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Abstract—The success of online social networking and of
mobile phone services has resulted in increased attention to
mobile social networking. Matchmaking is a key component of
mobile social networking. It notifies users of nearby people who
fulfil some criteria, such as having shared interests, and who
are therefore good candidates for being added to a user’s social
network. Unfortunately, the existing matchmaking approaches
are troublesome from a privacy point of view. One approach has
users’ smartphones broadcast their owners’ personal information
to nearby devices. This approach reveals more personal informa-
tion than necessary. The other approach requires a trusted server
that participates in each matchmaking operation. Namely, the
server knows the interests and current location of each user and
performs matchmaking based on this information. This approach
allows the server to track users.

This paper proposes a privacy-preserving matchmaking proto-
col for mobile social networking that lets a potentially malicious
user learn only the interests (or some other traits) that he
has in common with a nearby user, but no other interests. In
addition, the protocol is distributed and does not require a
trusted server that can track users or that needs to be involved
in each matchmaking operation. We present an implementation
and evaluation of our protocol on Nexus One smartphones and
demonstrate that the protocol is practical.

I. INTRODUCTION

In the last decade, the number of users of online social net-
working sites and of mobile phone services has skyrocketed.
For example, the most popular online social networking site,
Facebook, has more than 500 million active users, and more
than 50% of its active users log on to Facebook at least once
per day [12]. In terms of mobile phone services, there were 4.1
billion mobile cellular subscribers in total in March 2009 [22].

Mobile social networking brings these two fast-growing
services together. On social networking sites, other than com-
municating with existing friends, people can find and make
friends with other people who have similar interests, are from
the same school or company, etc. In mobile social networking,
users can find new friends as they do on traditional social
networking sites, but there is an extra matching criterion:
geographical distance between two users. More specifically,
people walk around with their mobile phones and meet dif-
ferent people, known and unknown ones, every day. When
two mobile phones are geographically nearby, a matchmaking
operation takes place and detects common interests (or some
other joint attribute) of the devices’ owners. If a match is

found, the devices notify their owners, who can immediately
meet each other in person. For example, a mobile social
networking user may find out that the person sitting next
to her on the bus was her schoolmate or that her uptight
boss likes the same comedy as she does. Mobile social net-
working is currently a hot topic and numerous matchmaking
applications have been developed by different companies or
research groups, such as MobiClique [23], looptmix [19], or
Gatsby [14].

In general, there are two straightforward ways to implement
matchmaking in mobile social networking. One way is for
a device to broadcast its owner’s profile information to the
public, for example using Bluetooth. MobiClique [23] is an ex-
ample of the applications that take this approach. MobiClique
users download their profile information from Facebook to
their device and send this information to any Bluetooth device
nearby. After receiving a piece of profile information, a device
performs a matching between the received profile information
and its owner’s profile information and decides whether the
other party is of the owner’s interest according to the matching
result. This approach is risky because it leaks users’ private
information to anyone in the users’ proximity. The other way
to implement matchmaking in mobile social networking is
to introduce a trusted server for the matchmaking operation.
looptmix [19] and Gatsby [14] are examples that use this
approach. Here, the server stores all users’ personal informa-
tion and tracks their location. The server informs two users
if they are nearby and could become friends based on their
requirements. This approach has the limitation that it requires
the server to be always available in order to find a friend. From
a privacy point of view, the server learns all users’ personal
information, all pairs of users who meet each other, and the
locations of all users.

Our matchmaking protocol for mobile social networking is
based on the following two principles:

1) Ensure privacy by making users reveal no unnecessary
private information to other users in order to find new
nearby friends. Two nearby users learn only personal
information about the other person that they have in
common and no other information.

2) Avoid a trusted server that participates in each match-
making operation. Users do not need Internet access to
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find friends, and users do not need to worry about being
tracked by a server.

The contributions of our paper are as follows:

1) We propose a matchmaking protocol for mobile social
networking that is secure against malicious users. In this
paper, we focus on interest matching as an example, but
the protocol can be easily adapted to find friends who
graduated from the same school, worked for the same
company, etc.

2) We implement the protocol and evaluate its performance.
Our performance results demonstrate that the protocol is
practical.

The remainder of this paper is organised as follows: In Sec-
tion II, we discuss related work in more detail. We then present
our system and threat model in Section III. In Section IV,
we present our matchmaking protocol. Our description of the
implementation and evaluation of the protocol is in Section V.

