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Abstract

The increasing availability of information about people’s context makes it possible to deploy
context-sensitive services, where access to resources provided or managed by a service is limited
depending on a person’s context. For example, a location-based service can require Alice to be at a
particular location in order to let her use a printer or learn her friends’ location. However, constraining
access to a resource based on confidential information about a person’s context can result in privacy
violations. For instance, if access is constrained based on Bob’s location, granting or rejecting
access will provide information about Bob’s location and can violate Bob’s privacy. We introduce
an access-control algorithm that avoids privacy violations caused by context-sensitive services. Our
algorithm exploits the concept of access-rights graphs, which represent all the information that
needs to be collected in order to make a context-sensitive access decision. Moreover, we introduce
hidden constraints, which keep some of this information secret and thus allow for more flexible
access control. We present a distributed, certificate-based access-control architecture for context-
sensitive services that avoids privacy violations, two sample implementations, and a performance
evaluation.
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1. Introduction

The increasing numbers of networked devices (e.g., cellphones or handhelds) that
individuals are carrying and of networked sensors (e.g., cameras) makes more context-
sensitive information about people electronically available. This trend enables the
deployment of context-sensitive services, where access to resources provided or managed
by a service depends on a person’s context. For instance, many pervasive computing
projects provide location-based services, where a resource is available to an individual
only if the individual is at a particular location [1–6]. For example, a user of a buddy
service could allow her friends to learn her location only if they are nearby. Similarly, the
administrator of a service managing devices (e.g., a projector or a printer) in a meeting
room could decide to let only people in the room access these devices. However, the
deployment of context-sensitive services poses serious privacy challenges. Namely, we
must ensure that these services do not leak confidential information about an individual’s
context to unauthorized entities. In this paper, we show how to avoid such privacy
violations.

Let us demonstrate how a naı̈ve implementation of context-sensitive access decisions
to resources can lead to privacy violations. In our first example, confidential information
leaks to a service that provides information. Assume that Alice lets people see her current
calendar entry only if they stand in front of her office, that is, she imposes a context-
sensitive constraint. A cellphone service provides people’s location information, and a
calendar service offers Alice’s calendar information. Given this setup, when Bob asks the
calendar service for Alice’s calendar entry, the calendar service could learn Bob’s location
while making an access decision, either by querying the location service directly or by
being told by a third entity that the constraint imposed by Alice is fulfilled. Therefore,
Bob’s location information could leak to the calendar service (i.e., to the organization
running this service), and his privacy could be violated.

In the second example, confidential information leaks to a person who is granted access
to some other information. Assume that Alice allows people to access her calendar entry
if she is in her office. Therefore, if somebody can retrieve this entry, he will also learn that
Alice is in her office. A person planning on breaking into Alice’s house would happily take
advantage of this information leak.

In our third example, confidential information leaks to a person who grants other
people access to her information. Assume that Alice grants herself access to her calendar
entry constrained to Bob being at a particular location. When the calendar system grants
Alice access to her entry, she will learn Bob’s location, which could be an information
leak.

Related work has largely ignored privacy violations caused by context-sensitive
services. Avoiding these violations is a complex problem, especially when constraints are
recursive (e.g., “Alice says that Bob can access her calendar when she is in her office.”
and “Alice says that Bob can access her location when she is not busy.”). As a result, in
our first contribution, we present a systematic investigation of information leaks caused
by context-sensitive services so that we understand all the opportunities for information
leaks. Our second contribution is a set of algorithms to avoid information leaks caused by
context-sensitive services. In particular, our algorithms include:
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Access-rights graphs. We introduce algorithms for building and resolving access-rights
graphs. These graphs represent all the information that will have to be collected
in order to ensure the satisfaction of constraints associated with a resource.
Furthermore, we present an access-control algorithm that, based on access-rights
graphs, resolves constraints and avoids information leaks.

Hidden constraints. We propose hidden constraints, which make it possible to implement
more flexible constraints by keeping constraint specifications secret. Furthermore,
hidden constraints lead to a simpler access-control algorithm.

Finally, we present a distributed, certificate-based access-control architecture that
exploits these algorithms in order to provide context-sensitive services that do not
leak confidential information, two example implementations of this architecture, and a
performance evaluation.

This paper expands on our PerCom 2006 paper [7] in that we discuss the case where
multiple services offer the same information (Section 2.2), address staleness of information
used for constraining access (Section 2.3), present scenarios where information leaks
cannot be avoided (Section 3.1), compare our main access-control approach to alternative
approaches (Sections 3.3 and 5.3), introduce an algorithm for building access-rights graphs
(Section 4.1), present sample certificates (Section 6.1), discuss and evaluate another
implementation of hidden constraints (Sections 6.2.2 and 7, respectively), and elaborate
on additional related work (Section 8).

We first introduce our system model (Section 2). Next, we focus on a restricted set
of constraints and discuss information leaks caused by these constraints and how to
avoid these leaks (Section 3). Based on this discussion, we then drop the restrictions
on constraints and introduce access-rights graphs (Section 4) and hidden constraints
(Section 5). Finally, we present our access-control architecture (Section 6) and its
performance (Section 7).

2. System model

In this section, we describe the system model that we will use for studying
privacy violations caused by context-sensitive access control. In particular, we introduce
(constrained) access rights and client-based access control, discuss staleness of
information, and present our security and threat model.

2.1. Access rights and constraints

For simplicity reasons, we assume that the resources offered or managed by a context-
sensitive service consist of confidential information (e.g., the location of an individual’s
friends or a person’s calendar entry). It is straightforward to apply our algorithms to a
service that manages physical devices, such as a printer or a projector.

For an entity to be granted access to confidential information, there must be an access
right authorizing this access. An access right consists of four parts: An issuer issuing the
access right, a subject being given access, information to which access is granted, and a
tuple of constraints that must be satisfied for the subject to get access to the information.
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Either the subject or the tuple of constraints can be omitted from the access right. Each
piece of information has an owner, who is responsible for issuing access rights to this
information. For example, Alice issues access rights to her calendar information.

