, the
LocalServer creates two sockets: target and client. Then
the LocalServer creates a SocketForwarder (described in
section 4.5) using these two sockets (see figure 2). The tar-

get socket connects to the real server; its IP address and
port number are determined as follows:

The socket used by a TCPForwarder to connect to the Lo-

calServer uses the same port number as the corresponding
application (but the IP address of the socket is different,
see section 4.3.2). Therefore, we can use the port number to
determine to which IP address and port number the applica-
tion actually wants to connect. In Linux and therefore also
in Android, this information can be found in /proc/net/tcp

or /proc/net/tcp6. With these files, we can also determine
the UID of the application that issued this connection. The
application name can be obtained with the UID as well.

4.5 The SocketForwarder Class

4.5.1 Basic Forwarding
SocketForwarders match one to one with TCP connec-

tions. Each SocketForwarder contains two sockets, the client
socket and the target socket, and a pair of threads passing
data between them.

The outgoing thread receives data from the TCPForwarder
through the client socket. It filters the data (see sec-
tion 4.6) and forwards the data to the real server through
the target socket. The current filtering approach is based
on string matching, which can take considerable time for
long messages. Therefore, we provide two options.

1. Synchronous Filtering: filtering after reading data from
the client socket and before sending to the target

socket. With this option, PrivacyGuard can provide
real-time protection and allows modifications to data
before sending the data.

2. Asynchronous Filtering: adding data to a queue af-
ter reading it from the client socket and sending the
data to the target socket right away. Another thread
retrieves data from the queue and does the filtering.
With this option, the filtering causes less network over-
head, but we can detect leaks only retroactively.

The incoming thread receives data from the real server
through the target socket. It filters the data and forwards
the data to the TCPForwarder through the client socket.

4.5.2 Handling TLS Connections
As mentioned in section 3.5, the network traffic analy-

sis requires plain text. However, TLS connections encrypt
network traffic. If a client wants to establish an TLS connec-
tion with a server, the client and the server execute a TLS
handshake. In this handshake, the client receives a certifi-
cate from the server and negotiates the encryption key for
encrypting all following messages. The pre-master-secret re-
quired to compute the encryption key is encrypted with the
public key of the server contained in the certificate. (There
are also other types of handshakes, see section 4.7.) Obtain-
ing the pre-master secret and the plain text of the following
messages requires the private key for the public key used for
encrypting the pre-master-secret. However, this private key
is not available to PrivacyGuard.

To reveal the data, we deploy a man-in-the-middle proxy
instead, where PrivacyGuard pretends to be the server in
view of the client and the client in view of the server. When
a client wants to access the server, PrivacyGuard will send
the client its own certificate and also connect to the real
server. After the handshake, all messages from the client
are decryptable to PrivacyGuard since the public/private
key pair belongs to PrivacyGuard. For every message from
the client, PrivacyGuard reencrypts it and transmits it to
the server.

When PrivacyGuard launches the first time, it creates a
root CA certificate containing its public key and installs the
certificate on the device. Every certificate signed by this
root CA certificate is then trusted by applications.

When an application wants to establish a TLS connec-
tion with a remote server, the LocalServer will first do a
hostname lookup for the destination IP address of the re-
mote server. In the lookup, the LocalServer tries to es-
tablish a TLS connection with the destination IP address.
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public interface IPlugin {

// filter on requests and responses.

public String handleRequest(String request);

public String handleResponse(String response);

// change the request or response to shadow data

public String modifyRequest(String request);

public String modifyResponse(String response);

// set a context member to get access to

// device information

public void setContext(android.content.Context

context);

}

Figure 3: IPlugin Plugin Interface.

During the establishment, the LocalServer can obtain the
certificate of the destination server and retrieve necessary
information about the server from the certificate, such as
the subject name. The LocalServer then creates fake cer-
tificates with this information for each website visited by
applications with TLS connections. These certificates are
signed by the root CA certificate. With fake certificates,
the LocalServer can finish the TLS handshake with ap-
plications. Both the client and target sockets are also
replaced with SSLSockets. Although the traffic between ap-
plications and the client socket and between the target

socket and the real server is encrypted, we can now read
data from the client and target sockets in plain text. Our
source code for certificate generation and hostname lookup
is from SandroProxy6.

