
Distributed, Uncertainty-Aware Access Control for Pervasive Computing

Urs Hengartner and Ge Zhong

David R. Cheriton School of Computer Science

University of Waterloo

{uhengart, gzhong}@cs.uwaterloo.ca

Abstract

Access control to sensitive resources in pervasive com-

puting needs to take uncertainty into account. Previous

research has developed uncertainty-aware access-control

models for environments that are managed by a central-

ized administrator. We demonstrate that environments man-

aged in a distributed way require a more powerful model.

Furthermore, we point out additional challenges that need

to be considered when deploying uncertainty-aware access

control, namely, identifying and authenticating both peo-

ple and their intended actions, associating uncertainty with

time, providing monotonicity, and defending against Sybil

attacks. We present an access-control model that addresses

these challenges and discuss a sample implementation.

1. Introduction

Access control to sensitive resources in pervasive com-

puting needs to take uncertainty into account. For exam-

ple, in biometrics-based access control, a person’s observed

trait, such as her face, is rarely completely identical to a

trait stored by the access-control mechanism. Instead, the

mechanism considers authentication a success if uncertainty

about the two traits being from different people is small.

In another example, a service that locates people might be

uncertain about a person’s current location. Here, the ser-

vice should be able to include this uncertainty in a statement

about the person’s location, instead of issuing no statement

at all. A location-based service exploiting this statement

might be willing to accept a certain amount of uncertainty.

Finally, a person could trust different services to a differ-

ent degree to achieve a task, such as locating people. The

person could have high confidence in a service that locates

people’s cellphones, but less confidence in a service that lo-

cates people’s badges.

Traditionally, uncertainty-aware access control for per-

vasive computing has been studied in the context of central-

ized environments, where an administrator decides about

the services that are used for authenticating and locating

people and the amount of trust in the services’ ability to

fulfill these tasks [5, 9, 15]. The existing work does not

support distributed environments, where individuals make

these decisions. We focus on these environments in this

paper. We also study some additional challenges that have

not been addressed, namely, identifying and authenticating

both people and their intended actions, associating uncer-

tainty with time, providing monotonicity [3], and defending

against Sybil attacks [6].

Our main contribution is to address these challenges by

defining a formal, uncertainty-aware access-control model

for pervasive computing environments that are managed in

a distributed way. The model also supports the combination

of statements made by different services to achieve consen-

sus and ensures that corrupted services have only limited

impact. In another contribution, we provide a sample im-

plementation of the proposed access-control model.

We first discuss some challenges raised by uncertainty-

aware access control in pervasive computing (Section 2).

Next, we present a formal model that addresses these chal-

lenges (Section 3). Finally, we discuss the implementation

of this formal model (Section 4).

2. Challenges

In this section, we discuss some challenges that arise

when incorporating uncertainty into access control in perva-

sive computing and that have not been addresses in earlier

work.

2.1. Distributed Environments

Often, there is some uncertainty about whether a service

is able to fulfill its assigned tasks. We use the term trust to

denote this kind of uncertainty. For example, a service that

locates people by locating their badges might have only lim-

ited trust since people can leave their badges in their offices

or exchange them. Different services will have different de-

grees of trust. For example, a service that locates people’s

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

cellphones will typically be more trusted than a service that

locates people’s badges since people are less likely to leave

their cellphones in their offices or to exchange them. Trust

in a service could also depend on the identity of the entity

that provides the service.

Many pervasive computing environments (e.g., [4, 8, 14,

15]), sometimes implicitly, assume that there is a central-

ized administrator who configures the access-control mech-

anism and who decides about the amount of trust in indi-

vidual services. Corresponding formal models can express

the level of trust in a service, but not who decides about

this level. The assumption is that the same level is appro-

priate for all people. This assumption holds for centralized,

closed environments. For example, a company exploits a

limited set of location services and assigns each a service a

level of trust. In more open, distributed environments, like

homes, universities, or shopping malls, these environment-

wide decisions, covering all people, services, and devices

in the same way, are not flexible enough. For example, in

a university environment, students should be able to decide

what services to use for gathering and providing location

information and the level of trust in each service.

In summary, our access-control model should be flexible

enough to also support environments where trust in services

is defined in a distributed way.

