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Abstract. Implicit authentication (IA) schemes use behavioural bio-
metrics to continuously and transparently authenticate mobile device
users. Several IA schemes have been proposed by researchers which em-
ploy different behavioural features and provide reasonable detection
accuracy. While these schemes work in principle, it is difficult to com-
prehend from these individual efforts which schemes work best (in terms
of detection accuracy, detection delay and processing complexity) under
different operating conditions (in terms of attack scenarios and avail-
ability of training and classification data). Furthermore, it is critical to
evaluate these schemes on unbiased, real-world datasets to determine
their efficacy in realistic operating conditions. In this paper, we evalu-
ate six diverse IA schemes on four independently collected datasets from
over 300 participants. We first evaluate these schemes in terms of: ac-
curacy; training time and delay on real-world datasets; detection delay;
processing and memory complexity for feature extraction, training and
classification operations; vulnerability to mimicry attacks; and deploy-
ment issues on mobile platforms. We also leverage our real-world device
usage traces to determine the proportion of time these schemes are able
to afford protection to device owners. Based on our evaluations, we iden-
tify: 1) promising IA schemes with high detection accuracy, low perfor-
mance overhead, and near real-time detection delays, 2) common pitfalls
in contemporary IA evaluation methodology, and 3) open challenges for
IA research. Finally, we provide an open source implementation of the
IA schemes evaluated in this work that can be used for performance
benchmarking by future IA research.

1 Introduction

Smartphones are strongly tied to their owners’ identity and contain personal
data. In order to protect this data from unauthorized access, smartphones are
equipped with authentication mechanisms including PINs, pass-locks, and facial
and fingerprint recognition systems. These authentication mechanisms provide
traditional all-or-nothing access control. However, smartphone use is character-
ized by short and frequent sessions, and PIN entry for every short session is
inconvenient for users [18]. Furthermore, the all-or-nothing access approach is
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unsuitable for smartphones where 40% of frequently accessed apps do not con-
tain personal data [18]. Due to these usability issues, 50% of smartphone owners
do not configure a pass-lock on their devices [29]. In addition to usability issues,
pass-locks have been subject to shoulder surfing attacks and operating system
flaws [40]. The facial and fingerprint recognition systems on modern high-end
devices have also been shown to be vulnerable [1,30]. These security and usabil-
ity limitations of primary authentication mechanisms have prompted researchers
to develop behaviour-based methods of recognizing and validating the identity
of smartphone users. These behaviour-based authentication methods are known
as implicit authentication (IA) schemes, which authenticate a user by using dis-
tinctive, measurable patterns of device use that are gathered from the device
user without requiring deliberate actions [9]. IA schemes can be used as a sec-
ondary line of defense in multiple scenarios. For example, they might be used
by enterprise or banking apps to ensure that a user’s password has not been
compromised. Alternatively, they provide a middle ground for the smartphone
owners who do not employ pass-locks on their devices due to usability issues.

To provide IA support on smartphones, a variety of behaviour-based classifiers
have been proposed [8,10,11,12,13,15,24,26,34,35,42]. Many of these behavioural
classifiers have reasonably high accuracy rates, low performance overhead and rea-
sonable detection delay. While these results appear to stand on their own, it is of-
ten difficult to compare different proposals. For example, some IA schemes based
on touchscreen input behaviour [11,42] provide exceptional accuracies when they
are evaluated on datasets collected by those individual efforts. However, Feng et
al. [12] showed that on data collected in an uncontrolled environment, the accu-
racy of these approaches reduces significantly. Similarly, due to the unavailability
of real-world datasets, it is not possible for these individual research efforts to ac-
curately report the training and detection delay in an uncontrolled environment.
Finally, a majority of existing IA proposals fall short of providing performance
benchmarks (in terms of CPU and memory overhead) on smartphones. Conse-
quently, it is difficult to understand the impact on user experience due to overhead
on power-constrained smartphones by these schemes.

In addition to unreported performance numbers (in terms of detection delay
and computational cost), many IA schemes use behavioural features, for which
it is non-trivial to estimate the frequency or availability of such data. For exam-
ple, characterizing a device owner’s gait may be a useful discriminative tool for
authentication, but is not useful if the device owner is stationary most of the
time. Therefore, there is a need not only for datasets that allow IA schemes’ eval-
uation in realistic scenarios, but an analysis of real-world behavioural patterns
that may influence the appropriateness of deploying one scheme over another.

In this paper, we evaluate and compare six IA schemes using four indepen-
dently collected datasets from multiple geographic locations, comprising over
300 participants. The objectives of this study are: 1) to quantify and compare
the accuracies of these IA schemes on independently collected datasets from
uncontrolled environments, 2) to use real-world traces to measure training and
detection delays for these IA schemes, 3) to determine the performance overhead
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of these IA schemes on mobile devices, 4) to determine the frequency of data
availability for different behavioural features employed by these IA schemes, 5)
to identify key research challenges in IA research, and 6) to release open source
implementations of these IA schemes for performance benchmarking.

The IA schemes evaluated in this work use diverse behavioural biometrics
including touchscreen input behaviour, keystroke patterns, gait patterns, call
and text patterns, browser history, and location patterns. Some also combine
touchscreen input behaviour with a device’s micro-movements as a reaction to
touch input and context information, respectively. Some of these IA schemes em-
ploy machine learning while others employ statistical measures for classification
purposes. This diversity allows us to better scrutinize different aspects of these
individual IA schemes and determine research challenges and best practices.

We evaluate these IA schemes on eight criteria: 1) accuracy, 2) data avail-
ability, 3) training delay, 4) detection delay, 5) CPU and memory overhead, 6)
uniqueness of behavioural features, 7) vulnerability to mimicry attacks, and 8)
deployment issues on mobile platforms. Our results show that while the ma-
jority of IA schemes provide reasonable accuracy with low detection delay, IA
schemes based on touchscreen input behaviour outperform others by provid-
ing near real-time misuse detection with high accuracy. We find that some IA
schemes perform well in terms of detection accuracy but frequently do not have
enough data available for classification. We recommend choosing complemen-
tary sources of features to mitigate this problem and also to aid in preventing
mimicry attacks. Finally, we release1 our open source implementations of the six
IA schemes evaluated in this paper.