We assume that a constraint consists of information and a set of permitted values. The
constraint is satisfied if the current value of its information equals one of the values in
the set. A tuple of constraints attached to an access right is satisfied if each constraint in
the tuple is satisfied. We observe that many sensible constraints in pervasive computing
involve information about the context of a person. A person’s context can include, for
example, the current time, her current activity, or her current location. In addition, a
constraint is typically about the person that either is granted an access right (e.g., “Alice
grants Bob access to her calendar if he is in his office.”) or grants an access right
(e.g., “Alice grants Bob access to her calendar if she is in her office.”), but not about third
entities. Therefore, we are mainly interested in constraints that deal with context-sensitive
information about the first two entities (though our presented solution is powerful enough
to support constraints involving third entities). We focus on context-sensitive constraints
that are confidential (e.g., a person’s location or activity, but not the current time) and that
have dynamic values, which makes it infeasible to check the satisfaction of a constraint
upon the specification of an access right.

2.2. Client-based access control

We will study information leaks for the following scenario: A client wants to retrieve
information provided by a service. We use the terms primary information and primary
service for referring to this information and service, respectively. The client’s access right
to the primary information has a tuple of constraints. We call the information listed in the
constraints constraint information and the services offering it constraint services. Let us
look at an example. Alice’s access right to Carol’s calendar is constrained to Alice being
in her office. Carol’s calendar and Alice’s location information are offered by a calendar
and a location service, respectively. Here, Carol’s calendar corresponds to the primary
information and Alice’s location to constraint information. The calendar service is the
primary service and the location service is a constraint service. Note that for different
requests, the same information can be either primary or constraint information, and a
service can be either the primary or a constraint service.

There are multiple approaches to deploy access control in this scenario. We concentrate
on client-based access control [8,9], where the client needs to prove to the primary service
that it is authorized to access the primary information. The service makes the final access
decision by validating this proof of access. The proof contains the client’s access right to
the primary information and confirms that each of the constraints in the access right is
satisfied. We use the term assurance for such a confirmation. Therefore, before the client
can contact the primary service, the client needs to retrieve assurances. In particular, for
each constraint in the client’s access right to the primary information, the client has to
build a proof of access for the constraint information, contact the corresponding constraint
service, and have it issue an assurance. We illustrate client-based access control in Fig. 1.
Both access rights and assurances can be represented as digital certificates. If the client’s



U. Hengartner, P. Steenkiste / Pervasive and Mobile Computing 2 (2006) 427–452 431

Fig. 1. Client-based access control. The client sends a proof of access to the constraint service to retrieve an
assurance for the constraint information. Next, the client sends a proof of access, including the assurance, to the
primary service to access the primary information. (Numbers indicate order of events.)

access rights to the constraint information were also constrained, the client recursively
would have to retrieve assurances for the constraints in these access rights beforehand.

The advantage of client-based access control is the lack of a centralized entity making
access decisions (i.e., a single point of failure). Furthermore, by assigning parts of the
access-control load (i.e., constraint resolution) to the client, the approach reduces the load
on the primary service. Alternatively, we could employ a centralized entity or a service for
resolving constraints. We study these alternative approaches and their privacy implications
in Section 3.3.

Multiple services can provide the same type of information. For example, there are
multiple ways to locate a person. For simplicity reasons, we assume that there is only
one service that offers the primary information in our problem setting. Extending our
algorithms to support multiple such services is straightforward. However, picking a
constraint service requires some thought. We could let the owner of constraint information
choose a service. However, a malicious owner can pick a service that always guarantees
satisfaction of a constraint. In the calendar example above, Alice, as the owner of her
location information, could designate a fake location service that always returns Alice’s
office as her location. Instead, it is the issuer (Carol in our example) of a constrained access
right who should pick the constraint service(s) providing the constraint information in the
access right.

2.3. Staleness of constraint information

Since both the primary and the constraint information will typically be dynamic, we
need to address the question of when the information is collected. The most natural way
to interpret an access right is that all the information that it lists should be collected at
the same time, thus guaranteeing that the primary information returned to the client is
collected at a time when the constraint is satisfied. The access-control algorithm introduced
in Section 2.2 however does not meet this requirement. (The same problem also occurs in
the alternative access-control approaches.) Here, the client retrieves an assurance for a
constraint from a constraint service, submits the assurance to the primary service, and gets
the primary information from the primary service. This algorithm will not guarantee that
the constraint is still satisfied at the exact time when the primary information is accessed.

We can guarantee that all information is collected at the same time by assigning the same
timestamp to all queries sent to the (time-synchronized) constraint and primary services.
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A service returns the value of the information at the time indicated by the timestamp. A
timestamp can correspond either to a time in the past or to a time in the future.

For times in the past, a service needs to remember past values of the information
that it offers, which can be difficult to implement. For example, a location service could
periodically poll the location of all the locatable individuals. However, the polled values do
not necessarily let the service correctly deduce the location of an individual for a random
timestamp in the past. We could restrict the granularity of the permitted timestamps to the
polling frequency. However, for low frequencies, clients might be given stale information
and high frequencies cause more overhead. Moreover, being able to impose the same
frequency on all services seems unrealistic. Finally, requiring services to keep historical
logs raises privacy problems.

Timestamps can also correspond to a time in the future. Here, a notification step
precedes the submission of a query to a service. In this step, both the primary service
and the constraint services are notified of the time for which the upcoming query will
expect the value of the information provided by the service. In the example given above,
this approach allows the location service to poll the location of a particular user (and
of no other users) at the notified time. Later, when the actual query arrives, the service
returns the polled value. The announced timestamp needs to correspond to a time in
the future that is far away enough to guarantee that all the involved services can be
contacted beforehand. This process could take hundreds of milliseconds and negatively
affect responsiveness. Furthermore, in a pervasive computing environment, services might
not always be connected.

In summary, guaranteeing that primary and constraint information are collected at
exactly the same time raises implementation challenges and can reduce responsiveness
of the system. However, we do not expect that this guarantee is critical for most
pervasive computing applications, as opposed to other environments (e.g., military or
financial services). Namely, in pervasive computing, constraints involve context-sensitive
information. Typically, this information changes little between the time that it is retrieved
and the time that the information requested by a client is accessed. For example, since
individuals move at a finite speed, the change in an individual’s location between retrieving
her location from a constraint service and accessing the primary service is limited.
To prevent attackers from artificially prolonging this period, a service offering context-
sensitive information should indicate for how long the service expects the information to
keep its current value. The primary service should return primary information to the client
only within the indicated time frame. We take this approach in our implementation.

