
FaceCloak: An Architecture for User Privacy

on Social Networking Sites

Wanying Luo, Qi Xie, Urs Hengartner

Cheriton School of Computer Science,

University of Waterloo, Waterloo, ON, Canada

{w8luo, q7xie, uhengart}@cs.uwaterloo.ca

Abstract—Social networking sites, such as MySpace, Facebook
and Flickr, are gaining more and more popularity among Internet
users. As users are enjoying this new style of networking, privacy
concerns are also attracting increasing public attention due to
reports about privacy breaches on social networking sites. We
propose FaceCloak, an architecture that protects user privacy on
a social networking site by shielding a user’s personal information
from the site and from other users that were not explicitly
authorized by the user. At the same time, FaceCloak seamlessly
maintains usability of the site’s services. FaceCloak achieves these
goals by providing fake information to the social networking
site and by storing sensitive information in encrypted form on
a separate server. We implemented our solution as a Firefox
browser extension for the Facebook platform. Our experiments
show that our solution successfully conceals a user’s personal
information, while allowing the user and her friends to explore
Facebook pages and services as usual.

I. INTRODUCTION

The advent and fast adoption of Web 2.0 technologies has

dramatically changed the Internet and has enabled people to

build social networks online regardless of their geographical

locations. Popular social networking sites, such as Facebook,

allow users to explore other users with similar interests,

share personal information with friends, showcase photos, etc.

However, the ease of socializing online also raises privacy

concerns, sometimes resulting in severe consequences. For

example, 13 crew members were dismissed by Virgin Atlantic

due to their inappropriate posts to Facebook [1]. A teacher in

Wisconsin was suspended after she posted a picture of herself

with a gun to Facebook [2].

Social networking sites generally allow a user to post

sensitive personal information, such as relationship status,

sexual orientation, political affiliation, and various personal

interests. Although the public is regularly warned about the

risks associated with social networking sites, a large portion

of the population is still unaware of the potential privacy

threats or even chooses to expose personal information despite

these risks. According to a survey conducted at Carnegie

Mellon University, the university’s users of Facebook provide

an astonishing amount of information: 90.8% of the profiles

contain an image, 87.8% of the users reveal their birth date,

39.9% list a phone number (including 28.8% of profiles that

contain a cellphone number), and 50.8% list their current

residence [3]. Besides the wishful thinking that the Internet is a

family of well-behaved users, another factor that contributes to

people’s disregard of privacy risks is the trust in the protection

measures and good intentions of a social networking site.

Unfortunately, these sites are no more secure than any other

website in terms of defending themselves against malicious

attackers. The two biggest players in online social networking,

Facebook and MySpace, were both found to be prone to

cross-site scripting attacks enabling attackers to steal user

credentials [4], [5]. Moreover, social networking sites are

vulnerable to insider attacks, such as Facebook employees

seeing or even modifying any user’s personal information [6].

Finally, a social networking site might make a user’s profile

available to third parties for advertising purposes. In its privacy

policy [7], Facebook states that information provided in this

way will not identify the user; however, guaranteeing this

property in practice is hard (see, e.g., Sweeney [8]).

After having studied various existing solutions, we believe

that the type of privacy protection technologies that can

effectively circumvent the threats raised by user unawareness

and server-side vulnerabilities is a client-side architecture that

automates the process of privacy protection. We make the

following contributions:

• We present FaceCloak, an architecture that enforces user

privacy on social networking sites by shielding a user’s

personal information from the site and from other users

that were not explicitly authorized by the user. At the

same time, the services and the user interface provided

by the site continue to function as before.

• We introduce a novel scheme that allows users to cus-

tomize what information should be shielded from the

social networking site. More specifically, users are given

the option to express what information they intend to put

a guard on, and any information can be left unprotected if

they truly desire so. For example, existing users can leave

their names and some profile information unencrypted, so

that old friends can still get in touch with them.

• We evaluate the design behind FaceCloak by applying

it to the Facebook platform, which recently became the

largest social networking site [9]. Whereas our design is

applicable to other social networking sites as well, we

decided to focus on Facebook for simplicity.