2 Related Work and Background

In this section, we discuss related work and provide a brief description of the six
IA schemes evaluated in this paper.

2.1 Related Work

Various IA schemes have been proposed as secondary authentication mecha-
nisms to complement primary authentication mechanisms (such as PINs and
passlocks). These schemes employ a variety of behavioural features including a
user’s location patterns [38], call/text patterns [35], keystroke patterns [8,13,26],
proximity to known devices [21], gait patterns [14,17,27,28], and touchscreen
input behaviour [10,11,12,15,24,34,42]. Furthermore, some authors have pro-
posed combining behavioural features and contextual information from multiple
sources [4,29,35]. While these research efforts demonstrate that these IA schemes
and behavioural features work in principle, we provide a comparative evaluation
of these schemes on independently collected datasets across a more comprehen-
sive evaluation criteria than the original papers.

1 https://crysp.uwaterloo.ca/software/ia/

https://crysp.uwaterloo.ca/software/ia/
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To the best of our knowledge, a comparative evaluation of different IA schemes
has not been performed yet. Serwadda et al. [33] perform a benchmark evaluation
of three touch-based IA schemes using ten classification algorithms to evaluate
which classifiers work best. While their analysis provides interesting insights, we
aim to provide a comparative evaluation of IA schemes that employ different be-
havioural features. Furthermore, except [12] and [34], none of the other authors
have provided a comparison with other schemes. We believe this is due to the
effort required to implement another scheme and to collect data to perform em-
pirical evaluations. Therefore, in addition to providing a comparative evaluation
of IA schemes, by making the implementation and datasets publicly available,
we will enable future researchers to quantify the efficacy of their approach with
other related schemes. Finally, our findings will also provide better insights to
researchers who are designing generic IA frameworks [7,9].

2.2 Implicit Authentication Schemes

For comparative evaluation, our goal is to compare IA schemes that rely on
different behavioural features. To this end, we chose an IA scheme based on
call/text/URL history and location [35], an IA scheme based on gait patterns [14],
an IA scheme based on touch input behaviour [15], an IA scheme based on
keystroke behaviour [13], an IA scheme based on touch and micro-movement be-
haviour [4], and an IA scheme based on touch behaviour and user context [12].

Before describing these IA schemes, we define some terms that are used
throughout this paper. A true accept (TA) is when an access attempt by a
legitimate user is granted; a false reject (FR) is when an access attempt by a
legitimate user is rejected by the IA scheme. A true reject (TR) is when an ac-
cess attempt by an adversary is rejected; a false accept (FA) is when an access
attempt by an adversary is granted by the IA scheme. Equal Error Rate (EER)
is the operating point where the rate of true accepts is equal to the rate of true
rejects. In this work, accuracy is defined as TA+TR

TA+FA+TR+FR . We now provide a
brief description of the IA schemes evaluated in this paper; interested readers
are referred to the original papers for full descriptions of the respective methods.

Shi et al. IA Scheme (Shi-IA) [35]. Shi et al. [35] propose an IA scheme
that uses good and bad events to determine an authentication score for a user.
Good/habitual behaviour is determined by a phone call/text to a known number,
a visit to a familiar website, and presence at habitual locations around a certain
time-of-day. Similarly, bad behaviour is a phone call/text to an unknown number,
a visit to an unfamiliar website, and presence at previously unseen locations.
Passage of time since the last good event is also treated as a negative event and
results in gradual decay of the authentication score. For empirical evaluations,
the authors used data gathered from 50 participants, trained on 2 weeks of their
usage data and evaluated on the remaining data. Their results indicate that
95% of the time an adversary can be detected using 16 or fewer usages of the
devices with negligible false rejects (1 in 165). We choose Shi-IA for empirical
evaluations because of the unique feature set it employs for IA.
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Gait Pattern for User Identification (Gait-IA) [14]. Various authors have
proposed using gait patterns for user identification on smartphones [14,17,27,28].
We chose Frank et al. [14] for empirical evaluations as the authors have made
their implementation and dataset publicly available, making it easier to repro-
duce their results for verification purposes. Furthermore, they report significantly
higher accuracy than other gait pattern based schemes. We also note that Frank
et al. only propose employing gait patterns for user identification and not for
IA; nevertheless, we evaluate whether gait behaviour can be used to effectively
implicitly authenticate a user.

Frank et al. propose a time-delay embedding approach to gait recognition.
Time-delay embedding is employed to reconstruct the state of an unknown
dynamical system from observations of that system taken over time. The au-
thors first extract features using time-delay embeddings and then perform noise-
reduction over those features using principal component analysis (PCA) [20]
on a short embedding of training data. PCA produces a projection from the
time-delay embedding space to a lower dimension model space. These resulting
features are then employed in an ANN classifier [2]. Empirical evaluation on
walking data from 25 individuals (with the device in the front trouser pocket)
resulted in 100% detection accuracy.

Touchalytics [15]. Touchscreen input behaviour has been widely investigated
for IA [10,11,15,24,34,42]. For our empirical evaluations, we choose Touchalytics
as the authors have made their implementation and dataset publicly available.
Touchalytics, is an IA scheme that relies on the finger movement patterns of users
on the touchscreen of their smartphone. Touchalytics uses data generated as a
result of a user’s normal interaction with the touchscreen and does not require
him to perform special gestures. It operates by first recording the raw touch data
and then extracting 31 features from the raw data. These features capture the
user behaviour in terms of the touch location on the screen, the length, direction
and duration of a swipe, the velocity and acceleration of a swipe, and the finger
pressure and the area covered by a swipe. The extracted features are then used
to classify a user using an SVM or kNN classifier. The authors evaluate their
approach on a dataset of 41 participants and show that their approach is able
to provide an EER of ≤ 3% by using a window size of 13 swipes.

