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Abstract

Many information services in pervasive computing offer rich information, which is information
that includes other types of information. For example, the information listed in a person’s calendar
entry can reveal information about the person’s location or activity. To avoid rich information
from leaking its included information, we must consider the semantics of the rich information
when controlling access to this information. Other approaches that reason about the semantics
of information (e.g., based on Semantic Web rule engines) are based on a centralized design,
whose drawback is a single point of failure. In this paper, we exploit information relationships for
capturing the semantics of information. We identify three types of information relationships that
are common and important in pervasive computing and integrate support for them in a distributed,
certificate-based access control architecture. In the architecture, individuals can either define their
own information relationships or refer to relationships defined by a standardization organization. In
our approach, access control is fully distributed while sophisticated rule engines can still be used to
deal with more complex access control cases. To demonstrate the feasibility of our design, we give a
complexity analysis of the architecture and a performance analysis of a prototype implementation.
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1. Introduction

In pervasive computing, there are a multitude of information services, which provide
potentially confidential information about an individual, such as her location, her personal
files, her e-mail, her calendar, or her activity. Some of this information might be offered by
multiple services. For example, there are multiple ways to locate a person (see Fig. 1)
or to learn about her activity. In addition, a person might be a member of multiple
environments over time. In order to be granted access to this confidential information, a
client requires access rights. An individual should be able to issue access rights to her
confidential information. However, having the individual issue access rights per client, per
service, per environment, and per type of information is not scalable. Pervasive computing
frameworks that support access control [1–6] address the first three axes by employing
role-based access control, service-independent access rights, or sharing of policies across
environments. In this paper, we concentrate on the fourth axis and examine ways to limit
the number of types of information for which access rights need to be issued.

To achieve this goal, we exploit relationships between information for access control.
Consider the case of Alice managing access rights to her personal information, such as
her location or her activity information. In a naı̈ve solution, whenever she wants to grant
someone access to all her personal information, she has to issue a separate access right for
each type of personal information. In a better solution, Alice can bundle these different
types of information in a new type of information (e.g., “personal information”) and
grant access rights to this new type of information. When she wants to grant someone
access to her personal information, she now has to issue only a single access right. By
bundling information, Alice establishes information relationships (e.g., Alice’s location
information is related to her personal information). The access control mechanism exploits
these relationships in order to derive individual access rights.

Another example demonstrating the usefulness of information relationships involves
rich information, which is information that includes other types of information. Assume
that the current entry in Carol’s calendar says that she is having a meeting with Bob in her
office, that is, the calendar entry reveals the location of Carol and Bob. Therefore, only
people who are at least allowed to access Carol’s and Bob’s location should have access to
the calendar entry. To implement this rule, Carol should issue an access right for the entry
to someone only if he already has access to her and Bob’s location information. However,
this is tedious and might lead to consistency problems if Bob revoked an access right to his
location information. Instead, access control should be aware of the semantics of informa-
tion (e.g., calendar information contains location information) and take this semantics into
account (e.g., granting access to calendar information only if there is access to location
information). We can use information relationships, as introduced above, to capture the
semantics of information (e.g., calendar information is related to location information).

There are several frameworks for pervasive computing that exploit knowledge
representations developed for the Semantic Web and that use rule engines to reason about
this knowledge [2,4]. Such an approach can exploit certain information relationships for
access control, but it has the disadvantage that the rule engine is centralized. Therefore,
the rule engine can become a performance bottleneck, and it is a single point of failure in
case of an attack. As an alternative, there are distributed, certificate-based access control
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Fig. 1. Multitude of location services. There are multiple environments, each having its own set of location
services.

architectures [7,8], where clients gather and reason about access rights, expressed as digital
certificates, and services validate access rights received from clients. We propose making
such a distributed architecture aware of information relationships that are common and
important in pervasive computing. This way, we can run access control as often as possible
in a fully distributed fashion. Only more complex information relationships need to be
dealt with by a sophisticated rule engine.

The contributions of our work are the concept of information relationships as a
first-class citizen in a distributed, certificate-based access control architecture and a
formal model for incorporating relationships into access control. This paper expands on
our PerCom 2005 paper [9] in that we more thoroughly discuss various information
relationships (Section 2.2) and our information representation scheme (Section 3.1).
We also introduce global information relationships, as defined by a standardization
organization (Section 4).

We review the concept of distributed access control and introduce three information
relationships that are important in pervasive computing (Section 2). With the help of
a formal model of information relationships, we avoid ambiguities in access control
(Section 3). While individuals can define their own information relationships, we also give
them the option to exploit global relationships (Section 4). We present a distributed access
control architecture where clients use information relationships (Section 5), a prototype
deployment, and a measurement-based and an analytical evaluation (Section 6).

2. Access control architecture

In this section, we review a distributed, certificate-based access control architecture.
We also introduce three types of information relationships that are important in pervasive
computing.
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2.1. Distributed access control

We want a distributed access control architecture, where access control can be run
in a fully distributed way for many requests, without going through a centralized rule
engine. Therefore, we have services that provide confidential information also make access
decisions. Each service has an administrator who labels the provided information according
to our representation scheme (see Section 3.1). To grant access to a client, a service requires
that there is an access right authorizing this access. Locating these access rights can be an
expensive task. To reduce load on services, we assign this task to clients. Namely, a client
needs to assemble a proof of access, based on the client’s access rights, and transmit this
proof to a service, together with its request for information. Bauer et al. [10] show that even
resource-constrained clients, such as cell-phones, can build proofs of access. Alternatively,
it is possible for such a client to offload proof building to a third entity. A service receiving
a proof of access validates the proof as part of its access decision. This decision is cheap
(see Section 6.4) and feasible for resource-constrained services, such as a sensor. Proofs
of access have been proposed in earlier work [7,8]. Our contribution is the combination of
proofs of access and information relationships.