2.2. Identification and Authentication

There are many scenarios in pervasive computing where

considering only a person’s context, such as her location, is

not sufficient for access control and where user identifica-

tion and authentication are required. For example, a pizza-

delivery person should not have access to a projector in a

meeting room just because she is in the meeting room. User

identification and authentication should be seamless. For

instance, people could carry personal devices with them

that identify and authenticate their owner. Alternatively,

a pervasive computing environment could identify and au-

thenticate a person based on, for example, her face or her

voice. Some of these technologies have uncertainty associ-

ated with them, which the access-control mechanism needs

to take into account. For example, in the case of biometrics,

the mechanism has to consider that a person’s observed trait

rarely matches a stored trait completely.

Identifying and authenticating a person is not sufficient,

the access-control mechanism also needs to identify the ac-

tion that the person wants to take. For example, when Alice

turns on a projector, the access-control mechanism, on be-

half of the projector, asks a videocamera (and maybe other

sensors) observing the projector for the identity of the per-

son who wants to use the projector. The camera notifies the

mechanism of Alice’s identity and of its degree of uncer-

tainty about this identity and about the fact that Alice ac-

tually wants to use the projector (and not a different device

that is nearby). Next, the mechanism evaluates the access

policy of the projector and decides whether Alice should be

granted access. Many pervasive computing projects (e.g.,

[4, 8, 14, 15]) support access policies, but do not formally

express how an access-control mechanism derives that a

particular person intends to take a particular action.

In summary, our access-control model should formally

express uncertainty-aware identification and authentication

of users and their intended actions.

2.3. Time

An important factor for uncertainty is time. Uncertainty

tends to change over time, so when adding uncertainty to

a statement, we have to define explicitly when this state-

ment holds. There are multiple ways to achieve this goal.

For example, a person’s trust in a service changes over

time, but probably only infrequently. Therefore, in our for-

mal model, we keep the amount of trust in a service by

a person constant, but we limit the lifetime of the state-

ment expressing this trust. For services that locate or au-

thenticate people, a service’s uncertainty can change much

faster, which can become a problem for context-sensitive

services. Assume that an access-control mechanism makes

a decision based on a person’s location. Namely, the mech-

anism queries a location service for the person’s location

and subsequently makes a positive access decision. How-

ever, between issuing the query and making the decision,

the person could have moved, so access might have been

granted erroneously. There are ways to avoid this problem,

though they are difficult to implement and not really neces-

sary for pervasive computing [10] (e.g., people move only

at a limited speed). An alternative is to have a service that

issues a statement about a person’s context also express the

service’s (anticipated) change in uncertainty about the con-

text. For example, a location service states at what time

it makes a statement about a person’s location, its current

uncertainty about this information, and how it expects this

uncertainty to change in the near future (till the statement

expires). For example, “At 8:00pm, the location service’s

uncertainty about Bob being in his office is at most 20%,

this uncertainty increases linearly by 10% every minute, and

the statement expires at 8:05pm”.

In summary, our access-control model should be able to

associate uncertainty with time.

2.4 Monotonicity

A desirable property of an uncertainty-aware access-

control model is monotonicity. Monotonicity ensures that,

given a set of statements that collectively grant access, a

superset of this set will not deny access [3]. In terms of

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

uncertainty, monotonicity guarantees that combining state-

ments can only decrease uncertainty. For example, assume

that there are two location services; one of them believes

that Bob is in his office, the other one believes that Bob is

at home. If a formal model allowed combination of such

statements to a statement that Bob is in the office building,

the summary uncertainty would have to be higher than the

uncertainty that Bob is in his office. Therefore, if Bob tried

to get access to a resource under the constraint that he is in

the office building and if he had to collect statements about

his current location, he would likely not present the state-

ment about him being at home to the access-control mech-

anism and the mechanism might erroneously grant access.

Non-monotonicity could also cause problems if the mech-

anism itself collected statements. For example, it is not

clear how a service that is expected to make a statement,

but is currently unreachable, should be dealt with in a non-

monotonic model. Should we ignore it? Should we assume

that it makes a negative statement? On the other hand, if the

model was monotonic and ensured that a statement from

this service could only decrease the summary uncertainty, it

would be safe to ignore this service.

In summary, our formal access-control model should

provide monotonicity.

2.5 Sybil Attacks

A Sybil attack [6] exploits monotonicity, as introduced

in Section 2.4, to combine multiple statements, issued by

the same service, but each under a different identity, to de-

rive a summary statement with sufficiently low uncertainty

for somebody to be granted access. For example, a location

service issues a statement saying that Bob is in his office

with at most 20% uncertainty. Bob could retrieve multiple

such statements from the service, each issued under a differ-

ent identity, till the summary uncertainty of the statements

is below a threshold, and present them to the access-control

mechanism. If the mechanism did not realize that the state-

ments were issued by the same service, it would erroneously

grant access to Bob.