2.4. Security model

In our security model, services that provide confidential information implement the
access-control algorithms described in this paper. The goal of an attacker is to learn
confidential information that the attacker is not authorized to access. In order to achieve
this goal, an attacker can choose between the following actions: An attacker can send
requests to a service and observe their fate. A request is either denied or granted access.
In the latter case, the attacker will see the requested information. Alternatively, an attacker
can set up services and observe requests reaching such a service. An attacker can also
issue (constrained) access rights to information owned by the attacker and snoop network
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traffic. Attackers can collude. We do not examine other attacks, such as traffic-analysis or
statistical-inference attacks or attacks based on the physical observation of a person.

3. Constraints and information leaks

In this section, we define information leaks, as studied in this paper, and discuss how
they can occur in client-based access control and how to avoid them.

3.1. Definition

When a single entity or multiple, colluding entities are familiar both with a constraint
specification in an access right and with the outcome of a request exploiting this access
right, they can infer some knowledge about the constraint information listed in the
specification. If the single entity and all of the colluding entities, respectively, are not
authorized to access this knowledge, there will be an information leak. (If any of the
colluding entities is authorized, there will not be a leak, since the authorized entity could
always proxy for the unauthorized entities.) In particular, the leaked knowledge reveals
either that the current value of the constraint information is in the set of values listed
in the constraint specification or that the current value is not in this set. In inference-
control research [10], these two cases are called positive and negative compromises [11],
respectively. We assume that the range of values that constraint information can have is
publicly known. Therefore, both for positive and negative compromises, a set of possible
current values leaks. If this set contains only one element, the current value leaks. In
inference-control research, this scenario is called an exact compromise [12]. If this set
contains more than one element, there is still a partial compromise [12], since the set is
smaller than the range of values that the constraint information can have.

To avoid an information leak, the client should be able to gather confidential knowledge
about constraint information, such as its current value, only if the client had an access
right to this constraint information. However, it is not always possible to enforce this
requirement. For example, if the client had an access right to information constrained to
particular values of this information (e.g., “Carol grants Alice access to Carol’s location if
Carol is in her office.”) and if the client was denied access to the information, the client
could infer a set of possible current values for the information, where this set is disjunct
from the set of values that the client is permitted to learn. In the worst case, where the client
is permitted to access all but one of possible values, a denied request leaks the current value
of the primary information to the client, and there is an exact compromise.

We can generalize this case to the case where multiple access rights depend on
each other. For instance, assume that there are two possible values for both Alice’s
location information and her activity information. Alice grants Bob access to her location
information constrained to a particular value of her activity information. She also grants
him access to her activity information constrained to a particular value of her location
information. If Bob issues a query for Alice’s location and is denied access, the probability
that Alice is performing the activity not listed in Bob’s access right to the location
information will be twice as high as the probability that she is performing the listed activity,
and there is a partial compromise. It is possible for such a loop to involve more than two
access rights.
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In this paper, we want to avoid information leaks for the enforceable cases, that is, cases
where the information that an access right grants access to is different from the constraint
information in the access right and where access rights do not depend on each other.

3.2. Client-based access control

For information leaks to occur, an entity needs to know the constraint specifications
in an access right. The following entities know the constraint specifications in the client’s
access right to the primary information: the issuer of the access right, the client, and the
primary service. Let us discuss for each entity how to prevent information from leaking
to the entity. For now, we assume that access rights to constraint information are not
constrained.

Client: Client-based access control makes the client build proofs of access for the
constraint information in the client’s access right, as shown in Fig. 1. Without these proofs,
the client will not be able to retrieve assurances from the constraint services. Therefore,
confidential knowledge about constraint information cannot leak to the client.

Primary service: The primary service could learn confidential knowledge about constraint
information from a proof of access received from the client because the proof lists
assurances, in addition to the client’s access right. Therefore, the client must validate that
the primary service has access to the constraint information before sending the proof. Note
that since the client’s access to the primary information depends on the primary service
having access to the constraint information, there is no incentive for the client to perform
this validation. For this reason, some form of punitive action (e.g., revoke the client’s access
right) should be taken for misbehaving clients. As mentioned above, we assume for now
that access rights to constraint information are not constrained, so the client does not need
to validate access rights of a constraint service when sending a proof to the service.

Issuer: The issuer of the client’s access right to the primary information could collude
with the client or the primary service to learn confidential knowledge about constraint
information in the access right. However, since we ensure that both candidates have access
to this knowledge, this is not an information leak, as defined in Section 3.1.

Access rights to constraint information can recursively be constrained, which makes
avoiding information leaks more difficult. For simplicity reasons, let us next assume that
there is only one level of recursion, that is, if an entity has a constrained access right to
constraint information, the entity’s access rights to the constraint information in that access
right are not constrained. (We discuss the more general case in Section 4.) As discussed
above, the client needs to ensure that the primary service has access rights to the constraint
information in the client’s access right to the primary information. If the service’s access
rights are constrained, the client has to validate these constraints. Namely, the client has
to retrieve constraint information from a constraint service, using access rights issued
to the client. If such an access right was constrained and its issuer colluded with the
primary service, the issuer would know that whenever the primary service is contacted,
the constraints in this access right are satisfied and the issuer could derive confidential
knowledge about constraint information in the access right. We can avoid this leak by
requiring the client to ensure that the issuer of an access right has access to the constraint
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information listed in the constraints of the access right before using the access right in a
proof of access.

In client-based access control, access rights are typically represented as digital
certificates. We have not discussed where an entity that is granted an access right stores
the corresponding certificate. The entity could store access rights in a publicly accessible
database and retrieve them from this database when building proofs of access. However,
if access rights were stored in such a database, the primary service could exploit the
information leak just described without having to collude with the issuer of an access right.
This observation suggests not storing access rights in a publicly accessible database.