While validating a proof of access, a service must authenticate access rights and detect
tampering attacks. Therefore, we represent access rights as digital certificates, signed with
their issuer’s private key. To avoid bottlenecks, we do not store a client’s access rights in a
centralized knowledge base. Instead, we store them directly with the client. An individual
granting an access right to a client will hand over this right to the client for storage,
together with any information relationships bound to the access right. A client then uses its
collection of access rights and information relationships for building a proof of access. We
elaborate on proof building in Section 5.

2.2. Information relationships

An information relationship states that a client should be granted access to an
information item if the client already has access rights to information item(s) related to
this item. We now describe a set of information relationships that are particularly relevant
to pervasive computing.

Bundling-based relationships: Though there might be many different types of information
about an individual, some of them have identical access requirements. The
individual should be able to bundle such information and to issue only a single
access right for the entire bundle. For example, assume that Alice wants to
grant multiple people access to both her location and her activity information.
Therefore, for each person, she needs to issue two access rights. Instead, Alice
should be able to bundle both her location and her activity information in her
personal information and to grant each person only a single access right to her
personal information. Access control will then derive individual access rights
for Alice’s location and activity information from the bundle. This bundling of
information establishes an information relationship, as defined above, between
the location information and the personal information. Similarly, it establishes
a relationship between the activity information and the personal information.
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Bundling-based relationships reduce the number of access rights that Alice needs
to establish and the possibility of mistakes and information leaks.

Only Alice should be able to bundle her location information in other
information. If we allowed Bob to bundle Alice’s location information, he could
bundle this information in his own personal information. Since Bob has access
to his personal information, he would also be granted access to Alice’s location
information.

Combination-based relationships: Rich information is information that includes other
types of information. For example, a map shows the location of multiple people
or Carol’s calendar entry provides her location and the location of Bob, who is
attending a meeting with Carol. Therefore, there is an information relationship,
as defined above, between the rich information and the included types of
information, and access rights to the rich information depend on the existence
of access rights to the included types. For example, a client can access a map
only if the client has access rights to all the people’s location shown on the map.
Similarly, a client can access Carol’s calendar only if the client has access rights
to Carol’s and Bob’s location information. As for bundling-based relationships,
combination-based relationships reduce the number of access rights that Alice
needs to establish and the possibility of mistakes and information leaks.

Only Carol should be able to define a combination-based relationship for her
calendar entry. In particular, it is up to Carol to decide whether she wants to
define such a relationship in the first place. If Bob agrees to a meeting with Carol,
he will have to rely on Carol not to make this information publicly available. If
Carol is malicious, she will not respect Bob’s privacy and let anyone access the
corresponding calendar entry (or she will exploit other channels for providing the
information in this entry). Only laws can avoid this information leak. However, if
Carol is well behaved, she will want to respect Bob’s privacy, and she will want
to take his access rights into account when granting people access to her calendar
entry. Combination-based relationships make it easy to incorporate Bob’s access
rights, since Carol does not even need to know Bob’s access rights. We discuss
trade-offs between defining an access right to rich information and a relationship
for the same information in the first author’s Ph.D. thesis [11, Chapter 3].

Granularity-based relationships: Some information, such as location information, is
available at different levels of granularity. There are information relationships, as
defined above, between the different levels, namely coarse-grained information
is related to more fine-grained information. In other words, access rights to
coarse-grained information should be derivable from access rights to more fine-
grained information. For example, if Alice had an access right to Carol’s fine-
grained location information, she automatically should also have an access right
to Carol’s coarse-grained location information. There should be no need for Carol
to establish the second access right. Therefore, granularity-based relationships
reduce the number of access rights that Carol needs to define.

With the exception of combination-based relationships, information relationships are
static and require few updates by the individuals defining them. This property obviously
holds for granularity-based relationships. For bundling-based relationships, we expect an
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individual to organize her information once and to make only few changes after that.
(If an individual did not want to define her own relationships, she could exploit global
relationships; see Section 4.) Therefore, defining bundling-based information relationships
will be a rare task.

We envision that services will automatically define combination-based relationships
on behalf of individuals. For example, when Carol enters a calendar entry, the calendar
application will automatically issue a relationship between her calendar information
and her (and her meeting participant’s) location information. Therefore, the potentially
dynamic nature of combination-based relationships does not affect individuals.

Our solution has the benefit that it decreases the number of access rights that an
individual needs to specify. This reduction becomes even more important when access
rights are not established once and then left unchanged, but when they are defined in a
dynamic way. For example, Alice might want to grant access to Bob only for a short period
of time in order to enable Bob to fulfill a task. If access rights are dynamic, information
relationships will decrease the number of access rights that Alice needs to establish on an
ongoing basis.

An obvious question is whether the three information relationships discussed in this
section are common and important in pervasive computing. We observe that, for each
of our information relationships, there is a corresponding concept in role-based access
control. In particular, bundling-based relationships correspond to assigning roles to people,
combination-based relationships are similar to resources that require the presence of
multiple roles, and granularity-based relationships correspond to hierarchical role schemes.
There are additional concepts in role-based access control, such as separation of duty,
which ensures that a person cannot be a member of conflicting roles. It looks possible to
introduce corresponding information relationships in pervasive computing. However, after
studying the various types of information available in an existing pervasive computing
environment [12], we concluded that the three existing relationships are common and
sufficient for controlling access to this information and that we have not identified scenarios
that are frequent enough to justify the introduction of additional relationships as first-class
citizens in our access control model. (It is always possible for a service to handle such
scenarios on a case-by-case basis.) Another reason for keeping the types of information
relationships simple and their number limited is that, in pervasive computing, access rights
and information relationships will typically be managed by individuals. These individuals
will have only limited understanding of access control.