II. RELATED WORK

We first discuss previous work on matchmaking for mobile
social networking, then we review cryptographic protocols for
matchmaking.

A. Mobile Social Networking Applications

Previous research on mobile social networking has sug-
gested matchmaking applications, but has ignored privacy
concerns. Social serendipity [11] deploys a trusted server that
contains users’ profiles and user-defined matchmaking pref-
erences. Based on this information, the server computes the
similarity of nearby users’ profiles. Users will be notified when
they are nearby and the similarity of their profiles exceeds a
threshold. Obviously, the server has to be involved in every
matchmaking operation, which is a limitation of this system. In
addition, the server is able to learn which two users are nearby
and have matching interests. Furthermore, the server can track
a user’s location. MobiClique [23] improves social serendipity
by taking the server away from the matchmaking operation.
This system has a server, Facebook, assign identifiers to the
users. It then allows users to store their profile information
on their mobile devices and exchange their profiles with their
neighbours using Bluetooth. New friendships are established
based on the received user profiles. This system does not take
malicious users into account. For example, users’ profile infor-
mation is exchanged in plaintext, which could be intercepted
by anybody within range, and this information could be used
for malicious purposes, such as context-aware attacks. Also,
users could be impersonated, because the system does not
have a method to validate identifiers. In our protocol, users
whose interests do not match do not learn any information
other than that their interests do not match. In addition, we use
signed identifiers to identify users, which avoids impersonation
attacks.

SmokeScreen [6] addresses “missed connections”, the prob-
lem that users who met before want to talk to each other again
at a later time and need to convince each other that they were
at the same location at the same time. SmokeScreen prevents

users from revealing their real identifiers to undesired people.
When users meet, they exchange opaque identifiers rather than
their real identifiers. They record the time and position when
they receive the opaque identifiers and then contact each other
at a later time through a trusted third party, a broker, which
is able to read the opaque identifiers. Again, this approach
requests a trusted server for every matchmaking operation.
Also, because no information is shared by the participants
before their identifiers are exchanged, there is no incentive
for the participants to exchange their real identifiers (they
know nothing else about the other party). In SmokeScreen,
the broker knows who is interested in solving whose opaque
identifier. SMILE [20] is an advanced version of SmokeScreen
that further guarantees that the server cannot learn which
pairs of users encounter each other. Again, the server has
to participate in each matchmaking operation. The system
still does not take personal information, such as interests into
account, but only location and time. Our protocol allows users
to establish friendship as soon as they meet each other without
requiring a trusted server that is involved in each matchmaking
operation, and we provide more matching criteria.

B. Matchmaking Protocols

In this section, we discuss several cryptographic protocols
that seem suitable to solve the matchmaking problem.

The matchmaking problem is an instance of the private
set intersection problem, where two parties, each having a
set of elements, want to compute the intersection of their
sets such that no party can learn information other than
the intersecting elements. Most solutions for the private set
intersection problem (e.g., [3], [13], [15], [16], [25]) let each
party freely choose the elements in her set. These solutions are
not appropriate for our matchmaking problem because they
allow a malicious user to guess a set of plausible interests
that the other user might have. In the extreme case, the user
chooses all possible interests as her input set.

To address this problem, Camenisch and Zaverucha [5]
force users to use inputs that are certified by a trusted third
party so that the user can no longer freely choose her inputs
for each protocol run. The protocol is based on advanced
cryptographic techniques, such as CL-signatures [4] used for
signing set elements and zero-knowledge proofs for proving
correct processing. This makes the computational overhead
of the protocol high and not suited for smartphones, which
are our target platform. Namely, the protocol requires O(k?)
modular exponentiations (k is the size of an input set), whereas
our protocol requires only O(k) modular exponentiations.
Camenisch and Zaverucha’s protocol provides untraceability
as an additional benefit, that is, a user appears as a different
user for each run of the protocol. However, untraceability is not
a desired feature in our application scenario, where users are
physically close and can recognise each other anyway based on
their physical features. Moreover, since untraceability makes
it impossible to recognise users with whom a user has already
run the matchmaking protocol, the users would unnecessarily



re-run the protocol whenever they meet again, which wastes
battery and computation resources.