To ensure that constraint information does not leak to an issuer of an access right or to a
service, as mentioned above, the client needs to know the issuer’s and the service’s access
rights to this information, respectively. However, if access rights are not publicly available,
the client will not easily be able to learn about these access rights and thus might not be
able to ask the primary service for the primary information. We can solve this conflict by
keeping the types of constraints listed in an access right restricted. A restricted constraint
in an access right is a constraint whose information is restricted to information about the
subject or the issuer of the access right. (As mentioned in Section 2.1, we expect this to
be the most useful case in pervasive computing anyway.) Here, if a constraint in an access
right granted to the client involves the client, the client itself can decide whether it wants
the issuer of the access right or a service to have access to the constraint information.
If a constraint involves the issuer of the access right, the issuer automatically has access
to the constraint information. In terms of services having access to this information, the
issuer could inform the client of these services when issuing the access right to the client.
Besides keeping constraints restricted, another option are hidden constraints, which prevent
a service from learning the constraint specification in the first place (see Section 5).

In summary, the client must ensure that the primary service has access to the constraint
information in the client’s access right for the primary information and that the issuer of
an access right has access to the constraint information in the access right. Furthermore,
access rights should not be publicly available and constraints should be restricted else the
client’s chances for successfully completing the outlined steps to avoid information leaks
(and thus accessing the primary information) decrease.

3.3. Alternative access-control approaches

As mentioned in Section 2.1, apart from client-based access control, where a client
resolves constraints, it is also possible to have a centralized entity or a service resolve
constraints. Here, we summarize the privacy implications of these approaches, a more
detailed discussion is in the first author’s Ph.D. thesis [13, Chapter 5].

3.3.1. Centralized access control
In centralized access control, the client sends its request for the primary information to

a centralized entity, which runs access control on behalf of individual services. If there is
an access right that grants access to the client, the centralized entity will ensure that all the
constraints in the access right are satisfied. (We assume that access rights are stored with
the centralized entity.) Therefore, the centralized entity has to retrieve the current values of
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the constraint information from the corresponding constraint services. If all the constraints
are satisfied, the centralized entity will retrieve the primary information from the primary
service and return the information to the client.

Here, the centralized entity must validate that the client has access to the constraint
information in the client’s access right to the primary information. Else the client could
derive confidential knowledge about the constraint information by observing whether its
request for the primary information is granted or denied access. Due to similar reasons as
in the case of client-based access control, we can also conclude that the centralized entity
must ensure that the issuer of an access right has access to the constraint information in the
access right before exploiting this access right in an access decision and that access rights
should be kept confidential.

3.3.2. Service-based access control
In service-based access control, the client asks the primary service directly for the

primary information. The primary service has to ensure that there is an access right for
the client. For a constrained access right, the service has to contact the corresponding
constraint services and check satisfaction of the constraints. The constraint services also
run access control.

Here, a service must ensure that the client (or another service) has access to
the constraint information in the client’s (or service’s) access right to the requested
information. Else the client (or service) could derive confidential knowledge about the
constraint information by observing whether its request is granted or denied access. Similar
to client-based and centralized access control, a service must also validate that the issuer
of an access right has access to the constraint information in the access right and access
rights should be kept confidential. Finally, similar to client-based access control, access
rights should be kept simple, else it becomes difficult for a service to ensure that a
client (or another service) has access to constraint information, assuming access rights
are confidential.

4. Access-rights graphs

In the previous section, we have seen that even if we require some access rights to
be unconstrained, access control is already difficult. Let us now discuss the general case,
where any access right can be constrained. To increase the client’s chances to complete
access control, we require that access rights are not publicly available (i.e., only the subject
and issuer of an access right initially know the contents of the access right).

4.1. Design

Our access-control algorithm for the general case exploits access-rights graphs. Such a
graph captures relationships between access rights and constraints on them, allows for easy
detection of potential problems, like information leaks, loops, or conflicting constraints,
and simplifies resolution of constraints.

An access-rights graph is built for particular information in terms of an entity’s access
rights. The graph represents the conditions under which this entity has access to the
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Fig. 2. Access-rights graph. The graph is for information A.x in terms of an entity’s access rights. In particular,
the entity has access rights to A.x constrained to B.y = s and C.z = t , to B.y constrained to D.w = u, to C.z
constrained to C.z ∈ {r, t}, and to D.w in an unconstrained way.

Fig. 3. Access rights graph with conflict. The graph has conflicting constraints on D.w.

information. The edges and nodes of the graph are derived from the entity’s access rights.
In particular, a node in the graph represents information, and the edges outgoing from a
node denote the constraints on an entity’s access right to the information in the node. An
edge has a set of values attached to it, meaning that the information in the node that the
edge is pointing to is constrained to the values in the set. If an access right to information is
unconstrained, the corresponding node has an outgoing edge that goes back to the node and
that is marked with “∗”; such a node cannot have more than one outgoing edge. We call the
node representing the information for which the graph is built the root node. Fig. 2 shows
an example of an access-rights graph. We use the scheme “Alice.location” for representing
information in the graph. The first part (i.e., “Alice”) denotes the owner of the information.
The second part (i.e., “location”) corresponds to the type of information.

We call an access-rights graph conflict-free if for nodes with multiple incoming edges,
the intersection of the sets of values attached to these edges is not empty. Fig. 3 shows
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an example of a graph with a conflict. There could be multiple graphs for the same
information in terms of an entity’s access rights if the entity had multiple access rights
to this information, but with different constraints on them.

The entity whose access rights are used for building an access-rights graph has access to
the information in the root node if (1) each node has at least one outgoing edge (i.e., there
is an access right to the information in the node), (2) the graph is conflict-free, and (3)
the current value of the information in each node is listed in each of the node’s incoming
edges.

Assuming that an entity’s access rights are locally available, building a conflict-free
access rights graph out of these access rights is a completely local step and straightforward.
We present the pseudocode in Fig. 4. Ensuring that each constraint is satisfied requires
traversal of the graph and contacting remote services that offer the information in a node.
This graph traversal is called resolution. Resolution is bottom up; we discuss resolution
for client-based access control in Section 4.2. For the other access-control approaches, we
refer to the first author’s Ph.D. thesis [13, Chapter 5].