3. Formalizing access control

Access control exploits access rights and information relationships. To avoid
ambiguities, we require a formal definition of the conditions under which access should
be granted. This formal model will also provide the basis for our implementation
(Section 6.1). We introduce a representation scheme for information (Section 3.1). We then
present a formal model for access control, based on previous work [13,14] (Section 3.2).
Our contribution is the extension of this model to support information relationships
(Section 3.3). We conclude by demonstrating its application in a complex scenario
(Section 3.4).
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3.1. Information representation

In order to formalize access control to information, we need a representation scheme for
information. Access rights should be service and environment independent. For example,
Alice should be able to grant access rights to her location information regardless of
which services actually offer this information and which environment she currently is
in. Therefore, the information representation scheme should not bind information to
a service or environment that offers this information. For example, URLs, which are
used for identifying information on the Web, do not fulfill this requirement since they
bind information to a service. In addition, the scheme should include the owner of the
information. The owner is the individual who is allowed to issue access rights to the
information. Including this owner in the representation scheme will make it straightforward
to differentiate between valid and invalid access rights during access control. These two
requirements lead us to represent information in the following way:

(owner, item).type.

Let us elaborate on the various elements of this scheme:

Owner: As just mentioned, the owner is allowed to issue access rights to his information.
For example, Bob issues access rights to his location information. We represent
an owner with his public key. (The owner’s private key is used by the owner to
issue access rights.)

Item: Information is about a particular item (e.g., Bob, his car, a room in his house, or
an event that he organizes).

Type: Information is of a particular type (e.g., location, activity, financial,
temperature,...).

Each component of the representation should be associated with a formal description
of the component. For example, the description could say that a public key representing
an owner is an RSA public key of 1024 bits. Similarly, it could say that item Bob is a
person or it could define the type “location”. With the help of this description, a service
offering information can ensure that its notion of the information corresponds to the
owner’s understanding, as expressed in an access right to this information. Similarly, a
client that exploits an access right to information can ensure that its notion matches the
owner’s understanding.

For the formal description of information, we can exploit descriptions developed
for the Semantic Web, based on OWL [15]. These ontologies make it possible
to identify, for example, different types of information that have the same
semantic meaning (e.g., “location” and “whereabouts”) or that are expressed in
different languages (e.g., “location” vs. “Standort”). Using this approach, the
description of a component in the information representation scheme consists of
a URL pointing to an ontology. For example, SOUPA (Standard Ontology for
Ubiquitous and Pervasive Applications) [16] contains both an OWL representation
of “person” (http://pervasive.semanticweb.org/ont/2004/06/person) and of “location”
(http://pervasive.semanticweb.org/ont/2004/06/location).

http://pervasive.semanticweb.org/ont/2004/06/person
http://pervasive.semanticweb.org/ont/2004/06/location
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With the help of ontologies, we can ensure that different individuals or services agree
on the meaning of a component in the information representation scheme. For example,
they agree that a particular item is a person, but not a car. However, different individuals or
services could still use different schemes for naming the same owner or item. For example,
a location service knows client Alice under the user-id “alice”, whereas Alice uses her
public key for identifying the owner of her location information in access rights granted
by her. Related to this observation, we point out that the string denoting the item has
meaning only in the name-space of the owner of the information. For example, the room
that building manager Alice identifies as “Wean Hall 8220” might not correspond to the
room that building manager Bob identifies as “Wean Hall 8220”. Local name-spaces have
been used in previous research [17,18]. They rely on the observation that the existence of
a global name-space, which could avoid this confusion, is unrealistic.

To cope with different naming schemes for the same owner or item, a service must
ensure that the owner and item of information that it provides really correspond to the
owner and item of information in an access right that the service is going to use when
controlling access to this information. This validation can occur manually or automatically.
For example, the administrator of a service can perform manual validation when the
owner of information registers with the service. For automatic validation, there could
be ontologies that relate between different ownership representations and different local
name-spaces. (Formally, we could also use bundling-based information relationships, as
presented in Section 3.3.1, for automatic validation.)

Given the existence of such mappings between owners or items, we assume that all
individuals and services agree on the representation and naming scheme for information.
Using our representation scheme, we can describe Alice’s location as “(〈Alice’s public
key〉, Alice).location”. (We use 〈〉 as a placeholder for the actual public key.) Similarly, we
can describe the temperature in Wean Hall 8220 as “(〈Public key of building manager〉,
Wean Hall 8220).temperature”.

To simplify the notation in the rest of this paper, we use the name of an owner instead
of the public key representing the owner (e.g., “Alice” instead of “〈 Alice’s public key〉”).
In addition, we use the shortcut

entity.type

for representing information where the owner and the item are identical. Therefore,
“(〈Alice’s public key〉, Alice).location” simply becomes “Alice.location”. Note that Alice’s
location information is not necessarily owned by Alice. For example, in an enterprise
environment, this information could be owned by the enterprise. In such a scenario, we
can represent Alice’s location as “(Enterprise, Alice).location”. In general, it is a service
(i.e., its administrator) that decides about ownership of information provided by the service.

3.2. Basic access control

Our formal model is based on Howell and Kotz’s “restricted speaks-for” predicate [13]
between principals, which exploits Lampson et al.’s “speaks-for” predicate [14]. A
principal is an entity that can make a statement, such as a client or an owner of information.
For a client to be granted access to information provided by a service, the client needs to be
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able to speak for the owner of the requested information in terms of this information. For

example, the predicate Bob Alice.location
===========⇒ Alice denotes that Bob can speak for Alice

in terms of Alice’s location information. Formally, this predicate allows the following
conclusion: Bob says Alice.location ⊃ Alice says Alice.location. (The ⊃ connector
denotes implication. In addition to the ⊃ connector, there is also the ∧ connector, which
serves for conjunction, as shown below.) A service offering Alice’s location information
will grant Bob access to this information only if this predicate holds. The predicate is
restricted, that is, Bob can speak for Alice only in terms of her location information, but
not in terms of any other information (i.e., he will not be granted access to any other
information). Note that speaks-for predicates are transitive.

We need to formalize the establishment of speaks-for predicates. The “handoff
axiom” [14] says that such a predicate holds only if it is made by the principal on the
right-hand side. Formally,

` (A says (B C.x
====⇒ A)) ⊃ (B C.x

====⇒ A). (1)

In the above example, the predicate can be established only if Alice issues it, but not if Bob

(or someone else) does. Therefore, A says (B C.x
====⇒ A) corresponds to our notion of an

access right for information C.x granted to B by A.