Keystroke Behaviour-Based IA Scheme (Keystroke-IA) [13]. Various
classifiers have been proposed that use keystroke behaviour to implicitly au-
thenticate the device owners [8,13,26]. Some keystroke classifiers [8,26] use two
features — inter-stroke delay and key holding time (time elapsed between a key
press and the corresponding key release event). Furthermore, these classifiers
have been tested on multiplexed numeric keypads. In a recent paper [13], the
authors employ an additional feature – touch pressure – to provide IA for virtual
keypads on modern smartphones. Empirical evaluations on data collected from
40 users and a window size of 15 keystrokes provide an EER of ≤ 10%, ≤ 20%
and ≤ 5% for J48, Random Forrest and Bayesian classifiers, respectively.
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SilentSense [4]. We choose SilentSense as a candidate IA scheme for our eval-
uations because of the unique feature set that it uses and because of its high
detection accuracy (∼ 100%). The authors of SilentSense [4] observe that a
combination of the touch input behaviour and the corresponding reaction of a
smartphone (micro-movement) can be used to create a more robust model of
a user’s behaviour. SilentSense operates by combining interacting features from
touch behaviour (such as pressure, area, duration, and position) for different
touch actions (including fling, scroll, and tap) with the reaction of device fea-
tures (like acceleration and rotation) to model user behaviour. For the scenarios
where the user is walking, the micro-movement patterns are perturbed, since the
sensory data generated during walking will skew the sensory data generated due
to the reaction of the device to touchscreen interactions. To deal with the walking
scenario, the authors extract four features including: (1) vertical displacement of
each step; (2) current step frequency; (3) mean horizontal acceleration for each
step; and (4) standard deviation of vertical acceleration for each step. They eval-
uate their approach on a dataset containing data from 10 users and 90 guests.
Their evaluations show that by using an SVM classifier, they are able to achieve
an EER of ≤ 1% by using a window of three touch strokes.

Context-Aware Touch Behaviour-Based IA Scheme (TIPS) [12]. Feng
et al. [12] demonstrate that the EER of a classifier based on touch screen input
behaviour reaches up to 40% when it is evaluated on data from multiple appli-
cations in an uncontrolled environment. The authors argue that this accuracy
degradation is due to variations in usage behaviour. For example, data generated
for the same user for different device holding patterns (left hand vs. right hand);
for different mobility patterns (stationary vs. walking); and for different applica-
tions (maps vs. browser) is different enough to cause accuracy degradation. To
mitigate this degradation, the authors propose a multi-stage filtering hierarchy
consisting of four levels: (1) foreground application; (2) direction of swipe; (3)
swipe length; and (4) swipe curvature. During the one week training period,
the prototype of their scheme collected 2000 gestures from 23 smartphone users.
After generating the templates by performing multi-stage filtering, the authors
were able to achieve an EER of ≤ 10% using a window of eight swipes. Despite
the fact that TIPS uses similar features to Touchalytics [15], we choose TIPS
for performance evaluation in order to evaluate the impact of intelligent use of
contextual information to increase the accuracy of existing IA schemes.

3 Evaluation Datasets

For the empirical evaluation of the IA schemes, we use real-world and unbi-
ased datasets that capture the natural behaviour of the participants. We use
two real-world data sets that broadly capture data from devices while users
are using them (e.g., location, wireless connections including network, bluetooth
and WiFi, contacts, battery status, call logs, text logs, phone orientation, gyro-
scope and accelerometer readings, and running apps). These datasets are used
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Fig. 1. Distribution of URL, text, call and GPS records collected from different partic-
ipants in the Netsense and WatApp datasets, sorted by fraction of GPS data. Percent-
ages are derived from the number of discrete events collected from each participant.

to evaluate Shi-IA and Gait-IA. However, these datasets do not include touch or
keystroke data. We therefore use a third real-world dataset that captures swipe
data and use it for evaluating Touchalytics, SilentSense and TIPS. Ideally we
would gather day-to-day freehand keyboard input from participants. For privacy
reasons, however, we cannot use a user’s real-world communications for keystroke
data. We therefore have users type predefined email and SMS strings to evalu-
ate Keystroke-IA. In this section, we provide data collection goals, experimental
design, and the process used for collecting the four evaluation datasets.

3.1 Netsense Dataset [37]

University of Notre Dame researchers created the Netsense dataset by providing
200 first-year Notre Dame students with Android smartphones. These devices
were modified to log many events including contacts, texts, voice calls, Wi-
Fi scanning results and current access point, Bluetooth scanning results and
connections, browser history, running apps, battery status, location, email, and
port traffic. While the purpose of their study was to understand social ties, many
of these features overlap with the features used by researchers for IA [35].

Data Statistics. We contacted Striegel et al. [37] to request a chunk of their
dataset. They provided us with data that they logged between 2012-11-01 09:34:35
and 2012-11-30 12:49:50. This chunk of the dataset contained data belonging to
158 participants. For our study, we extract the location, call history, text history
and browser history data. For these users, we extract 125846, 15003, 244627 and
4817 location events, call events, text events and webpage access events, respec-
tively. The data distribution across participants is plotted in Fig. 1(a). We note
that this dataset is not labeled (i.e., there is no way to label the data for instances
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when the device was voluntarily given to someone for use by the owner or when
it was deliberately misused by a non-owner).

3.2 WatApp Dataset

While the Netsense dataset is useful for our study, we also want to collect la-
beled data. Therefore, we instrument WatApp2 (an Android App widely used
by University of Waterloo students to get information about current weather,
searchable maps, class schedules, and events) to log events on participants’ de-
vices. In addition to logging the same data as Netsense, WatApp logs gyroscope
readings and accelerometer readings. The sensitive fields are one-way hashed to
preserve the privacy of participants. Furthermore, to establish the ground truth,
we ask participants to label the intervals for which they are absolutely certain
that the device was in their possession.

To advertise for participants, we used our university-wide mailing list to ad-
vertise for people who would be interested in a study on“Mobile Misuse Detec-
tion”. Participants were expected to install WatApp on their smartphones for
ten weeks. Participants had the option to opt-out any time they wanted by dis-
abling the data collection mode. Furthermore, if they wanted WatApp to not log
data, they were provided with the option to pause data collection for an indefi-
nite amount of time. We paid the participants $5 for each week of participation
(up to $50 in total for ten weeks of participation).