In summary, our formal access-control model should de-

fend against Sybil attacks.

3. Access-Control Model

In this section, we discuss an access-control model that

addresses the challenges listed in the previous section. Our

model is based on existing work [2], to which we added sup-

port for uncertainty. The existing model has the advantages

that it is targeted at distributed environments (i.e., it formal-

izes who makes a statement), can be given a semantics in

higher-order logic (i.e., the model is sound), and is similar

to Lampson et al.’s well-known speaks-for logic [13].

3.1. Review of Existing Model

In the model, there is a says() statement, which identi-

fies the entity making a statement. For example, a user, A,

granting another user, B, access to a resource, U , is mod-

elled as “A says (delegate(A,B ,U))”. User B trying to

access U is expressed as “B says (goal(U ,N))”. (Nonce

N avoids replay attacks.) Assuming that the access-control

mechanism knows that A manages access rights for U , the

mechanism tries to derive “A says (goal(U ,N))”. Theo-

rem DELEGATE-E in Table 1 supports this conclusion.

The model allows a statement to have a lifetime, which

we exploit for tying uncertainty to time, as explained in Sec-

tion 2.3. Here, we leave lifetime away for readability rea-

sons. Entities are identified with their public key and issue

statements in the form of digital certificates [1]. There is no

need for a Public Key Infrastructure (PKI).

3.2. Uncertainty Awareness

Our access-control model should allow entities that issue

a statement to express their uncertainty about the statement.

A design choice is whether it should be possible to asso-

ciate any statement with uncertainty or only a limited set.

While there are logics that take the former approach [7],

we choose the latter one. For some statements, the seman-

tics of having a statement associated with uncertainty are

ambiguous, which could lead to users being confused (and

making wrong decisions). For instance, Alice either grants

an access right to Bob or she does not, but there is no need

for giving her the option to associate uncertainty with the

access right itself. However, the access right can include a

constraint that has uncertainty associated with it. For exam-

ple, Alice grants Bob access under the constraint that he is

in his office with uncertainty lower than 20%.

To address the challenges mentioned in Sec-

tion 2, we add several statements and theo-

rems to the access-control model. The statement

“A says (delegateIf(I ,V ,P ,A,B ,U))” denotes

that A grants B access to U if the value of I is in set

V with uncertainty lower than P . (We discuss possible

implementations of uncertainty in Section 4.1.) For ex-

ample, I could be “Alice’s location” and V could contain

her office and a meeting room. Theorem IF-E in Table 1

shows the application of the statement. The statement

is combined with a statement saying that A thinks that

there is consensus about I being in set W , expressed as

“A says (consensusIn(I ,W ,Q))”, to get a regular

delegate() statement, under the conditions that the

uncertainty about the consensus statement, Q, is lower than

P and that W ⊂ V holds. We discuss the � condition in

Section 4.1.

User A should be able to choose the services that can

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

acknowledge satisfaction of a constraint in an access right

of hers, such as the one shown above. A service is an

entity that has a public key; it can be a sensor (e.g., a

videocamera), a company (e.g., a cellphone company pro-

viding its clients’ location), or another user. The state-

ment “A says (delegateIn(A,S , I ,V ,P))” has A del-

egate the authority to decide whether I is in V to S, where

A’s trust in S is P . Theorem DELEGATE-IN-E in Ta-

ble 1 shows the application of this statement. The state-

ment “S says (in(I ,W ,S ,Q))” denotes that S believes

that the current value of I is in set W with uncertainty Q.

We include S in the in() part of the statement to remember

its origin; we will need this origin later for the consensus

operation. The uncertainty about the derived statement, R,

in Theorem DELEGATE-IN-E depends on P and Q. (See

Section 4.1 for a discussion of the ⊗ condition). When is-

suing a delegateIn() statement to a service, A identifies

which of maybe multiple identities of this service is autho-

rized to issue in() statements by picking a particular pub-

lic key of the service. This way, all the other public keys

that the service might have are ignored by the access-control

mechanism and Sybil attacks are avoided.