The usage of TLS interception has been controversial [20].
However, there are many benevolent use cases for TLS in-
terception [15], and we argue that PrivacyGuard is one of
them. First, we are transparent about PrivacyGuard and its
purpose, and we let the phone owner himself/herself decide
whether to install it. Second, PrivacyGuard uses the de-
fault TLS routines in Java for certificate checking and does
not replace them with weakened ones, as is still done by
many applications [16]. In turn, this implies that for many
applications PrivacyGuard actually increases their security.
Because PrivacyGuard is open-source, anyone could add add
more sophisticated certificate checking routines (e.g., certifi-
cate pinning) to PrivacyGuard. Third, PrivacyGuard gener-
ates a fresh public/private key pair for the root CA on each
device instead of re-using the same pair across all devices.

4.6 Customized Plugins
Plugins filter outgoing and incoming network traffic. All

plugins must implement the IPlugin interface shown in fig-
ure 3. It is possible to filter incoming responses but our
sample plugins are targeted at detecting information leak-
age and filter only outgoing requests. The corresponding
methods of all installed plugins will be called to filter traf-
fic. With plugins, developers can easily set up their own
analysis tools.

We have implemented three plugins (see section 5.4).

• LocationDetection: detects phone’s location.

6https://code.google.com/p/sandro/

• PhoneStateDetection: detects phone’s IMEI, IMSI, and
AndroidID.

• ContactDetection: detects email address and phone
number of phone owner.

4.7 Limitations
The current implementation of PrivacyGuard has some

limitations:

• If an application itself (i.e., not TLS) encrypts sensitive
information before its transmission, PrivacyGuard will
fail to detect this leakage since our plugins filter with
string matching. In 53 evaluated applications (see sec-
tion 5), we observe three applications where we suspect
that the application encrypts transmitted data.

• Although our man-in-the-middle proxy works well in
most situations, it cannot address certificate pinning.
If an application uses certificate pinning, the appli-
cation will store the certificates it trusts locally. For
any certificate this application receives while establish-
ing a TLS connection, it rejects the certificate unless
the certificate is one of these certificates installed lo-
cally. No man-in-the-middle proxy, including our im-
plementation, works against certificate pinning unless
the proxy modifies the certificates saved by the appli-
cation. In our evaluation, we observe that only the
Twitter application uses certificate pinning.

• Currently, our man-in-the-middle proxy supports only
RSA for the key exchange executed during the TLS
handshake because we use a library from SandroProxy,
which can generate only RSA key pairs. However, ad-
ditional key-exchange methods can be added to our
open-source implementation.

• PrivacyGuard cannot distinguish legitimate leakage of
sensitive data (i.e., leakage required to provide an ap-
plication’s core functionality) from illegitimate leak-
age. This limitation is also a common problem of other
work. One possible solution is using Bayes classifi-
cation [19]. With Bayes classification, we can com-
pute how similar the data sent out is with the original
sensitive data and determine whether the sharing is
legitimate based on the similarity. Inspired by LP-
Guardian [10], we can also use the host or IP address
information to distinguish between legitimate and ille-
gitimate sharing.

• TaintDroid can track data from gyroscopes, cameras,
and microphones. PrivacyGuard cannot detect this
kind of data since it would be too expensive to filter.

5. EFFECTIVENESS
In this section, we examine one possible usage scenario of

PrivacyGuard. Namely, we evaluate whether PrivacyGuard
can effectively detect information leakage by applications.
We compare our results with TaintDroid since TaintDroid is
a popular state-of-the-art taint-based privacy detection tool.

Whereas we have successfully used PrivacyGuard for mod-
ifying sensitive information before transmitting it to the real
server, we leave a thorough evaluation of this aspect for fu-
ture work.
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5.1 Setup
We test both TaintDroid and PrivacyGuard on two emu-

lators and a real device.

• Emulators: We set up two emulators. One uses Taint-
Droid 4.3r 1, which is the most recent version of Taint-
Droid, and the other one uses stock Android 4.3r 1
with PrivacyGuard.