Data Statistics. Our application was downloaded and installed by 74 partic-
ipants and 42 of those participants completed the study. In total, we logged
1371908 events over ten weeks. For 42 users, we extracted 121525, 15962, 28958
and 36178 location events, call events, text events and webpage access events,
respectively. Data distribution across participants is plotted in Fig. 1(b).

3.3 Touchscreen Input Dataset

Our goal is to collect a dataset that captures the natural behaviour of the partic-
ipants when they use the touchscreens of their smartphones. We do not want the
participants to perform predefined tasks. We also want to study touchscreen in-
put behaviour across a diverse set of applications. Therefore, to capture data that
satisfies our data collection goals, we instrument four Android apps: a browser
app3, a maps/ navigation app4, a launcher app5 and a comic viewer app6. The
apps that we choose belong to diverse categories and help us in understand-
ing user behaviour across different apps. To advertise for participants, we used
our university-wide mailing list for people who would be interested in a study
on smartphones apps. Participants were expected to install these apps on their

2 http://play.google.com/store/apps/details?id=watapp.main
3 http://code.google.com/p/zirco-browser/
4 http://code.google.com/p/osmand/
5 http://code.google.com/p/android-launcher-plus/
6 http://code.google.com/p/andcomics/

http://play.google.com/store/apps/details?id=watapp.main
http://code.google.com/p/zirco-browser/
http://code.google.com/p/osmand/
http://code.google.com/p/android-launcher-plus/
http://code.google.com/p/andcomics/
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Table 1. Statistics of touch points dataset

App.
Num. of

touchpoints
Num. of
Swipes

Sessions
Mean (Median)

swipes per session

Launcher 642442 19740 4417 4.46 (2)
Browser 1164011 20139 826 24.3 (16)
Maps 236878 4664 365 12.7 (8)
Comics 445538 8928 272 32.8 (16)

Total 2488869 53471 5880 9.09

smartphones for ten weeks. We did not ask the participants to explicitly perform
any tasks and participants were to use these apps as per their needs. This allowed
us to capture participants’ in the wild behaviour. We paid the participants $5
for each week of participation (up to $50 in total for ten weeks of participation).

For data collection, every time a participant interacts with the touchscreen
on one of the provided applications, we record: 1) time stamp in milliseconds; 2)
x and y co-ordinates of the touch point, 3) finger pressure on the screen; 4) area
covered by the finger on the screen; 5) values from the accelerometer sensor; 6)
finger orientation; 7) screen’s orientation; 8) smartphone’s orientation sensor’s
value (roll, pitch and azimuth); and 9) accelerometer sensor values. These values
are temporarily stored on the participant’s device and then batch transmitted to
a server. Before every data transmission, we establish the ground truth (only the
participant used the applications) by asking the participants to label the intervals
for which they are absolutely certain that the device was in their possession.

Data Statistics. Our applications were downloaded and used by 61 partici-
pants. In total, we logged about 2.49 million touch points comprising over 53,000
swipes in ten weeks. The details of swipes, their distribution across applications
and distribution across user sessions is provided in Table 1.

3.4 Keystroke Dataset

We want to collect keystrokes of participants during their normal usage sessions;
however, this is difficult in a privacy preserving manner. Therefore we present
users with text strings that are used in everyday communication. To this end,
we choose text strings from existing publicly available SMS [6] and email cor-
pora [23]. We develop an Android app that presents a participant with each
string of data that they are expected to input using the virtual keypad on their
smartphone. Once a user inputs all the strings, the logged keystroke data is
transmitted to our server. To advertise for participants, we used our university-
wide mailing list for people who would be interested in a study on “The need
for Auto-complete and Auto-correct on Smartphones”. To avoid any bias, we do
not tell participants about the real purpose of this study before the conclusion
of the study. Finally, we do not restrict the participants to complete the study
in a limited number of sessions nor ask them to complete it in a lab. We paid
$10 to each participant for completing this study.
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Data Statistics. We presented participants with 13 strings. These strings con-
tained 43 words and 268 characters in total. We required every participant to
input each string four times to collect 1072 keystrokes from each participant.
Our application was installed and used by 40 participants. The mean time taken
to complete the study was eight minutes.

4 Comparative Evaluation

In this section, we first discuss our experimental setup and then provide the
results of our evaluations.

4.1 Evaluation Setup

While most of the evaluation metrics that we use are independent of the un-
derlying implementation language, we wish to measure processing complexity
on real Android devices. By using Java as our implementation platform, we are
able to measure these statistics easily. Therefore, despite the availability of Mat-
lab source code for Touchalytics [15], we re-implement it in Java.We re-use the
publicly available C++ implementation of Gait-IA [14] via the Android Native
Development Kit. We note that evaluating the Gait-IA scheme as a native app
will result in relatively better results for processing overhead metrics. For the
evaluation of other metrics, we used automated scripts on a desktop machine

For our evaluations, we use the recommended parameter values of IA schemes
from their original papers. If a paper does not specify a recommended value
(e.g., the decay parameter for Shi-IA), we first evaluate the proposed scheme
while keeping the classifier threshold to a constant value to determine the best
operating point of the tuning parameter for which a recommended value is not
provided. To evaluate Shi-IA, we use the Netsense and WatApp datasets. For
Gait-IA, we use sensor readings from the WatApp dataset. Keystroke-IA uses the
Keystroke dataset for training and classification purposes. Finally, the Toucha-
lytics, SilentSense and TIPS schemes all use the Touchscreen Input dataset.