Access-rights graphs can become arbitrarily complex. At present, we expect them to be
rather simple for practical scenarios, such as the graph in Fig. 2. This expectation is based
on two observations: First, people typically specify access rights in a manual way, which
tends to lead to simple access rights, having no or only a few, broad constraints. Second,
the amount of context information that is currently available about people and that can be
used to constrain access is still limited. However, both observations probably will no longer
hold in the future. If users let electronic agents manage access rights on their behalf, access
rights will become more complicated and can involve more and narrower constraints. Also,
the amount of information available about people keeps increasing.

4.2. Client-based access control

Let us now discuss how we employ access-rights graphs in client-based access control.
Here, the client must build proofs of access for the primary and constraint information. In
particular, the client builds a conflict-free access-rights graph for the primary information
in terms of its access rights and assembles proofs for the nodes in the graph while
resolving this graph. In addition, the client must ensure that no confidential knowledge
about constraint information leaks to a service receiving a proof of access or to an issuer of
an access right. Therefore, for each node in the graph, the client builds additional access-
rights graphs for the information in the nodes pointed to by that node. These graphs are
either in terms of the access rights of the service offering the information in that node or
in terms of the access rights of the issuer of the access right associated with that node.
In particular, the client implements the algorithm shown in Fig. 5. To make it easier for
the client to build access-rights graphs in terms of a service’s or issuer’s access rights,
constraints in an access right should be restricted, as defined in Section 3.2.

While resolving an access-rights graph, the client needs to build proofs of access.
When contacting a constraint service, the client might receive an assurance stating that
a constraint is satisfied. Once it has received assurances for all the nodes that a node is
pointing to, it can build a proof of access for the information in this node and contact the
corresponding constraint (or primary) service. For example, in the graph shown in Fig. 2,
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Fig. 4. Building of access-rights graphs. The pseudocode gives the algorithm for building a conflict-free access-
rights graph.

the client first retrieves an assurance for D.w = u from the constraint service offering
D.w, using its access right as a proof of access. The client then uses this assurance and
its access right to B.y to build a proof of access for getting an assurance for B.y = s.
Similarly, it gets an assurance for C.z = t . These two assurances and the access right to
A.x allow the client to build a proof of access for A.x . The service offering A.x validates
the proof and returns the current value of A.x .



440 U. Hengartner, P. Steenkiste / Pervasive and Mobile Computing 2 (2006) 427–452

Fig. 5. Access-control algorithm. Access control consist of building a conflict-free access-rights graph and of
resolving this graph. In addition, access control must recursively ensure that issuers of access rights and services
receiving proofs of access can access constraint information.

Proof building becomes difficult for conflict-free access-rights graphs with loops
involving more than one node, since there is no obvious node at which a client can start
resolution. There are multiple ways to deal with such cases. If the information of all the
nodes in the loop was offered by the same service, a client could have this service resolve
the loop. If different services offered this information, a client can contact some of these
services and ask them to resolve the constraints on its behalf. However, this option requires
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trust relationships between the services before exchanging constraint information. None of
this information must leak to the client unless all the constraints are satisfied.

5. Hidden constraints

In this section, we introduce the concept of hidden constraints and apply it to client-
based access control.

5.1. Design

In our scenario, the client can access the primary information only if both the client and
the primary service have access to the constraint information in the client’s access right
to the primary information. In practice, this requirement can lead to owners of constraint
information granting the primary service access to the information to ensure that the client
can access the primary information. This approach is problematic since intruders into the
service can exploit the service’s access rights. Alternatively, if an owner of information
is not willing to grant the primary service access, the client will not be able to access the
primary information. For example, assume that Alice uses a service for providing important
information about her and that Bob has no trust relationship with this service. Alice grants
Bob an access right to the information, given that he is at a particular location. Bob is now
in a dilemma: Either he releases his location to the untrusted service in his proof of access
or he cannot learn Alice’s important information.

We now propose a solution that increases the number of cases where the client can
access the primary information and that does not require owners of constraint information
to issue access rights to the primary service. Our solution exploits hidden constraints.
According to our definition of an information leak in Section 3.1, an entity must know
the constraint specification in an access right in order to be able to derive confidential
knowledge when observing the outcome of requests exploiting this access right. However,
if a constraint specification is hidden from the entity, observing requests will not allow
the entity to infer this confidential knowledge. In our example above, Alice can issue the
access right to her important information such that the constraint in the access right remains
hidden from the service providing the important information. Therefore, the service cannot
learn the specification from the proof of access and will not be able to learn Bob’s location.

Note that hidden constraints do not hide the existence of a constraint in an access
right from an entity, they hide only its specification. Furthermore, hiding a constraint
specification from an entity does not mean that the entity can never learn the specification.
If the entity had access to the constraint information in the specification, it could learn the
specification by observing the system. However, this is not an information leak, since the
entity has access to the constraint information.

5.2. Client-based access control

A constraint specification consists of constraint information, a set of permitted values,
and the identity of the constraint service responsible for acknowledging constraint
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satisfaction. Let us now explore which parts of a constraint specification we can hide from
which entity in client-based access control.

Obviously, we cannot keep the constraint specifications in an access right secret from
the issuer of the access right. We can hide a constraint specification entirely from a service.
Namely, a service is not interested in this specification; it wants to know only whether the
corresponding constraint is satisfied. To support this feature, the issuer of an access right
needs to associate a constraint with the access right such that a service cannot learn the
constraint specification when looking at the access right or at an assurance in a proof of
access. However, the client building this proof remains able to gather assurances for the
constraint. We present implementations of this concept based on digital certificates and
based on one-way chains in Section 6.2. Such a hidden constraint prevents confidential
knowledge from leaking to a service. Namely, hidden constraints eliminate the check
marked with (∗) in the access-control algorithm in Fig. 5.

It is not possible to hide a constraint specification entirely from the client since the client
must know the identity of the constraint service responsible for resolving the constraint.
We can hide only the constraint information and the set of permitted values from the
client. (For example, the issuer of an access right encrypts the two items with the public
key of the responsible constraint service.) However, depending on the type of constraint
information or service, knowing the constraint service might allow the client to deduce
the type of constraint information (e.g., when a constraint service provides only one type
of information), the owner of the constraint information (e.g., when a constraint service
provides only one individual’s information), or even the value of the constraint information
(e.g., when a constraint service has limited coverage, such as a location service covering
only one building). Due to these reasons, our access-control architecture presented in
the next section supports hiding constraints only from a service, but not from the
client.