3.3. Relationship-aware access control

We extend the formal model to support information relationships. An information
relationship states that if an entity B has access to information items Ei .xi , B should also
have access to a related item D.x . Formally, we use the E1.x1 ⊗ E2.x2 ⊗ · · · −→ D.x
predicate for expressing this relationship,1 and we want the axiom

` (E1.x1 ⊗ E2.x2 ⊗ · · · −→ D.x ∧ B
E1.x1

=====⇒ A1 ∧ B
E2.x2

=====⇒ A2 ∧ · · ·)

⊃ (B D.x
====⇒ C) (2)

to hold for certain conditions on the principals Ei , their information Ei .xi , and the
principals Ai and C . In Sections 3.3.1–3.3.3, we show that instantiating Axiom (2) in
different ways straightforwardly leads to the concepts of bundling-based, combination-
based, and granularity-based information relationships, respectively. For each type of
relationship, we also discuss plausible conditions on the various entities in the axiom and
pick the most useful one.

In addition to formalizing the application of information relationships in access control,
we also need to formalize their establishment. Since access to the information items on
the left-hand side of a relationship also grants access to the item on the right-hand side,
only a principal already speaking for the owner of the information on the right-hand side
in terms of the information should be able to establish the relationship. (The owner can

1 We use the ⊗ symbol instead of the ∧ symbol, since the latter symbol already serves as a connector in the
logic.
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always speak for the owner.) Formally,

` (F says (E1.x1 ⊗ E2.x2 ⊗ · · · −→ D.x)) ∧ (F D.x
====⇒ D)

⊃ (E1.x1 ⊗ E2.x2 ⊗ · · · −→ D.x). (3)

For example, Alice, as the owner of her location information (and anyone she grants
access to), can bundle this information in her personal (or some other) information.
Similarly, Carol, as the owner of her calendar, can define a relationship stating that anyone
who has access to her (and potentially other people’s) location information can also access
her calendar entry.

To prove soundness of our additions to Howell and Kotz’s access control logic, we need
to give our additions a semantics. We discuss soundness in more detail in the first author’s
Ph.D. thesis [11, Chapter 3]. We are now going to look at useful instances of Axiom (2).

3.3.1. Bundling-based relationships
Limiting the number of information items on the left-hand side of Axiom (2) to

one item corresponds to the concept of bundling-based relationships. For example, the
statement “Alice.personal −→ Alice.location” denotes that information “Alice.location” is
bundled in information “Alice.personal”, that is, if someone has access to Alice’s personal
information, he should also have access to her location information.

There are two plausible conditions on the various entities in Axiom (2). The first one
requires A1 = C , or

` (E1.x1 −→ D.x ∧ B
E1.x1

=====⇒ A1) ⊃ (B D.x
====⇒ A1). (4)

The second one calls for A1 = E1 and D = C , or

` (E1.x1 −→ D.x ∧ B
E1.x1

=====⇒ E1) ⊃ (B D.x
====⇒ D).

We choose the first condition, since the second one is too limiting. For example, given

E1.x1 −→ D.x , B
E1.x1

=====⇒ C , and C D.x
====⇒ D, it should be possible to conclude

B D.x
====⇒ D, which the second condition does not permit.
Our formal model allows individuals to bundle some of their information in someone

else’s information. For example, some people collaborating on a project can bundle
information that is relevant to the project in information owned by the project manager.
The project manager can then grant access to the information bundle.

Our discussion assumes that an individual establishes all her bundling-based
relationships. However, many individuals might establish the same types of relationships.
Therefore, it should be possible for a standardization organization to establish global
bundling-based relationships, to which individuals can subscribe. We discuss this concept
in Section 4.

3.3.2. Combination-based relationships
Not limiting the number of information items on the left-hand side of Axiom (2)

corresponds to the concept of combination-based relationships. For example, the statement
“Alice.location ⊗ Bob.location −→ Map Service.map” denotes that the map offered by a
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map service can be accessed by anyone who has access to both Alice’s and Bob’s location
information. (The assumption is that only Alice’s and Bob’s location is shown on the map.)

Again, there are two plausible conditions on the various entities in Axiom (2). We can
require A1 = E1, A2 = E2, . . . , and C = D, or

` (E1.x1 ⊗ E2.x2 ⊗ · · · −→ D.x ∧ B
E1.x1

=====⇒ E1 ∧ B
E2.x2

=====⇒ E2 ∧ · · ·)

⊃ (B D.x
====⇒ D).

The second option calls for A1 = A2 = · · · = C , which is an extension of the condition
for bundling-based relationships. This condition requires a single entity that has access to
all of E1.x1, E2.x2,. . . , and D.x , through which B would then acquire its access rights.
However, this requirement is unrealistic in practice and does not fit the intuitive model of
combination-based relationships. Therefore, we pick the first condition.

3.3.3. Granularity-based relationships
Granularity-based information relationships are a special case of bundling-based

relationships. For example, Alice could define two types of location information,
“Alice.location fine” and “Alice.location coarse”, and establish “Alice.location fine −→

Alice.location coarse”.
However, requiring individuals to introduce separate types of information for different

levels of granularity is tedious and not intuitive. Instead, we observe that a granularity-
based access right to information can be represented as an access right that has a constraint
on the returned information. For example, if Bob had access to Alice’s coarse-grained
location information and asked for her location, the result would have to be coarse grained.
This result (e.g., “(Building Manager, Wean Hall 8220)” using our representation scheme)
is itself an item about which there is some information (such as its granularity).

Constraints are not a new concept in access control. For instance, an access right can
be constrained to be valid only during office hours. By extending our formal model to
support constraints, we can express that Bob has access to Alice’s location at fine or coarse
granularity as follows (for readability reasons, we put constraints under the arrow):

Bob Alice.location
=================⇒

?result.granularity≥fine
Alice.

3.4. Example

In this section, we demonstrate the application of our formal model in an example
scenario. The scenario involves a location service that provides the identity of the people
in a room: two users Alice and Bob managing their access rights, and two users Dave and
Carol trying to access Alice’s or Bob’s confidential information.