We construct non-overlapping training and test sets for each of the partici-
pants, using negative instances from other users. In practice, it is recommended
that IA classifiers come prepackaged with such data to be used as negative in-
stances, allowing robust classifiers to be trained on-device. In our work, the
negative training sets of a user for the Keystroke and Touch datasets are con-
structed by employing usage data from 20 other users. For the Netsense and
WatApp datasets, we use one day of data from 14 other users to construct two
weeks of negative test data. Frank et al. [14] recommend using a continuous block
for training their classifier; consequently, we employ the largest single block of
continuous data for training. For Touchalytics, Keystroke-IA, and SilentSense,
we use half of the data for training, and the remaining data for testing. In
the case of TIPS, we use a 30/70 ratio for training and testing, respectively.
This variation in partition ratios is due to us following the convention estab-
lished in the respective original papers, and due to the heterogeneity of the
different types of data used by the different schemes in this work.
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Fig. 2. Accuracy evaluation of the six IA schemes evaluated in this work

4.2 Evaluation Results

Accuracy Evaluation. The accuracy of an IA scheme is its most critical eval-
uation metric. Ideally, the scheme should have no false rejects (for a seamless
user experience of the device owner) and 100% true reject rate (to detect and
prevent misuse by an adversary). To understand the accuracy of these classifiers,
we plot the ROC curve using the True Accept Rate (TAR) and the False Accept
Rate (FAR). To understand the trade-off between TAR and FAR, we threshold
the authentication score. Thresholding of Shi-IA is performed over the computed
authentication score. Gait-IA and Touchalytics, which use ANN [2] and k-NN
for classification, are thresholded over the distance function score and over k, re-
spectively. Keystroke-IA implementation uses a Bayesian Network classifier [16]
and is thresholded over the p score. Our implementation of SilentSense uses LIB-
SVM [5] with a gaussian radial-basis function (rbf) as kernel. For thresholding,
we tune the γ and C parameters to rbf. TIPS uses Dynamic Time Warping [3]
to compute a similarity score and we threshold the similarity score. The results
of the accuracy evaluation, averaged across all users, for the six classifiers are
provided in Fig. 2.

As shown, the TIPS scheme outperforms the others in almost all cases. In
particular, it is able to achieve a TAR of 79% with a FAR of only 0.43%. TIPS
and SilentSense together Pareto dominate all other schemes when the FAR is
under 25%. Shi-IA generally underperforms the other schemes, although it has
the distinction of being the only IA scheme to achieve a TAR of 100% with a FAR
of less then 100% (specifically, 71%). Empirically, this may be due to the fact that
Shi-IA uses location information as a discriminator, while the datasets are mostly
taken from students living in tightly grouped geographic areas. Consequently,
these results may be different for other types of users (e.g., people who travel
often). This phenomenon is discussed further in Section 5.
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Data Availability. If an IA scheme employs data from a behavioural source
that does not have enough data available to make a classification decision for a
significant number of usage sessions, the IA scheme would be ineffective despite
its high detection accuracy. For example, while Gait-IA outperforms Keystroke-
IA in terms of accuracy (see Fig. 2), Gait-IA will not be useful if the device user
is stationary and is not generating enough data for classification purposes. We
leverage our real-world traces to determine the availability of data for these IA
schemes. To compute the data availability we assume that IA is to be performed
only once during a session (and not performed repeatedly after a predefined in-
terval of time). We note that an IA scheme may save past authentication scores
and re-use them in case data is unavailable (e.g., Gait-IA may compute authen-
tication score prior to the device usage when accelerometer data is available and
then reuse this score to authenticate future sessions). However, for a fair com-
parison, to compute the data availability we only consider data that has been
generated during a device usage session.

From the Netsense and WatApp datasets, we calculate the total number of
usage sessions (delimited by screen-on events) and the sessions in which enough
behavioural features are available to perform a classification decision for Shi-
IA, Gait-IA and Keystroke-IA. For keystroke availability, exact keystroke data
is not available and so we assume enough data is available whenever the key-
board is displayed on the screen during the session; note that this will lead to
some overreporting of keystroke data availability for insufficient data. Since the
Netsense and Watapp datasets do not log touchscreen interactions, for Toucha-
lytics, SilentSense and TIPS, we report data availability against the four apps
used in the touchscreen input dataset. This will also result in some overreporting
of data availability; however, since touchscreen interaction is the primary input
mechanism on modern devices, we expect our results to hold for other apps.

As seen in Fig. 3, data derived from touchscreen interaction is almost always
available, so IA schemes making use of it are thus most likely to be usable.
SilentSense additionally makes use of accelerometer data; when the device is
resting on a stable surface this data will not be as meaningful as when the device
is being held, but it is still available for training and classification. Availability
of data for Shi-IA is highly dependent upon the users’ context and is discussed
further in Section 5. Gait information was generally the most difficult to find,
with enough information available in only 13.1% of sessions.

Training Delay. An IA scheme that could employ data from a few sessions to
robustly train itself would be highly desirable. While the IA scheme may explic-
itly request a user to provide training data (for example, a keystroke classifier
asks a user to input a set of strings), most of the existing schemes rely on col-
lecting data during normal usage for training purposes. We utilize the datasets
as described in Section 4.1 to determine the training delay for each of the six
schemes evaluated in this work. To measure training delay, we set all the tuning
parameters including the classification threshold to a constant value and then
train the classifier by incrementally increasing the size of training data to the
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Fig. 3. Data availability on real-world datasets

classifier. For IA schemes that employ classifiers that require negative training
instances (e.g., Touchalytics, SilentSense), we use equal amounts of out-of-class
training instances from 20 out-of-class sources. For every training session, we
measure the accuracy of the classifier by running it on the test dataset. Using
this process, we find the minimum number of events and the amount of time
required to collect these events to obtain an accuracy of ≥ 70%, ≥ 80%, and
≥ 90%. These results are provided in Table 2.

Training delays are closely correlatedwith data availability rates.When gait in-
formation is available—which is frequently not the case, as discussed previously—
Gait-IA takes the least amount of time to accumulate enough information to train
a model with high accuracy. Touchalytics and SilentSense take only a few minutes
extra, as touch input is a frequent event. Keystroke-IA data takes longer as high
accuracy requires the user to type strings that cover a fair amount of the bigram
space (as the training data is derived from interstroke timings). The TIPS scheme,
despite having the best TAR and FAR overall, requires approximately one hour of
data collection to achieve≥ 90% accuracy. Shi-IA requires several weeks’ worth of
data, as it relies on user behaviour patterns repeating over large periods of time.