De Cristofaro and Tsudik [9] and De Cristofaro et al. [8]
present protocols for “Authorized Private Set Intersection”,
where a client and a server run a private set intersection
protocol such that only the client learns the elements in the
intersection and where the client’s inputs to the protocol
are certified by a trusted third party, but not the server’s
inputs. The protocols require only a linear number of modular
exponentiations. At first sight, it looks tempting to apply
these protocols to matchmaking in mobile social networking.
However, there are two obstacles. First, the protocols are one-
way only, whereas we want both parties to learn the elements
in the intersection. Whereas it is possible to run a protocol
twice, with reversed roles in the second run [9], the fact that
only one of the two parties’ inputs are certified lets a party use
different input values in each run. For example, a malicious
server that wants to learn a client’s interests but is unwilling to
reveal his own interests can lie about his interests in the first
run since the server’s inputs are not certified. In the second
run, where the roles are reversed, the (former) server will now
have to use his certified inputs, but the (former) client will not
learn anything but that the server used some certified inputs, so
the (former) client will not get suspicious. Our protocol is two-
way, and both parties’ inputs need to be certified. Second, the
existing protocols do not bind the certified inputs to an identity.
Therefore, malicious users could collude with each other and
exchange each other’s certified inputs. This way a malicious
user can use the certified inputs that look most plausible given
a victim in a particular run of the protocol. In our protocol,
certified inputs are bound to an identity, which defends against
the exchange of these inputs among users.

Agrawal et al. [1] propose a protocol using a commutative
encryption function for private intersection problems. A com-
mutative encryption function has the property: Ej1(Ex2(P))
= Ey2(Eg1(P)). Either user learns that P = P’ only when
Ex1(Er2(P)) = Epa(ER1(P')), but neither of them could
learn the other party’s information outside of the intersection
because of lacking necessary key information. Agrawal et
al. suggest the power function, f.(zr) = z° modp, as an
example of a commutative function. The security of their
protocol is based on the Decisional Diffie-Hellman hypothesis
(DDH). If we assume that the size of each user’s set is k,
this protocol requires k£ modular exponentiations for each user.
We improve and implement this approach in our matchmaking
protocol. More details about this protocol and our extensions
are provided in Section IV.

Agrawal et al. use a commutative encryption function that
is based on public-key cryptography, which is more expensive
than symmetric-key cryptography. Therefore it is tempting
to solve the private set intersection problem by using sim-
ple symmetric-key approaches. However, this work is often
flawed. For example, Shundong et al. [26] propose to use
the XOR operation as the symmetric commutative function,
which sharply reduces the computational overhead. However,
this solution is broken [27].

We have seen that existing matchmaking applications either
require a trusted third party in each matchmaking operation
or do not consider protecting users’ personal information. Our
protocol needs a trusted third party only in the setup phase
for certifying a user’s interests, but does not need it in each
matchmaking operation. The protocol is based on asymmetric
key-based cryptography.

Concurrent with this work, several other privacy-preserving
matchmaking protocols have been developed [7], [10], [18].
However, none of them defends against malicious users.

III. SYSTEM AND THREAT MODEL

Our system model consists of users and their mobile de-
vices. Each device knows its owners’ interests (see below for
details) and the goal is to find nearby devices whose owners
have at least one matching interest. Users might be malicious
and try to learn other users’ interests, without having these
interests themselves.

According to our design principles in Section I, there should
be no trusted server that is involved in each matchmaking
operation. We have two nearby devices communicate directly
with each other over Bluetooth, which is a communication
channel for devices in proximity. Bluetooth is attractive since
compared to WiFi, it uses less power.

Our protocol requires two third parties for setup purposes:
an identity signer and a personal interest signer (PIS). Note
that these parties are not involved in the actual matchmaking
and therefore cannot track users and do no need to be available
continuously. The identity signer assigns an identity certificate
to each user and guarantees that one user is assigned to
only one identifier. For example, the identity signer could
be a Facebook application that issues an identity certificate
to a Facebook user. Facebook’s Terms of Service prohibit
users from creating more than one profile, and Facebook is
known to disable fake accounts [24]. The PIS signs a user’s
interests. To use our matchmaking protocol, a user must obtain
signed certificates for her interests from the PIS. Similar to
the identity signer, the PIS could be a Facebook application
because many people have already submitted their interests
to Facebook. We choose Facebook in our implementation
because it is used by many people, but it is possible to build
additional implementations for other platforms.

Our matchmaking protocol prevents attackers from execut-
ing the following attacks:

o Learning a user’s interests without getting caught for
cheating unless an attacker actually has the same inter-
est(s), as certified by the PIS.