Multiple services can be authorized to issue in() state-

ments. Theorem CONSENSUS-IN-I in Table 1 defines their

consensus. (See Section 4.1 for a discussion of the ⊕ con-

dition.) There can be more than two in() statements. The

theorem might look counter-intuitive, since it supports con-

sensus even if V �= W . However, if A believes that I ∈ V ,

then A’s uncertainty about I being in a set that includes V
is at most as high. The theorem implicitly assumes that this

superset is V ∪ W and computes the consensus of I be-

ing in this superset. This can be useful in scenarios where

somebody is granted access if he is in a building, where two

location services state that he is in different rooms of this

building, and where the uncertainty about each individual

statement is too high for the person to be granted access,

whereas the uncertainty about the consensus statement is

sufficiently low. Uncertainty R is guaranteed to be lower

than P and Q (see Section 4.1), which gives monotonicity.

Statement “S says (indirectGoal(B ,U ,Q ,N ,S))”
expresses that service S authenticates user B and his in-

tention to access resource U with uncertainty Q. (N is a

nonce.) Note that the statement authenticates both a user

and the action that he wants to take. User A accepts this

statement only if S is authorized to make such a statement,

formalized in a delegateAuth() statement, and if B has

access to U , as shown in Theorem DELEG-AUTH-E in Ta-

ble 1.

A user and her action can be authenticated by multiple

services, therefore, we need consensus, as shown by Theo-

rem CONSENSUS-GOAL-I in Table 1. The theorem allows

the derivation of “A says (consensusGoal(U ,R,N))”.

If A allows a service to authenticate users who want to

access resource U , A should also define the maximum un-

certainty that will still allow these users to be granted ac-

cess, formally “A says (confidence(U,Q))”. Theorem

CONFIDENCE-E in Table 1 exploits this statement.

We also need a statement that expresses change in un-

certainty in the near future, as discussed in Section 2.3.

“S says (linearIn(I ,V ,S ,T ,P ,Q ,D))” denotes that S
believes I ∈ V at time T with uncertainty P and that this

uncertainty increases linearly by Q in interval D. Theorem

TIME-E in Table 1 shows how the current uncertainty is de-

rived. A similar statement models change in uncertainty in

terms of authenticating users and their actions.

3.3. Example

Let us discuss the application of our model in

an example. Owner A of projector U grants user

B access if he is in room 123, formally “A says

(delegateIf(B.location, {room 123}, P,A,B,U))”.

Owner A also issues a delegateAuth() statement that

authorizes a camera next to the projector to authenticate

users and their actions and a delegateIn() statement that

authorizes a location service, S, to locate people. When B
wants to access the projector, the location service issues an

in() statement about B’s location. Using the DELEGATE-

IN-E theorem, the access-control mechanism ensures that

the service has been authorized accordingly and applies

the CONSENSUS-IN-I theorem to get the consensus state-

ment “A says(consensusIn(B, {room 123}, R))”.

This statement is then combined with the access

right issued by A, using theorem IF-E, to con-

clude “A says(delegate(A,B,U))”. The camera,

C, authenticates the user and his action by issuing

“C says(indirectGoal(B,U,Q,N,C))”. The access-

control mechanism uses this statement, the camera’s

authorization from A, and the just derived delegate()
statement to derive an indirectGoal() statement made

by A, based on the DELEG-AUTH-E theorem, and

uses consensus to get a consensusGoal() statement.

Finally, if the uncertainty about this statement is lower

than the uncertainty given by A in her confidence()
statement, the access-control mechanism concludes

“A says(goal(U,N))” and grants access.

4. Implementation

In this section, we discuss an implementation of the

access-control model presented in the previous section.

4.1. Subjective Logic

There are multiple options to express uncertainty in our

access-control model. We can associate a statement with

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

Table 1. Theorems.

DELEGATE-E
A says (delegate(A,B,U)) B says (goal(U ,N))

A says (goal(U ,N))

IF-E
A says (delegateIf(I ,V ,P,A,B,U)) A says (consensusIn(I ,W ,Q))

A says (delegate(A,B,U)) W ⊂ V, Q � P

DELEGATE-IN-E
A says (delegateIn(A,S ,I ,V ,P)) S says (in(I ,W ,S ,Q))

A says (in(I ,W ,S ,R)) W ⊂ V, R = P ⊗ Q

CONSENSUS-IN-I
A says (in(I ,V ,S ,P)) A says (in(I ,W ,T ,Q))

A says (consensusIn(I ,X ,R)) X = V ∪ W, R = P ⊕ Q, S �= T

DELEG-AUTH-E
S says (indirectGoal(B,U ,Q,N ,S)) A says (delegateAuth(A,S ,B,P)) A says (delegate(A,B,U))