• Device: We use a Nexus 4 that runs both TaintDroid
4.3r 1 and PrivacyGuard.

Initially, our goal was to run all experiments in the em-
ulators because we have only one device and it is easier
to automate experiments in the emulators. However, some
components of the Google Play service required by some ap-
plications are missing in the emulators. We tried to set up
these components ourselves. Although the Android virtual
device manager provides emulators with Google API sup-
port, we were not able to have the TaintDroid image support
the Google API in the same way. Instead, we downloaded
Google framework applications from Goo.im7 and pushed
these to the emulators. The framework is not complete, but
some applications requiring the Google Play service can now
run in the emulators.

Due to remaining difficulties, such as the still incomplete
Google Play service and other missing features in the em-
ulators, such as the network location provider, we also use
a real device to evaluate applications that do not run in
the emulators. Since we have only one device, we run both
TaintDroid and PrivacyGuard on it. TaintDroid does not
track information flow through third-party native libraries
so by default TaintDroid refuses to execute applications that
use third-party native libraries. PrivacyGuard is oblivious to
this aspect since it analyzes only network traffic. We there-
fore modified TaintDroid to allow the execution of applica-
tions with third-party native libraries. This modification is
also necessary to run PrivacyGuard itself because Privacy-
Guard requires a native library from SandroProxy for host-
name lookup. Our modification does not reduce the number
of applications for which TaintDroid can detect an informa-
tion leakage. At best, it increases TaintDroid’s number of
detections in cases where an application with a third-party
native library occurs a leakage during the execution of code
that is not using such a library.

5.2 Methodology
Our effectiveness evaluation consists of two phases. In the

training phase, we manually analyze the network traffic of
some applications for information leakage and derive filters
to be used by PrivacyGuard. We use the output of Taint-
Droid as the ground truth. In the testing phase, we use the
filters to automatically analyze network traffic and compare
our results with TaintDroid’s results.

The 53 applications that we use for training and testing
have been used in other papers [19][10]. We use 13 out of
15 applications from table 3 of Tripp and Rubin [19] since
the other two are not available from Google Play anymore.
We also acquired the list of applications used by Fawaz et
al. [10]. Several applications in the list are not available
anymore. For an evaluated application, we do the following:

1. We first uninstall the application if it is already in-
stalled to clear caches and then install it.

7https://goo.im/

2. Before using the application, we set up the GPS loca-
tion provider in the emulators and launch a helper ap-
plication that reads location values from the provider
such that the getLastKnownLocation() method will
return a valid location to the evaluated application
later. Running this helper application is necessary be-
cause some applications obtain the location only by
calling this method, instead of registering a location
update listener.

3. We run the application in the two emulators in parallel
and manually explore its UI and activities. We make
sure to execute each input operation in both emulators
at the same time. If the application does not run in
the emulators, we explore the application on the de-
vice that runs both TaintDroid and PrivacyGuard. We
intended to use PUMA [12] for automatic exploration.
However, the exploration approach that PUMA has
included is not able to recognize all UI components,
and we still have to manually type the username and
password required by some applications, such as Face-
book.

5.3 Training Phase
We use ten applications from our list of applications for

training. In this phase, PrivacyGuard simply records all net-
work traffic. From the output of TaintDroid, we can find the
type of information it detects and the traffic that contains
the information. For each alert raised by TaintDroid for a
specific application, we manually look for the corresponding
data in the network traffic of this application recorded by
PrivacyGuard. From the corresponding data, we read the
traffic to find possible patterns and design a filter for the
patterns. The applications we use for training are shown in
table 1. The checkmark means the corresponding informa-
tion is detected in the network traffic of that application.