« Exploring a user’s interests by including all possible or a
large number of popular elements in the attacker’s interest
set. The PIS puts a limit on the number of interests that
it certifies for each user to avoid brute-force attacks. This
can be a limitation for users that have more interests than
this threshold, but we think that it is a reasonable trade-off
when it comes to defending against brute-force attacks.
Ideally, we could drop the threshold and ensure instead
that a user actually has the certified interests but this



is difficult to do in an automated way in practice. The
certificates have a limited lifetime, which allows users to
update their interests over time.

« Exploring a user’s interests by exchanging (or maybe
stealing) signed certificates obtained from the PIS with
(or from) other users and then choosing the certificates
that are input to a particular protocol run by guessing a
set of interests that the victim with whom the protocol
is run is most likely to have. The certificates generated
by the PIS are bound to a particular user, which defends
against certificate exchanging (or stealing) attacks.

o Impersonating other users. Each user creates an asym-
metric key pair and uses the hash value of the public key
as her user id. The identity signer will include a user’s
user id in her identity certificate. When two users run a
matchmaking protocol, they authenticate each other using
their public keys and may negotiate a session key.

o Actively or passively eavesdropping the communication
between any two users. Sensitive information is encrypted
by the session key that the two users established. Ex-
changed information is also authenticated with digital
signatures for non-repudiation purposes.

We do not consider the following threats and make the
following assumptions:

o Users keep their private keys safe, so that malicious users
cannot steal their private keys to impersonate them.

o Neither the identity signer nor the PIS is compromised
by attackers.

o Users trust the person with whom our protocol finds the
user to have a common interest not to disclose this inter-
est. Any matchmaking protocol needs this assumption. If
a user does not feel comfortable with it, she should not
run the protocol.

o Users are going to finish running a matchmaking protocol
once they start it. Otherwise, there might be information
asymmetry, where one user learns more information than
the other user does. This is an instance of the fair-
exchange problem, which is hard to solve without a
third party [2]. In our protocol, users first authenticate
each other. This way, if a user prematurely ends the
protocol, the other user can report this misbehaviour to
the PIS, which will ultimately refuse to renew the user’s
certificates.

e« We do not consider tracking attacks. Our protocol re-
quires users to use consistent user ids. This allows people
to recognise each other, which makes tracking attacks
possible. However, our protocol is based on Bluetooth,
which is a short-range communication technique. There-
fore, an attacker can track a user only if the attacker
is nearby the user. In other words, a tracking attack
requires the attacker to physically follow the user. A user
is vulnerable to this kind of attack, no matter whether
she is using our matchmaking protocol or not. Even if
we allowed users to use different user ids, they would
still be physically trackable. In addition, as mentioned in

Section II, defending against tracking attacks could lead
to a user repeatedly running the matchmaking protocol
with the same user again and again, which wastes battery
and computation resources.

e We do not consider the number of interests that a user
gives as input to the matchmaking protocol to be sensi-
tive. Whereas there are protocols that allow this number
to be hidden [3], to the best of our knowledge, there
are no protocols that both have this feature and support
certified inputs.

IV. MATCHMAKING PROTOCOL

A. Agrawal et al’s Protocol

Our matchmaking protocol is based on the protocol by
Agrawal et al. [1] discussed in Section II-B, but we extend
the protocol to defend against attacks. Let us review Agrawal
et al.’s protocol first, which is shown in Figure 1. We refer to
Agrawal et al.’s paper for a formal proof of security.

Assume the users are Alice and Bob. Alice has a set S4,
and Bob has a set Sp. Alice and Bob randomly choose a secret
key, k4 and kp, respectively. In step 1, both Alice and Bob
exponentiate each element of their set with their secret key. In
the remainder of this paper, we have a® represent a® mod p,
where p is a safe prime. p is a safe prime if and only if p is
a prime number and (p — 1)/2 is also a prime number. h,()
represents a cryptographic hash function that has the quadratic
residues modulo p as its range. In step 2, Alice sorts the expo-
nentiated elements lexicographically and then sends them to
Bob. In step 3, Bob performs the corresponding operation. He
also exponentiates the values received from Alice and returns
them. In step 4, Alice creates (s;, (h,(s;)k4)k2) Vs; € Sa
by replacing h,(s;)"4 in the pairs that she received from Bob
in step 3 with corresponding s;, Vs; € Sa. In step 5, Alice
computes the intersection between the set consisting of the
second element of the pairs (s;, (hy(s;)%4)k2) Vs; € Sa)
and set Z. The first element of pairs whose second element
is in the intersection forms the set of elements that Alice and
Bob have in common.