Alice bundles fine-grained location information (and potentially other) information in
her personal information (Statement (1) in Table 1). She grants Carol access to her personal
information (2) and Dave access to her coarse-grained location information (3). Bob
grants Carol access to his fine-grained location information (4). The information provided
by the location service should be accessible only to clients having access rights to the
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Table 1
Example statements

(1) Alice says Alice.personal −→ Alice.location [?result.granularity ≥ fine]

(2) Alice says Carol
Alice.personal

============⇒ Alice

(3) Alice says Dave
Alice.location

=====================⇒
?result.granularity=coarse

Alice

(4) Bob says Carol
Bob.location

===================⇒
?result.granularity≥fine

Bob

(5) Location Service says Alice.location [?result.granularity = fine]

⊗Bob.location [?result.granularity = fine]
−→ (Location Service, Wean Hall 8220).people

Alice and Bob grant Carol and Dave access to their personal information using information relationships.

location information of all individuals in a room, that is, we require a combination-based
relationship. Assuming that only Alice and Bob are in Wean Hall 8220, the service defines
a corresponding relationship (5).

Carol queries for the people in Wean Hall 8220. She is granted access based on the
information relationship of the location service (5), Alice’s information relationship (1),
Alice’s access right (2), and Bob’s access right (4). Dave also issues a query and is denied
access, since the intersection of ?result.granularity = coarse (3) and ?result.granularity =

fine (5) is empty.
As demonstrated in this section, our scheme makes it straightforward to run access

control based on information relationships. Moreover, there is no need for the different
types of information to be owned by the same entity.

4. Global information relationships

Many individuals might define the same kind of bundling-based relationships. We now
introduce global information relationships, where standardization organizations specify
bundling-based information relationships on behalf of individuals and let individuals
subscribe to these relationships. This way, individuals no longer have to define their
own relationships. We study two approaches, differing in their requirements for a global
relationship to become valid. The first approach has the advantage that it does not require
any changes to the existing formal model, but it gives a lot of power to a standardization
organization. The second approach does not suffer from this drawback, but it requires an
extension to the formal model.

4.1. Delegation-based approach

In the first approach, in order for a global relationship to become valid, an individual
needs to grant the standardization organization access to her information. We call this
approach “delegation-based”, since the individual delegates all her capabilities to decide
about the information’s access rights and relationships to the organization. We illustrate
the approach based on an example. Alice lets organization ACME decide about the
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composition of her personal information. ACME decides that medical information is part
of personal information and issues

ACME says (Alice.personal −→ Alice.medical). (5)

In addition, Alice grants the organization access to her medical information, or

Alice says (ACME Alice.medical
==========⇒ Alice). (6)

This statement defines a speaks-for predicate between ACME and Alice in terms of
“Alice.medical”, which we can exploit to establish “Alice.personal −→ Alice.medical”
from Statement (5), according to Axiom (3).

ACME bundles “Alice.medical” in “Alice.personal”. This approach works well under
the assumption that both ACME and Alice agree that the composition of “Alice.personal”
is managed by ACME. However, it could break if there were no such agreement. For
example, it is possible that ACME bundles “Alice.medical” not only in “Alice.personal”
but also in other information owned by Alice (e.g., in “Alice.health”). Therefore, an access
right to “Alice.health” would also grant access to “Alice.medical”. Alice would not want
this property if she was not aware of this additional relationship and assumed that only
she managed the composition of “Alice.health”. To avoid this conflict, ACME should not
bundle information owned by Alice in other information owned by Alice. Instead, ACME
should bundle the information in information owned by ACME. Formally,

ACME says ((ACME, Alice).personal −→ Alice.medical). (7)

To enable Alice to issue access rights to her personal information, ACME needs to state

ACME says (Alice
(ACME, Alice).personal

==================⇒ ACME). (8)

Alice can exploit ACME’s definition of her personal information by issuing an access right
to “(ACME, Alice).personal”. If she did not want to use ACME’s definition, she could
issue an access right to her own personal information, that is, “Alice.personal”.

The approach requires that Alice grants ACME access to each type of information that
is part of ACME’s notion of personal information (e.g., Statement (6)). However, Alice
might not know for what information she has to issue such a statement, because she does
not know or does not want to know what information is part of ACME’s notion of personal
information. (The whole point of letting ACME decide about relationships is to take away
these decisions from Alice.) Similarly, Statements (7) and (8) assume that ACME issues an
information relationship and an access right for each individual that wants to use ACME’s
relationships. However, if ACME were a standardization organization, it might be oblivious
to the individuals who are using its specifications. These two observations suggest that
digital certificates implementing these three statements should allow for wildcards. For
example, in a certificate expressing Statement (6), Alice should be able to list a wildcard
(or a set of possible values) instead of “medical”. Similarly, in certificates expressing
Statements (7) and (8), ACME should be able to include a wildcard, instead of “Alice”.
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4.2. Naming-based approach

The first approach hurts the principle of least privilege, since it grants access rights
to the standardization organization, but the organization is not actually going to access
this information. Our second approach does not have this disadvantage. It gives the
organization the capability to define a bundling-based relationship for information owned
by an individual, but it does not grant access rights to the organization. Therefore, we
call this approach “naming-based”. Its drawback is that it requires the introduction of an
additional axiom to the formal model.

In terms of the example introduced in Section 4.1, we use “ACME bundle Alice.medical
===============⇒

Alice” to denote that ACME can establish relationships for “Alice.medical”. Only Alice
and principals speaking for Alice in terms of “bundle Alice.medical” can establish this
statement. Formally,

` ACME bundle Alice.medical
===============⇒ Alice ∧ ACME says (Alice.personal

−→ Alice.medical) ⊃ (Alice.personal −→ Alice.medical).