The sensitive data that we try to detect and the corre-
sponding filters that we derived are shown in table 2. For
the location data (i.e., latitude and longitude), the Location-
Detection plugin itself needs to obtain the phone’s location
first. However, invoking getLastKnownLocation() for each
message takes too much time. Instead, the plugin registers
a LocationListener for every available location provider.
(Location providers are a concept of Android. Developers
can obtain location data from available location providers.)
This way the plugin retrieves the current location from all lo-
cation providers and keeps two decimal points of the received
floating point values as filters. For the device identifiers, the
PhoneStateDetection plugin retrieves these values using the
corresponding Android API calls and then looks for these
values in the network traffic. In addition, the plugin com-
putes the SHA-1 and MD5 hashes of these values and also
uses these hashes as filters. Some applications send these
hashes instead of the original values. For the contact in-
formation, the ContactDetection plugin retrieves the phone
number and the email address of the phone owner and looks
for these values in the outgoing network traffic using a reg-
ular expression that discards unnecessary white/filler space.
Our filters may be incomplete, but it is easy to add more.

In the training phase, we observe that there are many net-
work packets that are detected as leaks by TaintDroid but
for which we fail to find obvious variants of private data in
these packets. Therefore we could not derive appropriate fil-
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Table 1: List of training applications.

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact

com.yelp.android Travel&Local X X
com.yahoo.mobile.client.android.weather Weather X X
com.shazam.android Music&Audio X X X X
com.weather.Weather Weather X X
com.groupon Shopping X X X X
com.staircase3.opensignal Tools X X X X
com.yellowpages.android.ypmobile Travel&Local X X
com.urbanspoon Travel&Local X X X X
com.twitter.android Social X X
com.aws.android Weather X X

Table 2: Filters used by PrivacyGuard.

Data Source Filters
Location all available keep two

location providers decimal points
Dev.ID IMEI, IMSI, AndroidID plain text, SHA-1,

MD5
Contact phone number, regular expression

email address

Table 3: Summary of results.

Number of Applications Detected TaintDroid PrivacyGuard
Location 21 26
Device ID 10 19
Contact 0 0

ters for these packets. Some of these detected leaks are links
to pictures. We suspect that these leaks are false positives.

PrivacyGuard fails for the Twitter application since this
application uses certificate pinning and PrivacyGuard can-
not intercept its plain text traffic (see section 4.7).

5.4 Testing Phase
For PrivacyGuard, we use the filters from the training

phase to analyze network traffic in the testing phase. For
TaintDroid, we run it and record its notifications. Table 3
shows how many applications have information leakage de-
tected by TaintDroid and PrivacyGuard. Overall, Privacy-
Guard detects more leakage incidents than TaintDroid.

The detailed, per-application results are given in table 4.
For the device IDs, the reason TaintDroid fails is that it does
not detect IMEI leaks. We do not know why TaintDroid is
unable to detect IMEI leaks.

For the location, PrivacyGuard can detect more leaks than
TaintDroid. However, there are some applications for which
PrivacyGuard is unable to detect information leakage, such
as com.starbucks.mobilecard or com.dictionary.com. These
applications use the Google Maps API for location-based
services. Inspecting the network traffic indicates that this
API obfuscates the location data. The obfuscation makes it
almost impossible for PrivacyGuard to detect the leakage.
This limitation is also mentioned in section 4.7.

We also run PrivacyGuard and TaintDroid on some of
the most popular advertisement libraries. For each library,
we develop a dummy application to wrap it. As shown in
table 5, PrivacyGuard works for four out of five libraries and
TaintDroid fails on Amazon’s library. The reason for the
failure of TaintDroid is that Amazon’s library uses native

Android code not instrumented by TaintDroid to round up
floating point numbers.

6. PERFORMANCE EVALUATION
For the performance evaluation of PrivacyGuard, we fo-

cus on its network performance and battery consumption.
We deploy two Android applications on the Nexus 4 device
mentioned in Section 5.1.

• UpDownLoader, an Android application developed by
ourselves with two functionalities:

1. upload and download a file - used for evaluating
network performance

2. keep uploading or downloading for a specified pe-
riod - used for evaluating battery consumption

The application cooperates with a dummy server run-
ning on a desktop.

• SpeedTest.net8, an Android application for testing net-
work speed and ping delay.

6.1 Network Performance
Section 4.6 explains that filtering is done by string match-

ing. String matching may take a lot of time, especially if
the network message is large. Many memory allocations as
well as string operations, such as concatenation or copy, are
executed. These operations cost time and thus may cause
network delay since messages are sent out only after the fil-
tering in the synchronous configuration (see section 4.5.1).
Furthermore, there is one additional network I/O operation
between the TCPForwarder and the LocalServer, which may
increase the latency. This evaluation measures how Priva-
cyGuard affects both latency and throughput.