Applying this protocol to the matchmaking problem raises
several challenges. First, the protocol does not use certified
set elements, which allows an adversary to freely choose
the inputs to the protocol. Second, only Alice learns the
intersecting elements, and she could lie to Bob about the
result. Third, there is no guarantee that Bob will not re-
order the list formed by the second element of the pairs
(hp(si)ka, (hp(si)*4)*B) Vhy(s;)*4 in step 3. This will
result in Alice mis-identifying an intersecting element. If Alice
reported the index of the intersecting pair to Bob, Bob could
still correctly identify the intersecting element.

B. Our Matchmaking Protocol

We improve this protocol and make it fit our requirements.
Our protocol has three phases: the initial phase, the interest
signing phase, and the matchmaking phase.



Alice’s inputs: set Sy, secret key k4
Bob’s inputs: set Sp, secret key kp
1) Alice computes hp(si)k*‘ Vs; € Sa.
Bob computes hp(si)kB Vs; € Spg.

. Vs;€Sa: h, (si)kA
2) Alice ————>"""— Bob
. Vs;€Sp: h (si)kB
3) Alice «—————"""— Bob
. Vhy(si)FA received from Alice in step 2: (hp(si)*4, (hy(si)*A4)kB)
Alice

Bob

is identical to S4 () Sp.

4) Alice computes set Z = (h,(s;)¥2)¥4 Vh,,(s;)*? received from Bob in step 3.
Alice creates list Y = (s;, (hy(s;)¥4)*8) Vs; € Sy.

5) Alice intersects set Z and the set formed by the second element of the pairs in list Y. The set
that consists of the first element of the pairs in Y whose second element is in the intersection

Fig. 1.

1) Initial Phase: This phase takes place between the iden-
tity signer and a user (e.g., Alice). As mentioned before, the
identity signer guarantees that one user is assigned to only
one identifier. Alice sends personal information, such as her
name or her Facebook profile identifier, to the identity signer.
Alice also generates an RSA key pair and sends the public
key to the identity signer. The identity signer identifies and
authenticates Alice and issues an identity certificate to her.
The certificate includes Alice’s RSA public key. Alice will
later use the hash value of her public key as her user id. Strictly
speaking the initial phase needs to take place only once for
each user, though it might have to be repeated when a user’s
identity certificate expires.

2) Interest Signing Phase: This phase takes place between
the personal interest signer (PIS) and a user (e.g., Alice). The
PIS generates a safe prime, p, the first time when it starts.
When a user creates a name for a new interest (no other
user has submitted the name yet), the PIS chooses a quadratic
residue modulo p as the id of this interest. In more detail, Alice
submits the names of her interests, along with her identity
certificate and her user id to the PIS. The PIS puts a limit on
the number of interests that Alice can submit to avoid brute-
force attacks. The PIS then makes sure that Alice did not
misbehave before (based on other users’ complaints). Here let
us assume that Alice is an honest user, and no other users have
complained about her. We denote the ids of Alice’s interests
by X; Vi € (0,m] (assume that Alice has m interests). To
determine X, for a particular interest, the PIS first uses SHA-
1 to compute the hash value of the name of the interest and
then computes the square modulo p of the hash value. The
PIS randomly generates an exponent, a (a is in the range of
[1,q — 1], where ¢ = (p — 1)/2) for Alice and computes
X® Vi € (0,m] and signpis(A_ID||X?) Vi € (0,m].
(signprs() denotes a signature created by the PIS. A_ID
denotes Alice’s user id.) The PIS sends X; Vi € (0,m], a,
p, X Vi € (0,m], signpis(A_ID||X;) Vi € (0,m], and
signpis(A_ID|| X%) Vi € (0,m] back to Alice.

The interest signing phase takes place whenever a user’s
interests change (or when a signature expires), though the PIS

Agrawal et al.’s Private Set Intersection Protocol [1].

must limit the frequency at which users can perform such
changes to defend against brute-force attacks.