DetectionDelay. While the data availabilitymetric determines whether enough
data is available across sessions, we evaluate detection delay for these IA schemes
to measure the sensitivity of these schemes to misuse attempts. Ideally, we would
like the detection delay to be as low as possible to prevent the adversary from
accessing confidential data on the device. We measure detection delay in terms
of time elapsed from the start of misuse to the time when the IA scheme detects
the misuse. For detection delay evaluation, we play back negative instances and
look for those that are correctly classified as true rejects by the IA scheme (i.e.,
we ignore data that results in false accepts).
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Table 2. Minimum training delay to achieve accuracy rates of ≥ 70%, ≥ 80%, ≥ 90%.
95% confidence intervals are provided in parentheses. Note that Shi-IA uses the contents
of logs as a whole and as such has no concept of an “event”.

Accuracy ≥ 70% Accuracy ≥ 80% Accuracy ≥ 90%

Events
Time
(sec)

Events
Time
(sec)

Events
Time
(sec)

Shi-IA N/A 1.7 weeks N/A 3.2 weeks N/A N/A

Gait-IA 1434 159 (32) 1832 205 (47) 2338 287 (59)

Touchalytics 67 106 (9.96) 165 280 (30) 275 464 (49)

Keystroke-IA 1352 594 (55) 2028 839 (108) 3380 1101 (360)

SilentSense 86 139 (14) 204 346 (36) 272 460 (49)

TIPS 738 1391 (224) 1295 2443 (378) 1611 3034 (445)
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Fig. 4. Detection delay for true rejects (note log scale)

The detection delay results are shown in Fig. 4. SilentSense generally detects
non-owners the fastest, in the range of 2-11 seconds. Other schemes generally
detect non-owners in less than 30 seconds, with the exception of Shi-IA. Shi-IA
takes more than 15 minutes on average before enough data is available for it to
reject a non-owner from the device. This result is significantly longer than the
average session length, and a malicious user would likely be able to export data
from the device before even realizing that an IA scheme is in use.

Processing Complexity. Since the target for these IA schemes is mobile plat-
forms, it is critical for the IA schemes to have low processing complexity. For com-
plexity evaluations, we measure the performance overhead in terms of elapsed
CPU time and heap size of the IA scheme for feature collection, training and
classification operations. We divide the performance overhead into these opera-
tions to distinguish the one-time (training) and run-time (feature collection and
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Table 3. Performance evaluation of the IA schemes evaluated in this work. 95% con-
fidence intervals are provided in parentheses. N1: Nexus 1 and N4: Nexus 4.

CPU (ms) Heap(kB)

Init.
Feat. Ex-
traction

Training
Classi-
fication

Runtime

N1

Keystroke-IA 21 (2.08) <1 (�0) <1 (�0) 0.2 (�0) 3.2 (0.19)
Touchalytics 5 (0.27) 0.27 (�0) 65 (2.16) 1.7 (�0) 59.1 (1.43)
SilentSense 1162 (81) 0.75 (�0) 10384 (91) 0.12 (�0) 18.3 (1.14)

Shi-IA 677 (26) 1758 (31) 13053 (87) 58 (4) 790 (6)
Gait-IA 5 (0.15) 7 (0.24) 764 (42) 93 (7) 9532 (81)
TIPS 5 (0.18) 0.23 (�0) 35 (�1.4) 1.12 (�0) 92 (2.2)

N4

Keystroke-IA 12 (0.95) <1 (�0) <1 (�0) 0.05 (�0) 2.9 (0.13)
Touchalytics 3 (0.27) 0.05 (�0) 15 (0.5) 1.08 (�0) 67 (5.59)
SilentSense 972 (67) 0.55 (�0) 5937 (329) 0.07 (�0) 21 (0.68)

Shi-IA 575 (24) 1406 (22) 10964 (74) 51 (3) 817 (5)
Gait-IA 4 (0.1) 5 (0.13) 522 (31) 75 (6.8) 9775 (94)
TIPS 3 (0.18) 0.03 (�0) 8.2 (�0.86) 0.73 (�0) 96.4 (2.5)

classification) costs. An efficient IA scheme would have a reasonable one-time
cost and minimal run-time cost.

For execution time calculation, we choose an HTC Nexus 1 and an LG Nexus 4.
The Nexus 1 has Android OS v2.1 on a 1GHz processor with 512MB of RAM.
The Nexus 4 has Android OS v4.2 on a Quad-core 1.5GHz processor with 2GB
of RAM. Execution time results for both devices are provided in Table 3.

The Nexus 4 generally performs operations faster than the Nexus 1, but with
marginally higher memory overhead. In our experience, these small differences
are generally due to changes in the Android API. SilentSense initialization and
training take several seconds due to the SVM classifier used; it also loads negative
instances from disk at initializaton. Shi-IA takes 1-2 seconds to extract features
from data as it must make a GPS request and also filter call, SMS, and browser
logs. All schemes are able to perform classification in tens of milliseconds in the
worst case.

Uniqueness of Behavioural Features. Jain et al. [19] list distinctiveness
as one of the key properties of a biometric-based authentication system, which
requires any two persons to be sufficiently different in terms of the characteristics
measured. While the presence of false accepts in Fig. 2 indicates that none of
the behavioural features employed in the IA schemes evaluated in this work are
distinct, nevertheless they should provide sufficient discriminatory information
among a sufficiently large set of users to provide an acceptable FAR. To gain
insight into this, we simulate N non-owners attempting to access a protected
device, and measure the rate at which someone is able to successfully bypass IA.
By varying the number N , we gain some sense of the device owner’s uniqueness
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in a crowd of that size. For each value of N , this simulation is run using 4-fold
cross-validation for each user and the results are averaged.

Fig. 5 shows the results from this simulation. All of the IA schemes tested
appear to exhibit similar growth patterns in IA bypass rate as the number
of users increases. While TIPS and Shi-IA exhibit the most uniqueness over-
all, SilentSense is also quite resilient when faced with 10 or fewer adversaries.
Keystroke-IA does not appear to be distinctive even in scenarios with few non-
owners present, suggesting that it would be wise to pair these features with
other, non-keystroke-derived attributes when creating IA schemes.