The rest of the paper is organized as follows: In Section II,

we survey related work that addresses privacy protection on

social networking sites. We explain our design principles



and security assumptions in Section III. The architecture of

FaceCloak is described in Section IV, which is followed by

the security analysis in Section V. Section VI presents the

details of our prototype implementation of FaceCloak.

II. RELATED WORK

Several new systems and architectures for privacy protection

on social networking sites have been proposed.

flyByNight [10] is a Facebook application designed to

protect the privacy of messages exchanged between Facebook

users. It adopts public key encryption algorithms to encrypt a

user’s message before sending it via Facebook to the server

hosting the application. A user’s private key is encrypted with

a password and also stored on the flyByNight server. All

cryptographic operations are performed in a user’s browser

with JavaScript code that is downloaded from the flyByNight

server via Facebook. In this scheme, both Facebook and the

flyByNight server need to be trusted not to provide the user’s

browser with malicious JavaScript code that leaks messages

or private keys. Even if this trust assumption held, the use

of encryption remains problematic because it could cause

suspicion on the side of Facebook and may even cause user

accounts to be suspended. Moreover, flyByNight is a Facebook

application, so its fate is entirely at the discretion of Facebook.

In the worst case, Facebook could remove the application since

it prevents Facebook from learning users’ information and

from using this information for advertising and other purposes.

FaceCloak is not a Facebook application, and it is designed not

to be at the mercy of Facebook. Moreover, FaceCloak leaves

no traces of encryption on a user’s Facebook pages, so it is

less likely to attract the attention of Facebook.

NOYB (short for “None Of Your Business”) [11] is another

system targeted at protecting user privacy on Facebook using

“encryption” in a novel way. Instead of applying traditional en-

cryption schemes, which leave clear traits of ciphertext, NOYB

divides a user’s private information into atoms and replaces

each atom with the corresponding atom from a randomly

selected other user. For example, user A’s profile (nameA,

genderA, ageA, addrA) is broken into the three pieces (nameA,

genderA), (ageA), and (addrA), which are then substituted with

(nameB, genderB), (ageC), and (addrD) from users B, C, and

D, respectively. Only user A herself and A’s Facebook friends

have enough information to reverse this process to recover

A’s profile. Although NOYB employs encryption in this novel

way to avoid the problems caused by traditional encryption

schemes, it has two limitations: (1) NOYB protects only the

privacy of user profiles. Since any piece of information posted

by a user to Facebook applications can also be exploited to

invade her privacy, a more general way is required. FaceCloak

can protect the privacy of both a user’s profile and the data

posted to a Facebook application. (2) The number of users that

use NOYB impacts its effectiveness. The larger the number of

users, the better the anonymity. The effectiveness of FaceCloak

is not affected by the number of its users. (3) NOYB does not

allow old friends to get in touch unless they have enough

information to recover the profile information of their friends.

FaceCloak supports incremental deployment and allows old

friends to get in touch.

Social networking APIs let third parties access sensitive

user information stored on a social networking site. This API

makes it possible to greatly enhance the services offered by

a site (e.g., Facebook applications), but it also poses privacy

risks. Felt et al. [12] studied the 150 most popular Facebook

applications and found that almost all of them were unnec-

essarily given wider access to private user data than needed.

Felt et al. designed a privacy-by-proxy approach to improve

social networking APIs such that third-party applications are

prevented from accessing real user data while the functionality

and availability of the applications are preserved. Compared to

our approach, the privacy-by-proxy design deals only with the

privacy risks posed by Facebook applications, but assumes that

Facebook itself is trustworthy. In cases where this assumption

does not hold, the privacy-by-proxy design is rendered useless.

In contrast, FaceCloak does not assume that Facebook is

trustworthy and thus greatly enhances user privacy.