3) Matchmaking Phase: Suppose that Alice has interests:
X1, Xo,..., X,, (m is the size of Alice’s set), and Bob has
interests: Y7, Ya,..., Y, (n is the size of Bob’s set). () denotes
a cryptographic hash function such as SHA-1. Let us assume
that in this protocol, the party who initiates the communication
reports the result first. We also assume that Alice and Bob
agree on a value g. Note that user_ID = h(public_key).
Figure 2 shows our matchmaking protocol. Before running this
protocol, Alice and Bob should pair their Bluetooth devices
and run a signature-based authentication protocol (e.g., [21,
p. 404]) to identify and authenticate each other (not shown in
the figure). Note that steps 9-14 are executed only if there is
at least one match.

In steps 1-4, Alice and Bob exchange their exponentiated
values, as received from the PIS, and the corresponding
signatures to ensure authenticity of these values. Alice and
Bob sign their messages to ensure non-repudiation in case
misbehaviour is detected later. Step 5 is required for cheating
detection purposes (see next section for details). Alice sends
a commitment to her computed values to Bob, where R
is a random number of fixed length that ensures that the
commitment leaks no information. In step 6, Bob reports his
computed results to Alice for matching. In step 7, Alice reports
her computed results to Bob, so Bob can perform the matching.
In addition, Alice needs to reveal the values that she committed
to in step 5. Alice and Bob both compute the interests they
have in common in step 8. If there are no matching interests,
the protocol is terminated.

There is no guarantee that Alice will pair (Yib, (Ylb)a) Vi €
(0,n] correctly in step 7. For example, Alice can pair Y’
with (ij)a for i # j. Later, we will show that Alice could
take advantage from mispairing the data. Bob could also do
the same trick to Alice. As a result, we require Alice and
Bob to provide the signatures of any matched interests next.
Namely, in steps 9-14, Alice and Bob exchange the signatures
issued by the PIS of the interests that they have in common
to prove that they really have the interests. However, they



1) Alice Bob
2) Alice (i€ ¥ Isigneis(B_IDYY!) lsignpon (entire message) p
3) Alice and Bob verify all signatures.
4) Alice computes (V;?)* Vi € (0,n] and Bob computes (X¢)" Vi € (0,m).
5) Let respa = (Y2)?|| ... |[(Y,))*||R
Alice h(respa)|signaiice(B_ID|/h(respa)) Bob
6) Let respp = (X{)°[|... |(X})°
Alice (Vie(0,m]: (X,(X{)")llsigneon(A_ID|resps||(Vie(0,m]: X{)) Bob
7) Alice (v i€(0,n): (Y2, (Y2)* )R signatice(B_ID|respal|(Vie(0,n]: Y")) Bob
8) Bob gets Y; VY, € (Yib)a N (Xf)b. If the intersection is empty, Bob terminates the protocol.

(Vi€ (0,m]: X ||signpis(A_IDI||X{))||signalice (entire message)

Alice gets X; VX; € (V)" () (X#)". If the intersection is empty, Alice terminates the

protocol.

o ge
9) Alice = Bob
9" lsignzon(g® 9" | A_I D)

Vie(0,m’]: Ex(X;||signpis(A_ID| X;))

13)
14)

Alice
Alice

Vi€ (0,m’]: By (Yi||signpis(B_ID|Y:))

10) Alice Bob
STGN Alice by .a .

11) Alice gnaitice(9°llg* || B_ID) Bob

12) Alice computes k = (Qb)a and Bob computes k = (ga)b.

Bob (assuming there are m’ common interests)
Bob

Fig. 2. Our Matchmaking Protocol.

should not send this information in plaintext, because the ¢ and k,

information could be eavesdropped. Therefore, in steps 9-12,

Alice and Bob negotiate a secret using authenticated Diffie- ( X1 X X1 X )
Hellman [17] to encrypt the sensitive messages. We could have fe(X1) fe(Xt)  fe(Xei1) fe(X)
combined steps 9-12 with the signature-based authentication s indistinguishable from

protocol executed before the matchmaking protocol. However,

computing modular exponentiations, as required by the Diffie- ( X1 Xi Xit1 Xk >
Hellman protocol, is relatively expensive, so we make sure that fe(X1) fe(Xe)  Zin Zk )’

we execute this protocol only if two users actually have at least
one common interest. After step 14, both Alice and Bob verify

These properties give us the following results:

the signatures and record the messages if the other party fails 1) Bob cannot map X back to X; if he does not know
to provide correct interest ids and signatures. In this case, the the value of a, which is known only to Alice. Proof: if
misbehaving party should be reported to the PIS, together with Bob could map X back to Xj, Bob could compute
the recorded information. Even in case the signatures can be fo'(Z), and by checking whether f;'(Z) = Yj or
verified and the interest ids are correct, the recipient should not, Bob can distinguish (X;, fu(X:), Y}, fa(Y;)) and
still record the other party’s messages at a given probability (Xi, fa(Xi), Y], Z). This makes sure that before Alice
and report them at a later time to the PIS to check if the other sends Bob the computed result in step 7, Bob is not able
party cheated or not. We explain why this is necessary in the to learn any of Alice’s interests. Due to the same reason,
next section. an eavesdropper observing X cannot learn X,.