In this way, ACME can define a bundling-based relationship for “Alice.medical”,
without having an access right to this information. Note that the owners of the two types of
information in the relationship must correspond to Alice. In particular, ACME must not be
allowed to bundle “Alice.medical” in its own information. This relationship would grant
ACME access to “Alice.medical”, which we want to avoid. However, allowing ACME to
bundle “Alice.medical” in information that is owned by Alice can result in the problem
discussed in Section 4.1. There, we worked around the problem by having ACME bundle
information owned by Alice in information owned by ACME. As mentioned above, this is
not an option here. Instead, Alice and ACME can adopt a naming scheme for information
that avoids disagreement between Alice and ACME about who is responsible for the
composition of some of Alice’s information. For example, ACME could prefix the type of
information with its name, that is, instead of bundling “Alice.medical” in “Alice.personal”,
ACME could bundle “Alice.medical” in “Alice.ACME personal”.

Similar to the first approach, in a digital certificate expressing the permission to define
relationships, a wildcard could be used instead of “medical”. Furthermore, it is possible
to limit the scope of a certificate. For example, it could allow bundling of information in
“Alice.ACME personal”, but not in other information owned by Alice.

5. Proof building

In our distributed access control architecture, we have a client submit a proof of
access to a service. This approach has been investigated in previous work [7,8]. Our
implementation is based on Howell and Kotz’s framework [8], to which we added support
for proofs of access involving information relationships. Proofs of access are structured,
the structure corresponds to the types of axioms required for validating the proof. Fig. 2
illustrates a structured proof. In Section 3.3, we saw that one of the differences between
the three types of information relationships is the way in which they instantiate Axiom (2).
Another difference is the way in which the relationships are used in proof building, which
we now discuss.
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Fig. 2. Structured proof. The proof shows that Bob can speak for Alice regarding her location information, based
on an access right to Alice’s personal information and an information relationship between Alice’s personal and
her location information.

Fig. 3. Proof building. The goal is to prove “C
A.x
H⇒ A”. The search starts at A. It locates “B

A.x
H⇒ A” and tries to

prove “C
A.x
H⇒ B”. The search locates “C

A.y
H⇒ B” and uses “A.y −→ A.x” to get the required information.

5.1. Bundling-based relationships

We first illustrate how proof building exploits bundling-based relationships. A client
collects access rights and information relationships received from individuals. It stores
speaks-for predicates derived from access rights or from other speaks-for predicates in a
graph where nodes represent principals and edges represent information. For a request, the
algorithm traverses the graph in a breadth-first way to find a proof of access, starting at
the owner of the requested information and ending at the client that issues a request to a
service. During this graph traversal, when the information in a candidate edge does not
match the requested information, the algorithm looks at all bundling-based relationships
that have the requested information on their right-hand side and checks whether the left-
hand side of the relationship matches the information in the candidate edge. (If there is
a hierarchy of bundling-based relationships, this step requires the exploration of multiple
relationships.) If so, the algorithm accepts the candidate edge and the edges connected to
this edge become new candidate edges. Fig. 3 illustrates this algorithm. In summary, the
algorithm exploits backward chaining for searching access rights and forward chaining for
searching information relationships.

The algorithm looks at each edge at most once. Therefore, if there are n speaks-for
predicates and no information relationships, its worst-case complexity isO(n). If there are
also m information relationships, the algorithm will look at an information relationship at
most once for each candidate edge. The worst-case complexity becomesO(nm). Although
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complexity is multiplicative, we expect proof building to be practical. First, the absolute
value of n will be larger for the case without information relationships, since this case
requires separate access rights for information with identical access requirements. Second,
we expect principals to define information relationships in a way such that information
is bundled only in a small number of information bundles and to keep the hierarchies of
bundling low. We measure proof building time in Section 6.3.

Global relationships could increase the complexity of proof building to O(nm2).
In particular, each global relationship visited during proof building could require a
separate proof building step, in which the additional speaks-for predicate required for
the establishment of the global relationship is determined. For example, establishing
the relationship in Statement (7) requires a predicate showing that ACME can speak
for Alice in terms of “Alice.medical”. However, it is possible to avoid this increase in
complexity during proof building. Namely, a client should locate the access rights required
for establishing a global information relationship early on, that is, when the client inserts
the statement defining the relationship into its collection of access rights and relationships.
This way, there are only validated information relationships in the collection upon proof
building time.

5.2. Combination-based relationships

We do not expect clients to exploit combination-based relationships in proof building.
Instead, these relationships are used by services. A combination-based relationship is
tightly coupled to the information that a service provides (e.g., for a map service, the
relationship consists of all the people shown on the map). Therefore, it is straightforward
for a service to establish the corresponding relationship and to exploit it for access control.
In particular, for each information item on the left-hand side of the relationship, the service
has the client build a proof of access. The service then aggregates these individual proofs
of access and its combination-based relationship into a summary proof.

Proof building by a client can be difficult in this scenario, since the client might not
know what the individual proofs of access should look like and the service cannot inform
the client of their nature without leaking information. For example, if a map service had the
information relationship “Alice.location ⊗ Bob.location −→ Map Service.map”, a client
would have to build proofs of access for “Alice.location” and “Bob.location”. However,
the client might not know who is on the map, and the service cannot tell the client leaking
location information about Alice and Bob. We address this problem in related work [19].

5.3. Granularity-based relationships

For granularity-aware access control, the algorithm introduced in Section 5.1 must be
extended to take constraints on access rights and information relationships into account.

For example, “Carol Alice.location
=================⇒

?result.granularity≥fine
Bob” and “Bob Alice.location

===================⇒
?result.granularity=coarse

Alice”

can be concatenated to “Carol Alice.location
===================⇒

?result.granularity=coarse
Alice”. In our approach, we

encode granularity-based relationships directly in access rights and do not require separate
statements to define these relationships. Implementing granularity-based relationships in
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this way does not affect the algorithmic complexity of proof building (i.e., O(nm)).
However, this approach does have an influence on the absolute proof building cost. On the
one hand, the approach increases the constant factor in the absolute cost, since, in addition
to equality, the proof building algorithm now needs to be able to deal with inequalities.
On the other hand, the approach reduces absolute cost, since the number of required
information relationships, m, becomes smaller.