5.3. Alternative access-control approaches

Hidden constraints are also applicable to centralized and service-based access control,
as introduced in Section 3.3. In these two approaches, hidden constraints allow us to hide
a constraint specification from a client. We provide a more detailed discussion in the first
author’s Ph.D. thesis [13, Chapter 5].

Let us summarize what information leaks we have to avoid for the different access-
control approaches. We present this summary in Table 1. For an entity running access
control (or building a proof of access in the case of client-based access control) depending
on a constrained access right, this entity needs to ensure that the principals listed in the
table have access to the different types of constraint information in the access right.

6. Architecture

We now present a client-based access-control architecture that focuses on access rights
with context-sensitive constraints. We give an overview of our architecture and take a closer
look at the implementation of hidden constraints.
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Table 1
Information leaks

Approach Constraints
Non-hidden Hidden

Client-based Service, issuer Issuer
Centralized Client, issuer Issuer
Service-based Client, issuer Issuer

For each approach, we show the potential information leaks due to deduction of constraint information. For client-
based access control, constraints are hidden from a service. For centralized and service-based access control, they
are hidden from a client.

Fig. 6. Proof-building architecture. The access-rights-graph component interacts with the access-rights repository
for building a graph and with service stubs for resolution of the graph.

6.1. Overview

Fig. 6 gives an overview of the client’s components involved in proof building. The
access-rights-graph component is responsible for building and resolving access-rights
graphs. This component retrieves required access rights from the access-rights repository
and implements the algorithm given in Fig. 5. While resolving a graph, the component asks
service stubs to get an assurance (for nodes other than the root node) or the value of the
information (for the root node). A service stub knows how to interact with a service. We use
extended SPKI/SDSI digital certificates [14] for expressing access rights and assurances.
We give three example statements in Fig. 7. In the first example, Carol grants Alice access
to her calendar information if Alice is in Wean Hall 4103 and if an additional, hidden
constraint is fulfilled. (We explain the implementation of hidden constraints in the next
section.) As explained in Section 2.2, Carol, as the issuer of the access right, must indicate
the identity of the constraint service responsible for resolving a constraint when defining
this constraint. The second and third example show an assurance for the non-hidden and
hidden constraint, respectively.

6.2. Hidden constraints

We now discuss how we hide constraints from services. Here, the issuer of a constrained
access right includes only a reference to the constraint specification in the access right, but
not the actual specification. There are multiple ways to implement such a scheme. We
discuss an approach based on digital certificates and another one based on one-way chains.
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Fig. 7. Extended SPKI/SDSI certificates. We show an access right with constraints and two assurances.
Signatures and lifetimes are omitted.

6.2.1. Digital certificates
In the first approach, a constraint service signs a statement declaring that a constraint

is satisfied. The signature has a lifetime corresponding to the time frame during which the
constraint service believes the constraint to remain satisfied, as explained in Section 2.3.

Namely, the issuer of an access right includes a public key, H , in the access right, where
H serves as a reference to a constraint specification. This public key will also be used for
validating assurances signed with the corresponding private key, H−1. The issuer of the
access right should generate H and H−1. To avoid information gathering based on correla-
tion, the issuer should not re-use H in different access rights. The constraint specification
referred to by H is also defined by the issuer and consists of the following parts:

Constraint definition. This part lists the constraint information and a set of permitted
values.

Signing key. The signing key corresponds to private key H−1. It is encrypted with the
public key of a constraint service, S.1 By choosing this encryption key, the issuer
of the access right and of the constraint specification picks the constraint service
that provides the constraint information.

Validation key. The validation key corresponds to public key H .
Public key of service. This part lists the public key of the constraint service, S.
Integrity data. This data ensures the integrity of the constraint specification. We use

a cryptographic hash of the constraint specification (excluding signing key and
integrity data) and encrypt this hash together with the signing key.

1 We use an AES-based hybrid encryption scheme and HMAC for integrity checking.
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This constraint specification and the access right containing reference H to it are used
as follows: Their issuer gives both of them to the client. When building a proof of access,
the client retrieves the identity of the constraint service, S, from the specification and gives
the constraint specification to S. This service ensures that the current value of the constraint
information corresponds to one of the permitted values. It then decrypts the ciphertext in
the specification to get H−1 and to ensure that the specification has not been tampered with.
Next, it uses H−1 to issue an assurance in the form of a digital certificate. The assurance
consists of the validation key, H , signed with the signing key, H−1. The signature has a
lifetime corresponding to the time frame during which the constraint service expects the
constraint to remain satisfied. Next, the client sends the access right, together with the
assurance, to the primary service, which validates the signature of the access right. For
reference H included in the access right, the service ensures that there is an assurance
covering H and signed with H−1. Note that the service never sees the actual constraint
specification.

This approach has the advantage that a constraint service can freely choose the
lifetime of a signature covering an assurance, depending on the service’s domain-specific
knowledge. The drawback of the approach is that issuing a digital signature can be an
expensive operation. (We present some measurements in Section 7.)

6.2.2. One-way chains
Our second option does not require the generation of a potentially expensive digital

signature when issuing an assurance. Instead, it is based on one-way chains. A one-way
chain consists of a seed value an and repeated applications of a public one-way function,
f , to this seed, or ai−1 = f (ai ) for 0 < i ≤ n. a0 is publicly known, whereas an is
available only to a constraint service. The idea is to have the constraint service gradually
release values in the chain, starting with a1, and to have the primary service ensure that a
released value is part of the chain, based on a0. One-way chains guarantee that a released
value, ai , cannot be used for computing values to be released in the future, a j ( j > i).