A says (indirectGoal(B,U ,R,N ,S)) R = P ⊗ Q

CONSENSUS-GOAL-I
A says (indirectGoal(B,U ,P,N ,S)) A says (indirectGoal(B,U ,Q,N ,T))

A says (consensusGoal(U ,R,N)) R = P ⊕ Q, S �= T

CONFIDENCE-E
A says (consensusGoal(U ,P,N)) A says (confidence(U,Q))

A says (goal(U ,N)) P � Q

TIME-E
S says (linearIn(I ,V ,S ,T ,P,Q,D))

S says (in(I ,V ,S ,R)) R = linearIncrease(T, P,Q,D, currentT ime)

a probability, meaning that the entity making the statement

believes in the correctness of the statement with at least the

given probability. However, the one-dimensional probabil-

ity, 0 to 1, would reduce the reliability of an access-control

model that guarantees monotonicity. As explained in Sec-

tion 2.4, monotonicity is a desirable feature. It would en-

sure that the probability of a summary statement is higher

than the probabilities of the statements underlying the sum-

mary statement. For example, Ranganathan et al.’s frame-

work [15] has this property. Unfortunately, this property

implies that a false statement issued by a single corrupted

sensor, which assigns high probability to the statement, will

lead to a false summary statement that also has high proba-

bility, even if all uncompromised sensors give it low prob-

ability. This property contradicts the purpose of deploying

multiple sensors to increase reliability.

To overcome this drawback, we use Subjective

Logic [12] in our implementation. Subjective Logic distin-

guishes between the belief and disbelief in a statement (i.e.,

believing that the statement is true/false) and the ignorance

about the statement (i.e., not knowing whether the statement

is true or false) and associates the statement with a belief,

disbelief and ignorance triplet of the form [b, d, i], where

b + d + i = 1 and [b, d, i] ∈ [0, 1]3. Traditional probability,

as discussed above, combines disbelief and ignorance in a

single value. In the context of Subjective Logic, monotonic-

ity implies that the ignorance about a summary statement is

lower or equal than the ignorance about any of the underly-

ing statements. However, the belief in the summary state-

ment is not necessarily higher, which reduces the impact of

corrupted sensors.

We use two existing operations of Subjective Logic, rec-

ommendation and consensus, for implementing the ‘⊗’ and

‘⊕’ conditions of our model, respectively. Assume two en-

tities A and B where A has an opinion about B, and B
has an opinion about a proposition p. A recommendation of

these two opinions consists of combining A’s opinion about

B with B’s opinion about p in order for A to get an opin-

ion about p. The consensus rule for combining independent

opinions consists of combining two or more independent

opinions about the same proposition into a single opinion.

The definition of the consensus operation [12] guarantees

monotonicity.

We implement the � condition of our model as a slight

modification of the ordering operation provided by Subjec-

tive Logic and define P � Q if and only if Subjective Logic

orders P higher than Q and if P.i ≤ Q.i. For the first condi-

tion, Subjective Logic provides ordering among triplets by

selecting the one with the greatest (b + i)/(b + d + 2i) ra-

tio [12]. Note that this ordering does not necessarily give

preference to triplets with large belief, instead it also takes

ignorance (which could be transformed into greater beliefs)

into account. The second condition in the definition of

P � Q is required for monotonicity; if the ignorance of a

consensus statement is not sufficiently low for being granted

access, the ignorance of the underlying statements will not

be sufficiently low, either. This property encourages people

to provide more statements in order to get access. The more

statements, the smaller the ignorance.

4.2. Access-Control Framework

We have implemented our access-control model in Pro-

log and are deploying this model in an existing access-

control framework for pervasive computing [10]. The

model is oblivious to how uncertainty is implemented. In

our current implementation, we added several Prolog terms

that implement uncertainty based on Subjective Logic. For

example, we added a term “Order(P, Q)” that is true only

when P � Q, as defined in Section 4.1.

5. Related Work

Several papers [5, 9, 15] have introduced the idea of

making services include uncertainty when authenticating a

person. The amount of uncertainty can be determined by the

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

service or by the administrator of an environment, maybe in

combination. Our contribution is to recognize that authenti-

cating a person is not sufficient, we also need to authenticate

her intended action. In addition, the related work addresses

a centralized system, where the administrator decides on an

environment-wide base about the uncertainty of statements

made by a service, whereas our model is more flexible and

allows individuals to make these decisions.

In terms of time and uncertainty, Ganger [9] recognizes

that authentication uncertainty increases over time, but does

not formalize this observation in an access-control model.

Our model allows a service to formally express how its un-

certainty changes over time.