III. ASSUMPTIONS AND GOALS

Privacy protection on social networking sites is a difficult

research problem. To our best knowledge, there are no widely

accepted protection schemes. Our goal is to make our solution

immediately usable and have it cover more privacy risks than

previous research. In this section, we examine the threat model

and the design principles that underlie our solution.

A. Threat Model

We consider two types of threat: The social networking site

itself and sensitive information seekers.

• Social networking site. In Section I, we have already

outlined several ways in which a social networking site,

typically not deliberately, might reveal a user’s personal

information to parties not authorized by the user. More-

over, an attacker could break into the social networking

site and gain access to any user’s personal information, or

the provider of the site might be forced by the government

or a court to disclose personal information. In our threat

model, we assume that an attacker can launch any sort of

attack against the social networking site and gain access

to any personal information that a user has stored on

the site. Therefore, the social networking site must be

considered a potential threat for user privacy and should

not have access to a user’s personal information.

• Sensitive information seeker. A sensitive information

seeker tries to invade the privacy of the users of a social

networking site by exploring the site’s pages to gather

sensitive user information. In particular, for users who

fail to limit access to only their friends, information

seekers can easily browse their profiles, their blogs (e.g.,

Facebook Notes), or their bulletin boards (e.g., Facebook

Wall). As observed by other researchers [13], the default

privacy settings of social networking sites are often quite

lax. For example, Facebook by default grants anyone in

a user’s networks or communities access to the user’s



profile. Many users are unaware of these default privacy

settings, so they often end up not restricting access to only

their friends. Even if a user prevents sensitive information

seekers from accessing her profile but lets them access her

blog or her bulletin board, a sensitive information seeker

might still be able to derive profile information from

these applications. For example, the message “Happy

16th Birthday!!” posted by a friend to a user’s bulletin

board and the posting date reveal the user’s birth date.

We assume that users’ computers are not compromised. In

particular, we rely on the integrity of users’ web browsers,

since our solution is implemented as a browser extension.

B. Design Principles

The design of FaceCloak is based on four key principles:

1) Preservation of normal browsing experience. An im-

portant property for a usable privacy protection solution

is to refrain from interfering with users’ normal brows-

ing activities. More specifically, the solution should

function automatically most of the time and require little

user interaction. Constantly interrupting users for input

or actions will distract them. Our solution automatically

applies data encryption/decryption, page manipulation,

etc and requires no user intervention.

2) No server-side changes. Providers of social networking

sites value monetary profits as their primary goal, just as

any other business, and user privacy protection is more

often than not put on the back burner. There generally

is no incentive for these providers to introduce changes

to their system architecture for the purpose of privacy

protection, unless those changes have monetary gains

or are legally required. Therefore, a widely deployable

privacy protection mechanism should not rely on server-

side cooperation or changes. Our solution requires no

such modifications and cooperation.

3) Self-containment and minimal user configuration.

Users of social networking sites have technical skill

levels ranging from almost zero to highly experienced.

To make a privacy protection solution usable to all the

users regardless of their skills, the solution should be

self-contained, not rely on users to install additional

software, and require minimal configuration. We imple-

mented FaceCloak as a Firefox browser extension, which

can be installed in the same way as any other Firefox

browser extension, and it requires no configuration.

4) Incremental deployment. FaceCloak users should not

be stopped from getting in touch with old friends. To

achieve incremental deployment, FaceCloak must ensure

compatibility between the ones using it and the ones that

are not relying on it.

IV. FACECLOAK

FaceCloak carries out privacy protection in three phases: the

setup phase, the encryption phase and the decryption phase.

Figure 1 gives an overview of the three phases. When a user

of a social networking site sets up FaceCloak in her browser,

Fig. 1: Architecture of FaceCloak

FaceCloak generates several keys and distributes a subset of

these keys to the user’s friends (see Section IV-A). An optional

task for the setup phase is setting up a third party server, which

is used to store and retrieve the user’s encrypted personal

information. In the encryption phase, FaceCloak guides a

content publisher (i.e., a user who posts information to her

or her friend’s account on the social networking site) to

encrypt the posted information and send it to the third party

server over a connection protected by TLS (see Section IV-B).