2) Given the values of

C. Security Analysis

1) Passive Attacks: We first look at passive attacks, where
an attacker tries to infer sensitive information from ob-
served protocol messages. For simplicity, we focus on an
attack on messages sent by Alice, but our analysis can
be easily applied to Bob’s messages. Agrawal et al. prove
that given the Decisional Diffie-Hellman hypothesis (DDH),
(X5, fe(X5), Y], fe(Y;)) for fixed values of ¢ and j, with
fe(z) = ¢, is indistinguishable from (X;, f.(X;),Y;,Z),
when e is not given. Further, they conclude that for polynomial

X1, fa(X0), oo Xy fo (X)), Xigr, fa(Xegn)s -, Xies fa(Xi)s
Bob cannot compute the value of a. Proof: assume that
Bob could compute the value of a, so he is able to
compute f,(X%), and by checking if f,(X%) = Zi, Bob
could distinguish the two matrices given above. This
guarantees that Bob cannot obtain Alice’s exponent,
a. As a result, even if Bob knows the id V of an
interest that he does not have, he cannot compute V.
Therefore, he cannot detect if Alice has this interest
by checking if V* equals X¢ Vi € (0,m]. The same
applies to an eavesdropper observing the values.



In steps 13 and 14, Alice and Bob exchange their signed
interest certificates for all their matching interests. These
certificates are sent across an encrypted channel, so a passive
eavesdropper cannot learn Alice’s or Bob’s interests.

2) Active Attacks involving Non-Common Interests: We
look at active attacks next. Note that Alice and Bob authenti-
cate each other and that protocol messages are signed, which
allows the detection of impersonation or modification attacks
by active eavesdroppers. Therefore, we focus on active attacks
by Alice or Bob. We first study scenarios where Alice or Bob
misbehave to learn interests other than the ones that the two
of them have in common. As it turns out, if one of them
misbehaves in such a way, our protocol allows the other party
to detect this cheating.

By sending out {YP,....Y¥’}, and getting back
{X{lv te 7X7Ciz} and {(Ylba (Ylb)a)a ) (Yib7 (Y;b)a)}v Bob can
learn only whether or not Alice has a number of elements in
set {Y1,...,Y,}. According to the above two properties, if
and only if (Y?)? = (X#), Bob can learn which X; from
Alice matches one of his Y; by performing step 8. Otherwise,
it is impossible for him to get the value of X;. Note that
Bob cannot be certain which interests Alice really shares
with him until they exchange the signatures signed by the
PIS including the interest ids. Namely, Alice could pair ij
with (Yib)a for j # i in step 7, and Bob would think Alice
has interest Y} instead of Y; if (Yib)a is in the intersection.
Bob would send Y; to Alice. As a result, Alice is able to
gain extra information without being detected. Exchanging
the signatures of the signed interests will detect this attack.
As a result, it is necessary for both users to exchange the
signatures of the ids of the common interests. If a user
cannot provide a valid signature signed by the PIS for all her
common interests, the other user should send the protocol
transcript to the PIS. Because Alice receives messages from
Bob that are symmetric to the messages that she sends to
Bob, she is also unable to learn extra interests.

Alice and Bob cannot use interests not signed by the PIS
for them. For instance, Alice has to provide
signpis(A_ID||X) Vi € (0,m] for all elements in her set
to prove that she really is assigned this interest before the
matching. Unlike the symmetric key-based based commutative
functions, it is not possible to find X " — X pecause of
the way we create the X and X’ values and because of the
discrete logarithm problem. This guarantees that Alice can use
signpis(A_ID||X) only to prove her ownership of interest
X but for nothing else.

Alice and Bob cannot get useful information by replaying
other users’ responses. They have to run a signature-based
authentication protocol before executing the matchmaking
protocol. This prevents Alice and Bob from using signatures
created by or assigned to other users.