In summary, our proof building algorithm is simple, but it has proved sufficient for our
application scenarios. We can also trade off computation vs. storage. Instead of computing
a proof upon a request, a client can store the closure of its access rights and update
this closure whenever it receives an access right or information relationship. Instead of
employing a brute-force prover, a client can use more sophisticated theorem provers or
Semantic Web rule engines. This approach would allow us to combine the benefits of both
worlds (i.e., no single point of failure and more optimized proving).

6. Performance analysis

We analyze our proposed information relationships along three axes: their effect on the
number of issued access rights and their influence on proof building time and on request
processing time. We run our measurements on an unloaded Pentium IV/2.5 GHz with
1.5 GB of memory, Linux 2.4.20, and Java 1.4.2.

6.1. Deployment environment

We use the Contextual Service Interface (CSInt) [20] developed for the Aura pervasive
computing project [12] at Carnegie Mellon as a testbed for the implementation and
deployment of our access control mechanism. CSInt has a client/server architecture, is
implemented in Java, and allows a client to retrieve information from a service using a
simplified SQL query language. We store access rights and information relationships as
extended SPKI/SDSI digital certificates [17]. We give two examples in Fig. 4. SSL provides
peer authentication and confidentiality and integrity of transmitted messages. Proofs of
access are implemented as Java classes. Each axiom in Section 3 has its corresponding
class. For example, there is a class for the handoff axiom (Axiom (1)). Each instance of
a class is initialized with the preconditions of an axiom. The initialization values can be
instances of proof classes themselves. A class is able to serialize and deserialize its instance
variables so that proofs of access can be submitted to a service. When deserializing such a
proof, a service must instantiate only classes representing axioms from our formal model.
After instantiating a class, a service calls the new instance’s verification method, which
ensures that the preconditions can be combined in the formal way defined by the axiom
underlying the class.

6.2. Number of access rights

We examine how bundling-based relationships affect the number of access rights that
an individual has to issue. In particular, we compare the number of statements to be made
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Fig. 4. Extended SPKI/SDSI certificates. Shown are an access right and an information relationship.
public key:foo stands for foo’s public key. The tag section can list constraints. We omit digital signatures.

in a world with information relationships to the corresponding number in a world without
information relationships.

Let us first consider the case with information relationships. Assume that there is a
full, tree-based hierarchy consisting of l levels of bundling-based relationships, where
l = 1 corresponds to the base case consisting of a root node and some leaf nodes. Each
parent node has m children (i.e., m types of information are bundled in each parent node).
There are k clients. Each of them is assigned to a single node in the hierarchy, meaning
that the client is given an access right to the information covered by the node. There are
different ways to distribute the clients in the hierarchy. In this scenario, regardless of the
clients’ distribution, the number of access rights to be issued is always k and the number
of relationships is always

∑l
i=1 mi . The first curve in Fig. 5 shows the overall number of

access rights and relationships for different values of l. We choose k = 50 and m = 3.
We want to know the number of access rights that would have to be issued if there were

no relationships, but the k clients should have access to the same information as in the case
with relationships. This number depends on the distribution of these clients in the tree.
We examine three different distributions. The first one is artificial and presents the best
case in possible savings of issued access rights: all k clients are assigned to the root node.
Without relationships, this scenario would require kml access rights (since there are ml leaf
nodes), as shown by the second curve in Fig. 5. The second distribution is also artificial and
presents the worst case in possible savings: all k clients are distributed randomly among
the ml leaf nodes. This scenario would require k access rights, as shown by the third curve.
The third distribution is a more realistic one: we distribute the k clients evenly among the
l + 1 layers of nodes in the hierarchy. This would require k

l+1

∑l
i=0 mi access rights, as

shown by the fourth curve. As we can see in Fig. 5, with the exception of the worst case,
where relationships become unnecessary, relationships can lead to a significant decrease in
the number of issued access rights and information relationships.

We believe that it is intuitive for individuals to define relationships, since the underlying
paradigm is well known and already used for organizing files in directories or digital
pictures in galleries. If the individual did not want to define her own relationships, she
could always exploit relationships defined by third entities.

Similar to bundling-based relationships, granularity-based relationships require
individuals to issue fewer access rights, where the decrease is proportional to the levels
of granularities. Combination-based relationships also reduce the number of access rights,
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Fig. 5. Number of issued statements. We compare the number of issued access rights and relationships in a world
with relationships to the number of issued access rights in a world without relationships, for different levels of
bundling-based relationships and distributions of clients.

since they prevent an owner of information from having to issue separate access rights to
rich information.

6.3. Proof building time

We examine the cost of proof building, as explained in Section 5. Our experiment
consists of locating a set of speaks-for predicates in a pool of statements and assembling
them in a proof of access. We consider up to five sequentially connectable (i.e., of the
form “C.x −→ B.x”, “B.x −→ A.x”, . . .) bundling-based relationships. Because of
manageability reasons, we do not expect individuals to create more than five levels of
bundling-based relationships in their information hierarchies. This expectation is based on
observing people that organize their personal files in (sub) directories or their pictures in
(sub) galleries. Note that the results presented in this section and our complexity analysis
in Section 5.1 allow prediction of the cost even for a larger number of levels.

Our experimental setup covers a worst-case scenario: We pick five among 50 possible
clients and create a sequential path of access rights between them (i.e., a client delegates
its access right to the next client in the path). All experiments will locate this path, since
there is considerable variation for different paths. (Whereas we present results only for
this particular path, we did re-run our experiments for other paths, and the conclusions are
identical.) We then put the access rights into a pool, which we expand by adding random
access rights. The random access rights form a directed graph where each recipient of
an access right is (indirectly) reachable from the issuer of the first access right in the
predetermined path and where none of the recipients is on this path (i.e., we do not
allow shortcuts). We randomly set the information in each access right to one of the
possible information items covered by the bundling-based relationships. An experiment is
characterized by a number of random access rights and a number of relationships and run
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Fig. 6. Proof building time. For a fixed number of bundling-based relationships, mean proof building time
increases linearly in the number of searched access rights.

ten times. Fig. 6 reports the mean proof building time. According to Section 5, the worst-
case complexity is multiplicative in the number of speaks-for statements and information
relationships. Our results confirm that the increase is linear for a particular number of
relationships.