This step guarantees that any information that the content

publisher chooses to hide from the site and from users not

authorized by the account owner will not get sent to the social

networking site. Instead, fake information will be transmitted

to the site. The decryption phase occurs when a content

viewer (i.e., the owner of an account or an authorized friend

of the owner) wants to look at information posted to the

account (see Section IV-C). The content viewer decrypts the

real information retrieved from the third party server over a

connection protected by TLS and uses it to replace the fake

information obtained from the social networking site. This

phase ensures that services offered by the site continue to

function properly despite the intervention of FaceCloak.

Both existing and new users of a social networking site

can benefit from FaceCloak. Existing users, who have already

sent their profile information to the site, can use FaceCloak

to protect future messages that they or their friends post,

such as articles on their blog or messages on their bulletin

board. For new users, FaceCloak protects their information

starting with the account registration, so these users have the

additional benefit of ensuring the privacy of the information

stored in their profile, such as their real name, birth date, and

gender. It is up to a new user to leave some of this information

unprotected to make it easier for old friends to find her profile.

A. Setup Phase

When a user installs FaceCloak, it generates three keys: a

master key, a personal index key, and an access key. A copy of

the master key and the personal index key are distributed by

the user to her friends, whereas the access key is stored locally

on the user’s computer and never distributed. To prevent the



Fig. 2: Interaction with the third party server

social networking site from learning the master and personal

index keys, the user should use out-of-band mechanisms, such

as e-mail, to distribute them. However, users do not need to

manually send e-mails to their friends, as FaceCloak provides

two useful tools to automate this task (see Section VI-A).

An account’s master key is used by a content publisher to

derive a symmetric encryption key for encrypting information

that is posted to the account and a MAC key for protecting

the integrity of this information. A content viewer who is in

the possession of the master key can decrypt the encrypted

information and check its integrity.

An account’s personal index key is used for storing en-

crypted personal information that is posted to the account. A

third party server stores index-value pairs, where a value con-

sists of the encrypted personal information and its MAC (see

Figure 2). Both the content publisher posting the information

and a content viewer authorized to look at the information

can compute the index for this information. The index is the

cryptographic hash of 1) the personal index key of the account

to which the information was posted and 2) an identifier

that depends on the type of posted information. Namely,

for information in a user’s profile, the identifier corresponds

to the user’s fake name, as generated by FaceCloak (see

Section VI-A). In other words, a user’s real profile is stored in

encrypted form on the third party server using a single index-

value pair. For messages posted to a blog or bulletin board, the

entire fake message that is generated by FaceCloak and posted

to the social networking site serves as the identifier in the index

computation. That is, each real message is stored in encrypted

form on the third party server using a separate index-value pair.

Our algorithm for generating fake messages makes it highly

unlikely that the same fake message is generated multiple

times for the same account (see Section VI-A), which would

result in an index collision.

Note that a content publisher uses the master key and the

personal index key that she generated for her own account only

when she adds information to her profile or her applications

(e.g., her blog or her bulletin board). If she adds messages

to somebody else’s applications, she will use the master key

and personal index key associated with this person’s account.

If she is not in the possession of these keys, FaceCloak will

refuse to post a message.

Finally, the access key is required when a content publisher

stores new data or tries to update existing data on the third

party server. It is not required when a content viewer tries to

retrieve data. A content publisher always uses the access key

generated for her own account, regardless to which account

she posts a message. (As mentioned before, access keys are

not distributed in the first place.) The purpose of the access key

is to prevent denial-of-service attacks. Suppose an account’s

personal index key leaks to an attacker. Without the protection

of the access key, the attacker might be able to compute valid

indices for information posted to the account and can replace

the encrypted information stored on the third party server with

arbitrary data. Consequently, neither the account owner nor her

friends will be able to view the real data. As a countermeasure

to this attack, the third party server requires that overwrites of

existing data are accompanied by the access key that was used

to store the existing data. Our design implies that the owner

of a bulletin board cannot modify the real content of postings

made by other people to her bulletin board. However, she can

still remove the corresponding fake content, which will result

in the real content becoming inaccessible, because its index

can no longer be computed.