Indulska et al. [11] examine how to combine (poten-

tially conflicting) location information from multiple sen-

sors. Their algorithm does not guarantee monotonicity, as

opposed to ours, which can result in problems, as explained

in Section 2.4. Another benefit of our approach is that

this combination is part of the access-control model, thus

it avoids ambiguities.

Our access-control model requires that people express

their uncertainty about statements made by a service and

that services express their uncertainty when making a state-

ment, but we do not discuss how this uncertainty is com-

puted. Covington et al. [5] suggest to compute uncertainty

based on behavior in the past and based on the closeness

of observed information to stored information. Indulska et

al. [11] also take past behavior into account. Both Coving-

ton et al. and Indulska et al. compute uncertainty for a par-

ticular moment in time and do not consider how changes in

the (near) future can affect the access-control mechanism.

6. Conclusions and Future Work

We have presented an access-control model that allows

different people to have different degrees of trust in ser-

vices, that authenticates both people and their actions, that

associates uncertainty with time, that provides monotonic-

ity, and that defends against Sybil attacks.

We are currently deploying and evaluating our proposed

model in an existing pervasive computing environment.

We also need to prove soundness of our extensions to the

existing access-control model. Finally, we have to vali-

date whether the decisions mady by our uncertainty-aware

access-control model correspond to users’ expectations.

Acknowledgments

We thank the anonymous reviewers for their comments.

This work is supported by the Natural Sciences and Engi-

neering Research Council of Canada.

References

[1] L. Bauer. Access Control for the Web via Proof-Carrying

Authorization. PhD thesis, Princeton University, November

2003.

[2] L. Bauer, M. A. Schneider, and E. W. Felten. A General

and Flexible Access-Control System for the Web. In Pro-

ceedings of 11th Usenix Security Symposium, pages 93–108,

August 2002.

[3] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance

Checking in the PolicyMaker Trust Management System. In

Proceedings of 2nd Conference on Financial Cryptography

(FC ’98), pages 251–265, February 1998.

[4] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Stan-

dard Ontology for Ubiquitous and Pervasive Applications.

In Proceedings of First Annual International Conference on

Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous 2004), August 2004.

[5] M. J. Covington, M. Ahamad, I. Essa, and

H. Venkateswaran. Parameterized Authentication. In

Proceedings of 9th European Symposium on Research

in Computer Security (ESORICS 2004), pages 276–292,

September 2004.

[6] J. R. Douceur. The Sybil Attack. In Proceedings of First In-

ternational Workshop on Peer-to-Peer Systems, March 2002.

[7] R. Fagin and J. Y. Halpern. Reasoning about Knowledge and

Probability. Journal of the ACM, 41(2):340–367, 1994.

[8] F. Gandon and N. Sadeh. A Semantic eWallet to Reconcile

Privacy and Context Awareness. In Proceedings of 2nd In-

ternational Semantic Web Conference (ISWC2003), October

2003.

[9] G. R. Ganger. Authentication Confidences. In Proceed-

ings of 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII), page 169, Month 2001.

[10] U. Hengartner and P. Steenkiste. Avoiding Privacy Viola-

tions Caused by Context-Sensitive Services. Elsevier Jour-

nal of Pervasive and Mobile Computing (PMC), PerCom

2006 special issue, 2(4):427–452, November 2006.

[11] J. Indulska, T. McFadden, M. Kind, and K. Henricksen.

Scalable Location Management for Context-Aware Systems.

In Proceedings of 4th IFIP International Conference on

Distributed Applications and Interoperable Systems (DAIS

2003), pages 224–235, November 2003.

[12] A. Jøsang. Artificial Reasoning with Subjective Logic. In

Proceedings of Second Australian Workshop on Common-

sense Reasoning, December 1997.

[13] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-

thentication in Distributed Systems: Theory and Practice.

ACM Transactions on Computer Systems, 10(4):263–310,

November 1992.

[14] K. Minami and D. Kotz. Secure Context-sensitive Autho-

rization. In Proceedings of 3rd IEEE International Con-

ference on Pervasive Computing and Communications (Per-

Com 2005), pages 257–268, March 2005.

[15] A. Ranganathan, J. Al-Muhtadi, and R. H. Campbell. Rea-

soning about Uncertain Contexts in Pervasive Computing

Environments. IEEE Pervasive Computing, 3(2):62–70,

April-June 2004.

Proceedings of the Fifth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops(PerComW'07)
0-7695-2788-4/07 $20.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