In practice, information relationships do not necessarily lead to increased proof building
cost. In particular, if there are relationships, there typically will be fewer access rights in
a client’s pool, which makes proof building cheaper. Therefore, for a given value on the
x-axis in Fig. 6, the various proof building times are not directly comparable. The actual
cost strongly depends on the number and types of information relationships. Overall, as we
will show in Section 6.4, the cost of building a proof is comparable to the cost of processing
a request. We also observe that the numbers presented in Fig. 6 cover a worst-case scenario.
First, we require four access rights for the proof of access; we expect this number to be
smaller in practice (e.g., an access right in which the owner directly grants access to the
client). Second, our experimental setup ensures that all access rights in a user’s collection
might be explored for proof building. In real collections, many of the access rights in a
collection will not be explored. For example, a search for access rights to Alice’s location
information typically will not explore access rights to Bob’s location information.

6.4. Client response time

We study the influence of bundling-based relationships on client response time in our
prototype implementation. As mentioned in Section 5, the other types of relationships do
not have a negative influence on complexity. Our asymmetric cryptographic operations
required for setting up SSL connections and validating the signatures of certificates use
1024 bit RSA keys. An experiment is run 100 times. We report the mean and standard
deviation (in parentheses). Since we are not interested in proof building time for these
experiments, we assume that clients have pre-built proofs.
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Table 2
Client response time

Entity Step µ (σ )

Both SSL Socket creation 53 (6)
Service Access decision 3 (2)
Service Gather location information 56 (7)

Total 129 (13)

Mean and standard deviation of elapsed time for security operations (in bold) and for gathering information [ms].

Fig. 7. Client response time. The elapsed time increases linearly with the number of relationships.

In the first experiment, Alice grants Bob access to her location information in an access
right. Bob submits the corresponding proof to a location service, which validates it and
locates Alice. The service then fingers Alice’s Linux desktop computer and determines her
location from her activity. We run the client and the location service on the same host. The
mean response time is 129 ms (13 ms). More detailed results are in Table 2. Making an
access decision takes only a few milliseconds, the main cost is validating the signature of
the certificate. Gathering the location information is the most expensive step. Setting up
an SSL connection requires two costly RSA decryption/signing operations for client and
server authentication. Making an access decision and setting up SSL are CPU bound and
will benefit from faster hardware.

In the second experiment, Alice grants Bob access to her location information via a
variable number of sequentially connectable, bundling-based relationships. The results are
in Fig. 7. Note that the scaling of the y-axis is different from the scaling in Fig. 6. The
figure shows that client response time increases linearly by about 7 ms for each additional
relationship. The main reasons for the increase are increased transmission cost and the
validation of an additional signature.
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7. Related work

There is a lot of research that deals with security and privacy issues for pervasive
computing. Here, we limit ourselves to research that is closely relevant to the research
presented, namely research devoted to access control frameworks, specification languages
for access rights, and distributed access control. More research dealing with security and
privacy issues for pervasive computing is discussed in the first author’s Ph.D. thesis [11].

There are several frameworks for pervasive computing environments that support access
control to confidential information [1–6]. Al-Muhtadi et al. [1], Chen et al. [2], Covington
et al. [3], and Gandon and Sadeh [4] employ centralized rule engines with differing
degrees of flexibility for running access control. It is possible to incorporate our proposed
information relationships into these rule engines. However, the rule engine can become a
performance bottleneck, represents a single point of failure, and needs to be fully trusted
by all entities. In addition, these solutions store access rights in a centralized knowledge
base, which is troublesome in terms of privacy; the knowledge base should not learn about
all the access rights of an individual, it should know only about access rights that will be
required for answering requests. A centralized approach seems to have the advantage of
supporting negative access rights. However, it is unclear how big the benefit of negative
access rights is; they might be too complex for individuals, not administrators, managing
access rights. Also, since there can be multiple environments and thus multiple knowledge
bases, consistency problems are still possible. Jiang and Landay [5] and Minami and
Kotz [6] tag information with its access rights. The tag of derived information is derived
from the tags of the source information. However, for many cases, automatic derivation is
not possible and the tag needs to be manually specified, which is not scalable.

Multiple specification languages have been used for expressing access rights to
information in pervasive computing. For example, Myles et al. [21] use an extended version
of P3P [22], which allows Web servers to express their privacy practices. Chen et al. [2]
exploit REI [23], which is targeted at pervasive computing environments. XACML [24]
is an access control language for distributed systems. It is possible to add support for the
expression of information relationships to these languages. However, these languages are
targeted at environments where access control is run by a single entity. As opposed to the
speaks-for predicate and SPKI/SDSI, they have no built-in mechanisms for verifying the
authenticity of a statement, which is essential when running access control in a distributed
way and delegating access rights across multiple environments.

Similar to Howell and Kotz, Bauer et al. [7] present an access control framework in
which clients submit proofs of access to services. We exploit Howell and Kotz’s framework
because SPKI/SDSI is standardized [17] and it is based on the well-known speaks-for
predicate.

8. Conclusions and future work

Access control in pervasive computing environments needs to take relationships
between information into account. We proposed making such relationships first-class
citizens in access control. This way, it becomes straightforward to control access to rich
information. We identified three types of information relationships that are important in
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pervasive computing environments, and we formalized their establishment and application
in access control. Instead of defining their own relationships, individuals can exploit global
relationships defined by a standardization organization. To avoid centralized access control,
we integrated support for information relationships into a fully distributed access control
architecture, where clients assemble proofs of access.

Our sample implementation and its deployment demonstrate the feasibility of our
approach. Namely, compared to other costs, the cost of making an access decision is
cheap, which makes it feasible for computationally weak devices to make access decisions.
Furthermore, while bundling-based relationships increase the algorithmic complexity of
proof building, the reduction in number of required access rights does not necessarily lead
to higher absolute proof building cost.

We are deploying our access control infrastructure in additional Aura services. We will
offer a bigger community of users access to these services in order to investigate what kind
of access rights and relationships users define.
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