Four scenarios are tested: no PrivacyGuard, PrivacyGuard
without filtering for information leakage, PrivacyGuard with
synchronous filtering, and PrivacyGuard with asynchronous
filtering. Both types of filtering use three filters; one for each
of location, contact information, and device ID. For each of
the first two scenarios, separate experiments are executed
with different settings described below. Since our sample
plugins filter only outgoing traffic, we test the two filtering
scenarios only with uploading files.

• Download and upload one 1 Mbytes file with UpDown-
Loader.

8https://play.google.com/store/apps/details?id=
org.zwanoo.android.speedtest&hl=en
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Table 4: List of test applications.

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact
com.google.android.apps.maps Travel&Local X
com.facebook.katana Social X X
com.android.chrome Communication X X
com.google.android.apps.plus Social X X
fr.epicdream.beamy Shopping X X X X
net.flixster.android Entertainment X X
org.zwanoo.android.speedtest Tools X X X X
com.imdb.mobile Entertainment X X X
gbis.gbandroid Travel&Local X X X
com.zc.android Transportation X
org.wikipedia Books&Reference X X
com.starbucks.mobilecard Lifestyle X
com.joelapenna.foursquared Travel&Local X X
com.ikea.app Lifestyle
thecouponsapp.coupon Shopping X X X
com.magnifis.parking Transportation X X
com.levelup.beautifulwidgets.free Personalization
com.chrome.beta Productivity X X
com.fitnesskeeper.runkeeper.pro Health&Fitness X X
ch.search.android.search Books&Reference X
org.mozilla.firefox Communication X
com.evernote.food Lifestyle X X
com.microsoft.bing Books&Reference X
com.walmart.android Business X X X
com.webmd.android Health&Fitness X X
com.antivirus Communication X X
com.appshop.ios7lockscreen 2 Personalization
com.bestcoolfungames.antsmasher Game/Arcade X
com.cleanmaster.mguard Tools X
com.coolfish.cathairsalon Game/Casual X
com.digisoft.TransparentScreen Entertainment X X X
com.g6677.android.cbaby Game/Casual X X
com.g6677.android.chospital Game/Casual X X
com.g6677.android.design Game/Casual X X
com.g6677.android.pnailspa Game/Casual X X
com.g6677.android.princesshs Game/Casual X X
com.goldtouch.mako News&Magazines X
com.dictionary.com Books&Reference X X

Table 5: List of advertisement libraries.

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact
admob Ad Library
amazon Ad Library X
airpush Ad Library X X
inmobi Ad Library X X
mopub Ad Library X X
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(c) SpeedTest.net experiments.

Figure 4: Results of network performance evaluation. Note
the different units and scales for the y-axes.

• Download and upload one 10 Mbytes file with Up-
DownLoader.

• Test with SpeedTest.net (download speed, upload speed,
and ping delay).

No other applications causing network traffic are running
concurrently with UpDownLoader or SpeedTest.net.

Because we use the WiFi network to run these exper-
iments, we run the same experiment ten times for each
scenario-setting pair to address potential instability. Also,
we test each scenario one after another to make sure the
network conditions are similar on the average.

The experiment results are shown in figure 4. All figures
show the average values and the standard deviations.

For the downloading part of figures 4a, 4b, and 4c, the
downloading delay is similar between different scenarios. This
observation is as expected because as described in section 4.6,
our sample plugins do not filter the incoming network traffic
and thus do not introduce much overhead.

For the uploading part, PrivacyGuard with synchronous
filtering is 34.3% (165 ms) and 12.8% (479 ms) slower than
no PrivacyGuard in the 1 Mbytes and 10 Mbytes experi-
ments, respectively. PrivacyGuard with asynchronous fil-
tering is 26.6% (128 ms) and 9.1% (339 ms) slower than no
PrivacyGuard in the 1 Mbytes and 10 Mbytes experiments,
respectively. For PrivacyGuard without filtering, it is 25.6%
(123 ms) and 7.7% (287 ms) slower than no PrivacyGuard
running in the 1 Mbytes and 10 Mbytes experiments. In
conclusion, filtering does not introduce much overhead. Fur-
thermore, the relative overhead in uploading gets lower as
the size of the file increases.