Vulnerability to Mimicry Attacks. While a detailed analysis of vulnerability
to mimicry attacks is beyond the scope of this paper, in this section we consider
the informed adversary threat scenario. An uninformed adversary may be a curi-
ous stranger/thief who found/stole a device, while an informed adversary might
be an inquisitive friend, co-worker, or family member. The difference between
these two types of adversary is that the latter may have additional knowledge
about the behaviour of the victim (for example, he may know that the victim
always uses his right hand for swiping). Based on the informed adversary sce-
nario, we consider how effortlessly such an adversary can defeat an IA scheme.
Interested readers are referred to [31,32] on advanced automated mimicry attack
scenarios for touch- and keystroke-based IA schemes.

We argue that in accordance with Kerckhoffs’s principle, the IA mechanism
(including its features and computation of anomaly score) is public knowledge
but feature values for individual users are secret. Consequently, if an adversary
can estimate the feature values for an IA scheme easily and mimic those feature
values, he can steal data from the device. From the approaches that we evaluate,
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Shi-IA is the most vulnerable to mimicry attacks. Even an uninformed adversary
can scan the device for call/text logs and browser history and then mimic it to
ensure that the device does not lock him out. An informed adversary would
attempt to stay in the same vicinity as the device owner to get an even better
authentication score.

Other IA schemes evaluated in this work are more difficult to mimic. Some of
the schemes rely on features that may be estimated by an informed adversary.
For example, in Touchalytics, an adversary may be able to approximate the start
and end co-ordinates for swipes. Similarly, for SilentSense, the adversary may be
able to coarsely estimate the amount of action force by looking at the reaction
of the device. While the aforementioned features for their respective IA schemes
are relatively easy to estimate by an informed adversary, most of the features
used by these schemes are hidden (not measurable by a naked eye). For example,
the touch width of a swipe is hidden to a surveilling adversary. Similarly, the key
release time for keystroke classifier are difficult to approximate without special
equipment.

A more serious attack surface for these IA schemes exists in that many of
the features employed by these schemes can be collected by any app without
requiring any special Android permissions (except Shi-IA, which requires the
permissions mentioned in § 4.2). Consequently, an adversary might persuade the
victim to install a Trojan app on his device in order to log his behaviour. The
adversary can then train himself to mimic the victim. Tey et al. [39] mounted
this attack on a keystroke-based authentication scheme for traditional keyboards.
They demonstrated that by using a carefully designed user interface, they were
able to train participants of their study to achieve an average FAR of 63%. It is
possible that similar active attacks could be mounted on touch-, keystroke- and
gait-based IA schemes, which is an area that needs further study.

Ease of Deployment on Mobile Platform. Finally, we look at the deploy-
ment related issues for these IA schemes on the popular iOS and Android plat-
forms. We understand that sufficient changes might be introduced by the OS
providers in future versions to mitigate the deployment limitations of these IA
schemes; nevertheless, we provide an overview of the deployment issues on con-
temporary mobile platforms.

The features used by Gait-IA can be collected without requiring any permis-
sions. Features employed by Shi-IA can be collected using non-root permissions.
More specifically, on Android five permissions including ACCESS FINE LOCATION,
READ SMS, READ CALL LOG, READ HISTORY BOOKMARKS and READ CONTACTS can be
used to implement Shi-IA. Feature extraction for touch- and keystroke-based clas-
sifiers is more complicated. Due to security and privacy concerns, iOS andAndroid
only allows a foreground app to receive input events (touch and keystroke events).
Therefore, IA schemes that employ these features including [4,12,13,15] can only
be deployed either on rooted devices or deployed per app instance [22].
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5 Discussion and Open Challenges

This section discusses guidelines for creating implicit authentication schemes
that we derive from the data collection process, the results in Section 4, and our
experience in implementing the schemes on Android devices.

Practical Implicit Authentication Is Possible with Low Overhead and
in Near-real-time. Our results on Nexus 1 and Nexus 4 devices given in Ta-
ble 3 show there are IA schemes that can run feature extraction and classifica-
tion in only milliseconds. Even the worst case training scenarios take only ten
seconds, which is performed one-time only and can be done in a background
thread. In terms of accuracy, touch behaviour-based approaches provide ≥ 90%
true accepts with ≤ 10% false accepts and are a good candidate for secondary
authentication. Finally, in case of misuse by non-owner, the majority of these
implicit authentication schemes are able to detect misuse in under 30 seconds.

Features Should be Chosen in a Complementary and Context-aware
Manner. Sources for behavioural features must be chosen carefully, and take the
intended deployment context into account. Touch-based data is almost always
available (Fig. 3) but should be augmented with a secondary source (such as
keystrokes) for better coverage. Taking into account user context information –
e.g. whether the user is walking or stationary, which app the user is interacting
with – is important for classifying data from onboard sensors (TIPS), but does
not necessarily make a good discriminator by itself (Shi-IA). No individual source
of behavioural data provides a silver bullet for IA.

Devices May Not Need to Be Rooted to Make Use of IA. Android
does not allow background applications to gather input events (touch and key
input events) due to security concerns. Therefore, IA schemes that rely on in-
put events (e.g. touch- and keystroke-based schemes) require root privileges on
the device in order to collect data. On the other hand, Shi-IA and Gait-IA do
not require root privileges and only require Android permissions. Input event
data can be collected by individual apps without any additional permissions,
which opens the door for IA protection at the app level instead of at the device
level [22]. For example, enterprises can bundle IA schemes within their apps to
protect confidentiality of their corporate data. While providing IA at the app
level mitigates the restrictions imposed by Android, it also imposes significant
development overhead. All of these are open questions that should be considered
when proposing any new IA scheme.