3) Active Attacks involving Common Interests: Let us look
next at active attacks where Alice tries to prevent Bob from
learning an interest that the two of them have in common
(or vice versa). Our protocol provides methods to detect this
cheating.

In the first attack, Alice wants to find new friends, but if
there are multiple common interests, she wants to reveal only
one interest because this is still enough to find a new friend.
If we removed step 5 from our protocol, Alice could easily
achieve this goal. Assume Alice and Bob have two interests in
common. After Alice receives (X @) Vi € (0, m] from Bob in
step 6, she knows that they have two common interests. Alice
can lie and return the correct value of (Y;?)* for only one of the
two matched interests. In this case, Alice finds a new friend
and learns more information than Bob does. However, this
attack is not possible in our protocol due to the commitment
in step 5. Alice has to execute this step honestly since she
does not know which interests they have in common at this
step. As a result, she has to report (Y;*)® and R correctly
to Bob in step 7, since it is hard to find h(z’) = h(z) for
z' # x. Otherwise, Bob will detect her malicious behaviour
immediately. Since Bob detects the common interests after
Alice does, we do not have to introduce a commitment step
for Bob.

In the second attack, Alice only wants to learn Bob’s
interests, but does not want to find a new friend. Therefore,
in step 5, she sends Bob a commitment to some random
values, instead of a commitment to (Y;?)® Vi € (0,n]. Bob
will learn of this misbehaviour immediately if Alice refuses
to run step 7 and will report the misbehaviour to the PIS.
If enough users report Alice’s malicious behaviour, the PIS
is not going to renew Alice’s signatures. If Alice does run
step 7, but returns the random values to Bob, instead of
(Y?)® Vi € (0,n], Bob is unable to detect this cheating
since he cannot map (Y;?)® back to Y;*. However, Alice takes
the risk that Bob records the protocol messages and reports
them to the PIS later. (As we mentioned before, both users
should record the protocol messages at a given probability,
so that at a later time they can submit them to the PIS to
check if the other party cheated or not). In this case, Bob
has the signed messages from Alice, so the PIS is certain
that Alice cheated and stops renewing the signatures of her
interests. In the same way, Bob can detect if Alice misbehaves
in step 6. Note that even if this attack succeeded and did not
get reported to the PIS, the misbehaving party could learn
only interests that the two parties have in common and not
just any interest of the other party. An alternative to recording
the protocol messages probabilistically and reporting them to
the PIS is using zero-knowledge proofs that prove that a (Y;?)®
was computed on the Y? revealed in step 2 and that the value
of a used in this computation was identical to the value of a
in X7 revealed in step 1 (without revealing a). However, these
zero-knowledge proofs are expensive and would increase the
computation (and communication) overhead, which is why we
choose a probabilistic detection method instead.

V. IMPLEMENTATION AND EVALUATION

We implemented our matchmaking protocol on two Google
Nexus One smartphones, which have a 1 GHz processor and
run Android 2.2. The two devices act as the mobile devices
owned by two users. We used the Android SDK to implement
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Fig. 3. Execution Time of the Matchmaking Protocol.

our matchmaking protocol. Our implementation of the PIS
includes an application running on an application server, a
web interface, and a backend database. The application issues
signatures for users’ interests and is implemented in Java. The
web interface is implemented as a Facebook application using
PHP and HTML. Users request and obtain their signatures
through this Facebook application. The backend database
stores interest information. We did not implement the id signer,
and we assume that the users already hold valid identity
certificates. We choose a prime p of length 1024 bits and use
RSA with a modulus length of 1024 bits for the signatures.

The execution time of the protocol is shown in Figure 3.
The x-axis shows the number of interests that each user has.
There is one common interest for the five and ten interest case
and six common interests for the 15 interest case. (We find that
the number of common interests brings little difference to the
performance results.) Every data point is the average of ten
experiments. We also show the standard deviation. The time
to perform a modular exponentiation is between 20 and 30
ms. For each interest, a device needs to perform exactly one
modular exponentiation. The average execution time ranges
from 776 ms (5 interests) to 1,332 ms (15 interests).

VI. CONCLUSIONS AND FUTURE WORK

We presented a matchmaking protocol that preserves users’
interest information from unnecessary leaks in mobile social
networking applications. Our implementation and evaluation
of the protocol show that the protocol is practical on current
smartphones.

In terms of future work, we would like to investigate how
real people use our matchmaking protocol to learn more about
the usefulness of mobile social networking applications in
general.
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