For the experiments with SpeedTest.net, the downloading
results are similar for the two settings. For the uploading
speed, PrivacyGuard without filtering is 22.2% slower than
no PrivacyGuard and PrivacyGuard with filtering is 30.2%
slower. While doing the experiments, we observe that the
SpeedTest.net application reaches high upload speeds at the
beginning of an experiment with PrivacyGuard running, but
there are sometimes EPIPE errors later in the experiment.
This error often means that the other end of the pipe no
longer exists and the network connection is broken. The
SpeedTest.net application opens multiple TCP connections
in parallel for uploading or downloading. EPIPE errors shut
down some of these connections and slow down the speed.
Our analysis of the TCP packets to see if PrivacyGuard
sends any invalid packets that could cause this error did not
return any such packets. Since PrivacyGuard achieves simi-
lar uploading speeds as the scenario without PrivacyGuard
in some experiment runs, we are confident that Privacy-
Guard can achieve higher average speeds once we get rid of
these errors. We note that when replacing PrivacyGuard
with tPacketCapture9, a closed-source application that uses
VPNService for packet capture, we also observe slow upload-
ing speeds. For the ping delay, PrivacyGuard introduces
about 59.3% overhead without filtering and 92.0% overhead
with synchronous filtering. Although the percentage is high,
the absolute increase of the ping delay remains acceptable.
PrivacyGuard’s ping delay is 26 ms on average, only 11 ms
longer than no PrivacyGuard.

Although PrivacyGuard causes overhead in the upload-
ing tasks, this large-content and high-frequency uploading
is rare in daily use. Usually, the outgoing packets are short
HTTP requests. The latency increase remains acceptable.
PrivacyGuard can achieve high throughput because the fil-
tering takes less time when packets are small.

6.2 Battery Consumption
To measure the battery consumption of PrivacyGuard,

we consider three scenarios: no PrivacyGuard running, Pri-
vacyGuard without filtering, and PrivacyGuard with syn-
chronous filtering. For each scenario, we use UpDownLoader
to run separate experiments for downloading and uploading.
For each experiment, we follow these steps:

1. Fully charge the device.

2. Connect to the dummy server running on a desktop.

3. Start downloading or uploading a 1 Mbytes file every
10 seconds for 60 minutes.

9https://play.google.com/store/apps/details?id=jp.
co.taosoftware.android.packetcapture&hl=en
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Table 6: Decrease in battery level.

Settings Upload Download
No PrivacyGuard 3.00% 3.99%

PrivacyGuard without filtering 3.00% 4.00%
PrivacyGuard with sync filtering 3.00% 4.00%

4. Turn off the screen.

5. The device will vibrate and record the decrease in bat-
tery level, retrieved using the Android API, to a file
when the task finishes.

The results are shown in table 6. PrivacyGuard intro-
duces almost no additional battery consumption even with
a high frequency of uploading and downloading. This result
is expected since we observe no significant increase on the
CPU load by PrivacyGuard.

7. CONCLUSION AND FUTURE WORK
We propose and implement a new approach, PrivacyGuard,

to filter network traffic on Android. PrivacyGuard does not
require root permissions and is portable to all devices with
Android versions 4.0 or later. It is easy to use without any
knowledge about security or privacy. It is extensible and
configurable, and it provides a new option for prototyping
other privacy enforcement algorithms. With the support
of a man-in-the-middle proxy, PrivacyGuard can also filter
TLS traffic. PrivacyGuard can be used to effectively detect
information leakage. It introduces acceptable overhead in
both network performance and battery consumption.

PrivacyGuard provides a platform for developers to de-
velop their own filtering plugins. These plugins may need
proper configurations to adapt to different requirements of
different users. Also, there may be too many notifications
with many plugins installed. Future work should consider
adding a user-friendly interface to PrivacyGuard to help
users configure their plugins as well as avoid distraction.
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