In more detail, our approach looks as follows: For each hidden constraint, the issuer of
an access right chooses n and an and computes a0. The issuer also picks a time in the future,
T0, and a time interval, 1T . In our formal model, the tuple 〈n, a0, T0, 1T 〉 represents H̃
and an represents H̃−1. Given a tuple, it is possible to compute Ti with Ti = Ti−1 +1T for
0 < i < n. We associate ai with time frame [Ti−1, Ti ] (see Fig. 8). If a constraint is fulfilled
in time frame [Ti−1, Ti ], a constraint service releases ai . If the primary service manages to
recompute a0 based on ai , it will know that the constraint is satisfied. For one-way chains,
the constraint specification looks as follows:

Constraint definition. This part is identical to the certificate-based case.
Seed. This is the seed of the one-way chain, an . It is encrypted with the public key of

the constraint service, S, that provides information B.x .
Validation tuple. The validation tuple corresponds to the tuple 〈n, a0, T0, 1T 〉.
Public key of service. This part lists the public key of the constraint service, S.
Integrity data. This part is identical to the certificate-based case.

When receiving a constraint specification from a client, a constraint service ensures that
the constraint is satisfied and decrypts the ciphertext to get an and to detect tampering
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Fig. 8. One-way chain. Each value in the chain, ai , is associated with a time frame. Value a0 validates values in
the chain.

attacks. Based on the validation tuple, it determines the number of applications of f to an
that are required to get ai for the current time frame. Value ai serves as assurance and is
given to the client. The client forwards the value to the primary service. From the tuple
〈n, a0, T0, 1T 〉 and the current time, this service figures out the number of applications of
f to ai required to get a0. If the service computes a wrong value, either the client is cheating
or the current time frame has moved since the constraint service computed ai . (We assume
reasonably synchronized clocks, depending on the granularity of 1T .) In the latter case,
the client will issue another request. When the primary service manages to recompute a0
from ai , it can cache ai and use the cached value for validating future requests.

This approach has the advantage that it is less expensive for a constraint service. In
particular, computationally cheap cryptographic hash functions (e.g., SHA-1) can be used
for implementing f . Another advantage is that the approach allows trading off performance
vs. convenience when deciding about the length of a one-way chain. A one-way chain
covers only a limited time period. After this time period, a new chain must be created
and the access right using the chain needs to be re-issued. One the one hand, longer
chains require fewer updates of access rights. On the other hand, longer chains make it
more expensive for a constraint service or a primary service to compute values in the
chain. The approach has the drawback that the issuer of an access right chooses the
length of the time interval, 1T , during which the issuer expects a constraint to remain
satisfied. A constraint service cannot incorporate its own domain-specific knowledge.
However, for some information, this limitation is not a problem. For example, for access
rights constrained to location information, an issuer can choose an interval of a few
minutes. Since the speed at which individuals move is finite, the error in location remains
limited.

Both the approach based on one-way chains and the one based on digital certificates
require a constraint service to perform an asymmetric decryption operation, which can be
expensive. However, it is possible for a constraint service to cache decrypted values. In this
way, when a service is asked to issue an assurance for the same constraint multiple times,
it needs to perform a decryption operation only for the first request.

7. Performance analysis

We present a performance analysis of our access-control architecture. Our
implementation is in Java and based on an existing access-control framework for Web
environments [9]. We deploy it in the Aura pervasive computing environment [15]. SSL
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provides peer authentication and confidentiality and integrity of transmitted messages. We
run our measurements on a Pentium IV/2.5 GHz with 1.5 GB of memory, Linux 2.4.20,
and Java 1.4.2. Our asymmetric cryptographic operations employ 1024 bit RSA keys. We
use SHA-1 for building one-way chains and authenticating constraint specifications. (Our
machine can compute about 330,000 Java-based hashes/s) An experiment is run 100 times.
We report the mean and standard deviation (in parentheses).

We study the cost of access control when Alice grants Bob access to her calendar
information under different constraints. In the first experiment, Alice grants access only if
she is currently in her office. Alice does not hide this constraint. In the second experiment,
Alice grants access only if Bob is currently in his office. Alice hides this constraint. If
Alice did not hide the constraint, Bob would have to reveal his location to the calendar
service, which he might not be willing to do and thus would not be able to access
Alice’s calendar. The third experiment is identical to the second one, but the constraint
service caches decrypted signing keys. Our location service fingers a person’s desktop
computer and determines her location based on her activity. Our calendar service is
based on Oracle CorporateTime. In the fourth and fifth experiment, we repeat the second
and third experiment, but the hidden constraint is based on a one-way chain, instead of
certificates.

The implementation builds an access-rights graph for Carol’s calendar information in
terms of Alice’s access rights. In the first experiment, the implementation learns that it
must retrieves an assurance for Carol’s location before accessing the calendar information.
It exploits Alice’s access right to retrieve this assurance from the location service. (The
location service fingers Carol’s desktop computer and determines Carol’s location based
on her activity.) Next, the implementation ensures that the calendar service is authorized to
access Carol’s location information using the access right granted to the service. Similarly,
Carol must have access to her location information, which is straightforward to validate.
Finally, the implementation combines the assurance received from the location service
and Alice’s access right to the calendar information in a proof of access and sends the
proof to the calendar service, which is a centralized calendar system running Oracle
CorporateTime.

In the first experiment, the mean response time experienced by the client is 463 ms
(26 ms). Detailed results are in Table 2. About 25% of the cost is due to retrieving an
assurance from the constraint service. Most of this overhead is caused by setting up an
SSL connection, which requires two costly RSA decryption/signing operations (about
16 ms each), and by acquiring the location information. The cost for issuing an assurance
corresponds to the cost of generating a digital signature. Access control takes only a few
milliseconds, the main cost is checking a signature. Constraint processing has only limited
influence on the primary service. In addition to checking the signature of the client’s access
right, it now also needs to validate the signature of the assurance. The main cost is due to
setting up SSL and the retrieval of the requested information. This SSL setup is more
expensive than the first one. Closer inspection reveals that the additional delay is due to
Java’s garbage collection triggering during the setup.2

2 Choosing different amounts of memory allocations or using incremental garbage collection has no or negative
influence on the results.
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Table 2
Client-response time

Entity Step Non-hidden Hidden Hidden,
w/caching

µ (σ ) µ (σ ) µ (σ )

Client/constraint service SSL socket creation 50 (3) 50 (3) 50 (3)

Constraint service Deserialization 13 (2) 18 (2) 18 (3)
Constraint service Access control 3 (1) 4 (2) 3 (2)
Constraint service Retrieve location 37 (3) 38 (3) 38 (3)
Constraint service Issue assurance 17 (1) 35 (1) 17 (1)

Client/primary service SSL socket creation 92 (12) 96 (16) 96 (16)

Primary service Deserialization 23 (4) 21 (7) 20 (2)
Primary service Access control 5 (2) 5 (2) 5 (2)
Primary service Retrieve calendar entry 202 (23) 204 (16) 201 (11)

Total 463 (26) 485 (14) 469 (15)

Mean and standard deviation of elapsed time for security operations (in bold) and for other, expensive operations
using either non-hidden or hidden, certificate-based constraints [ms].