Using a Realistic Threat Model and Evaluating in an Uncontrolled
Environment Is Necessary When Evaluating an IA Scheme. Some IA
proposals are accompanied by unrealistic evaluations, by having users perform
a repeated task in a lab setting to generate data. When these schemes are then
applied in real-world settings, the assumptions made in the lab may prove false
and the scheme’s performance will suffer accordingly. Feng et al. [12] demon-
strate that on real-world datasets, many existing touch-based IA schemes have
significantly higher EER than reported in the original papers. Our findings are
similar for the IA schemes that had their datasets publicly available [14,15].
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Furthermore, a recent Symantec study finds that 68% of non-owners who at-
tempted to access private data on an unguarded smartphone did so on the spot,
which would make location filtering an unhelpful IA feature [41]. A similar study
by Lookout-Sprint [25] found that 44% of users were primarily concerned with
their devices being accessed by family and friends, as opposed to strangers. Since
such adversaries may have multiple overlapping features (e.g., location and con-
tacts), IA schemes that rely in such features will not be very effective. Therefore,
it is critical to provide protection against a realistic threat model that captures
these security and privacy concerns of smartphone users.

Mimicry Attacks On IA Schemes Are Possible. In addition to the nat-
ural collisions of behaviour we showed in Fig. 5, some researchers have shown
deliberately trained attacks on swipes and keystroke input [31,32]. We argue
that implicit authentication (i) should be used as a secondary authentication
mechanism complementing primary authentication mechanisms, and (ii) should
use behavioural features from multiple sources. Using multiple types of charac-
teristics greatly increases the difficulty of building devices that mimic natural
human behaviour, and adds dimensions to the complexity of training users to
fool behavioural models [36].

6 Conclusion

In this paper we provided a comparative evaluation of six IA schemes that em-
ploy different behavioural features. Our empirical evaluations show that IA can
be performed with reasonable accuracy and low complexity with acceptable de-
tection delay on contemporary mobile devices. More specifically, our evaluations
show that in addition to adequate data availability for training and classification,
touch behaviour-based IA schemes outperform other schemes in terms of accu-
racy and detection delay. We also analyzed real-world traces to show that while
keystroke- and gait-based IA schemes provide reasonable performance, there
was not enough data available for a significant proportion of sessions to make a
classification decision. In terms of evaluation of IA schemes by the research com-
munity, our findings emphasize the need for evaluation on uncontrolled datasets
and a more realistic threat model. We have made our implementations publicly
available to further research in the IA domain.

Acknowledgements. We thank Tao Wang, Sarah Harvey, the anonymous re-
viewers and our shepherd, Alina Oprea, for their helpful comments. We thank
Aaron Striegel, Mario Frank, Jordan Frank and Shu Liu for providing sourcecode
of classifiers and datasets. We also thank Google and NSERC for their support.

References

1. Android Authority: Android face unlock hacked (March 2014),
http://androidauthority.com/android-jelly-bean-face-unlock-

blink-hacking-105556/

http://androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/
http://androidauthority.com/android-jelly-bean-face-unlock-blink-hacking-105556/


274 H. Khan, A. Atwater, and U. Hengartner

2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM) 45(6) (1998)

3. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time
series. In: KDD Workshop, vol. 10 (1994)

4. Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: Silentsense: silent user identifi-
cation via touch and movement behavioral biometrics. In: MobiCom. ACM (2013)

5. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM TIST
2(3) (2011)

6. Chen, T., Kan, M.-Y.: Creating a live, public short message service corpus: The
nus sms corpus. Language Resources and Evaluation 47(2), 299–335 (2013)

7. Clarke, N., Karatzouni, S., Furnell, S.: Flexible and transparent user authentication
for mobile devices. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297,
pp. 1–12. Springer, Heidelberg (2009)

8. Clarke, N.L., Furnell, S.: Authenticating mobile phone users using keystroke anal-
ysis. International Journal of Information Security 6(1) (2007)

9. Crawford, H., Renaud, K., Storer, T.: A framework for continuous, transparent
mobile device authentication. Elsevier Computers & Security 39 (2013)

10. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and
i know it’s you!: implicit authentication based on touch screen patterns. In: CHI.
ACM (2012)

11. Feng, T., Liu, Z., Kwon, K.A., Shi, W., Carbunar, B., Jiang, Y., Nguyen, N.: Con-
tinuous mobile authentication using touchscreen gestures. In: HST. IEEE (2012)

12. Feng, T., Yang, J., Yan, Z., Tapia, E.M., Shi, W.: Tips: Context-aware implicit
user identification using touch screen in uncontrolled environments. In: HotMobile.
ACM (2014)

13. Feng, T., Zhao, X., Carbunar, B., Shi, W.: Continuous mobile authentication using
virtual key typing biometrics. In: TrustCom. IEEE (2013)

14. Frank, J., Mannor, S., Precup, D.: Activity and gait recognition with time-delay
embeddings. In: AAAI (2010)

15. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: On the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE TIFS 8(1) (2013)

16. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2-3) (1997)

17. Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using ac-
celerometer sensor. Journal of Computers 1(7) (2006)

18. Hayashi, E., Riva, O., Strauss, K., Brush, A., Schechter, S.: Goldilocks and the two
mobile devices: Going beyond all-or-nothing access to a device’s applications. In:
SOUPS. ACM (2012)

19. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Transactions on Circuits and Systems for Video Technology 14(1) (2004)

20. Jolliffe, I.: Principal component analysis. Wiley Online Library (2005)
21. Kalamandeen, A., Scannell, A., de Lara, E., Sheth, A., LaMarca, A.: Ensemble:

Cooperative proximity-based authentication. In: MobiSys. ACM (2010)
22. Khan, H., Hengartner, U.: Towards application-centric implicit authentication on

smartphones. In: HotMobile. ACM (2014)
23. Klimt, B., Yang, Y.: Introducing the enron corpus. In: CEAS (2004)
24. Li, L., Zhao, X., Xue, G.: Unobservable reauthentication for smart phones. In:

NDSS (2013)



A Comparative Evaluation of Implicit Authentication Schemes 275

25. Lookout Blog: Sprint-lookout mobile behavior survey (March 2014), http://blog.
lookout.com/blog/2013/10/21
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