In the other experiments, the implementation must retrieve an assurance for Alice’s
location instead of Carol’s location. Furthermore, the implementation does not have to
verify that the calendar service has access to Alice’s location, since the constraint is hidden
from the service. The implementation still needs to ensure that Carol as the issuer of the
access right with Alice’s location information as constraint information can access this
information. The implementation can use an access right previously issued by Alice for
this purpose, or it could ask Alice whether she wants to release her location to Carol.
Finally, the proof of access is built in the same way as in the first experiment.

In the second experiment, we use a hidden constraint based on digital certificates.
The mean response time increases to 485 ms (14 ms). As shown in Table 2, the main
cause for this increase is the larger cost for creating an assurance. Namely, the constraint
service needs to decrypt the ciphertext in the constraint specification before it can issue
an assurance. Deserialization cost also becomes larger since the constraint specification is
now separate from the access right. The third experiment is identical to the second one,
but the constraint service caches decrypted ciphertexts. Therefore, the cost for issuing an
assurance is reduced to the cost for generating a signature, as presented in Table 2.

For the next experiments, we use a hidden constraint based on one-way chains in Carol’s
access right. The chain has 2016 steps and 1T = 5 min, that is, the chain covers a one-
week period. During the lifetime of the one-way chain, the number of hash operations to be
computed changes both for the constraint service and for the primary service. For example,
at the beginning, the constraint service needs to compute 2015 steps, after 1/2 week 1008
steps, and after one week zero. This observation is confirmed by the first two curves in
Fig. 9, which show (a) the constraint service’s cost for issuing an assurance and (b) the
cumulative cost for issuing this assurance and for the primary service’s cost for running
access control. The cumulative cost remains constant. The results can be explained with the
help of Fig. 8: The number of hash operations required for computing the value associated
with a time frame decreases over time, whereas the number of hash operations required for
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Fig. 9. Hidden, one-way chain-based constraints. The curves show the processing time it takes the constraint
service to issue an assurance and the cumulative cost of issuing this assurance and of the primary service running
access control, varying over the lifetime of the hash chain.

this value’s validation increases, so the total number of operations remains constant. For
this experiment, the mean client response time is 468 ms (23 ms), which is less than in the
case with hidden, certificate-based constraints (without caching).

Fig. 9 also shows the processing time for the case where the constraint service caches
decrypted ciphertexts and where the primary service caches chain values that it receives
from the client and that it successfully validates. The cumulative cost is minimal after one
week, when the constraint service does not need to compute any hash operations and just
returns the seed of the chain. Here, the mean client-response time is 439 ms (14 ms).

8. Related work

Multiple pervasive computing environments support context-sensitive access control to
confidential information [1,2,4,5]. Al-Muhtadi et al. [1], Chen et al. [2], and Gandon and
Sadeh [4] each employ centralized rule engines for running access control. None of them
discusses whether and how they address information leaks caused by constraints. Minami
and Kotz [5] present an access-control architecture where services resolve constraints.
Access rights are publicly available in their architecture. To be able to ensure satisfaction
of constraints, the primary service needs to have access rights to the constraint information
listed in the client’s access right to the primary information. The authors assume that
those access rights are never constrained. This limitation avoids information leaks where
the client exploits publicly available access rights to derive confidential knowledge about
constraint information in the service’s access rights.

Covington et al. [3,16], Neumann and Strembeck [17], and Bacon et al. [18] add context
awareness to role-based access control. None of the approaches considers information
leaks caused by context-sensitive constraints.

Classic access-control models, such as mandatory access control, discretionary access
control, or role-based access control, have no or very limited support for context-sensitive
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access rights to information. This limitation has been addressed in newer models, such as
UCONABC [19] or GAA API [17]. Both models support context-sensitive constraints, but
the authors do not discuss information leaks caused by context-sensitive constraints.

McDaniel [20] discusses various evaluation issues for constraints in a distributed
environment, lists desired security properties (e.g., non-repudiation), and reviews different
implementation approaches. He does not discuss information leaks caused by constraints.

Hidden constraints keep constraint specifications secret from clients or services. In
automated trust negotiation [21], a client or a service keeps its credentials or access policy
initially secret from a service or client, respectively. Here, after successfully completing
negotiations between the client and the service, a party will typically know the other party’s
policy or credentials. For hidden constraints, the constraint specification must remain
secret from a client or service throughout the processing of a query. A client or service
might eventually deduce a constraint specification if it was authorized to access the listed
constraint information, which is not an information leak.

9. Conclusions and future work

We showed that context-sensitive constraints on access rights can lead to privacy
violations and discussed how to avoid these violations. We also introduced the concepts of
access-rights graphs and hidden constraints. Access-rights graphs represent the conditions
under which access should be granted. Hidden constraints avoid information leaks by
keeping constraint specifications secret. We presented a distributed, context-sensitive
access-control architecture that avoids privacy violations. Our implementation and its
evaluation demonstrate the feasibility of our approach.

Our discussion revealed that access rights should not be publicly available and that
constraints should be kept restricted, otherwise running the access-control algorithm can
become complex. In particular, constraints should involve either a subject being granted an
access right or an entity issuing an access right.

We are deploying our access-control infrastructure in additional services to investigate
what kind of access rights and constraints users define on them. Another area of future
work is investigating how users actually specify access rights, either directly or through
agents. Finally, there is need for a method that eases the debugging or justification of
access-control decisions, particularly when hidden constraints are used.
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