The owner of an account with a social networking site can

choose the third party server that should be used for storing

encrypted personal information that is posted to her account.

The owner trusts the third party server not to collude with

the social networking site (even if they colluded, they could

not learn the owner’s personal information), to store encrypted

data reliably, and to provide correct data on request. A publicly

accessible third party server is maintained by the authors of

this paper. However, any group of FaceCloak users may set

up their own server, and we provide server-side PHP scripts

and MySQL scripts to ease the task.

B. Encryption Phase

Assuming a content publisher has installed FaceCloak in

her browser, she enters texts in HTML forms on a social

networking site just as she normally does, except that she

prepends the entered text with a special marker pre-defined by

FaceCloak (“@@” in the current implementation). For other

form elements, such as dropdown menus or radio buttons, the

FaceCloak automatically adds another set of the same inputs

prefixed with the special marker. Since a design principle is in-

cremental deployability, users can leave any field unencrypted

(by not prefixing it with the special marker) for purposes such

as disclosing real names to get in touch with old friends.

When the content publisher submits the form to the social

networking site, FaceCloak intercepts the submitted informa-

tion. Fields that start with the special marker get replaced

by appropriate fake text. The fake text cannot simply be

random combinations of letters that do not compose valid

words, or random valid words that convey nonsense in the

specific context, because junk data can be noticed by the social

networking site. To avoid this problem, FaceCloak judges the



intended content of the field first, and then generates fake

text using various techniques, including consulting its own

dictionaries or Wikipedia, which we discuss in more details in

Section VI-A. After the real text has been replaced with fake

text, the form is submitted to the social networking site.

Next, the real data needs to be encrypted and sent to the

third party server. FaceCloak determines the account’s master

key and personal index key, and derives the encryption and

MAC keys and the index, as discussed in Section IV-A. It then

encrypts the real information and computes its MAC. Finally,

the index and the value, consisting of the encrypted data and

its MAC, are sent, together with the content publisher’s access

key, to the third party server.

C. Decryption Phase

FaceCloak, as installed in a content viewer’s browser, knows

which of the viewer’s friends also use FaceCloak, because it

has the friends’ master and personal index keys. However, after

downloading a friend’s page, FaceCloak does not know which

of the downloaded information is real or fake. Obviously, we

cannot tag fake information and store tags with the social

networking site, since this would allow the site to identify

FaceCloak users. Having FaceCloak store tags locally on

users’ computers does not scale. Instead, for each piece of

information that could be fake (i.e., a profile or an article),

FaceCloak computes an index, as explained in Section IV-A,

and tries to download the corresponding value from the

third party server. If there is a value, FaceCloak checks the

integrity of the received ciphertext, decrypts it, and updates

the downloaded page by substituting the real data for the fake

data. Otherwise, the data is left unchanged. We use the same

procedure when downloading the content viewer’s own pages.

When a content viewer without the master key and the

personal index key of an account owner browses the account’s

pages, she will receive fake information and will not be able

to perform the above procedure to check for fake information.

Therefore, the page will show fake information to anyone who

has not received the necessary keys from the account owner.

V. SECURITY ANALYSIS

This section analyzes the security of FaceCloak by consid-

ering several attacks against our architecture.

A. Social Networking Site

Our solution protects against all the threats arising from the

social networking site itself, as described in Section III-A. A

user’s sensitive information that the user chooses to protect

using FaceCloak is stored on a third party server beyond the

reach of the social networking site. The information stored on

the site’s server is fake, which bears no significant meaning

whatsoever. However, we do rely on the user to judge what

information is sensitive and should be protected according

to her own standard, and FaceCloak never forces the user

to protect her information. Another threat that our solution

deals with is the social networking site trying to identify users

of FaceCloak and then taking punitive actions against them,

such as suspending their accounts. Namely, the fake informa-

tion generated by FaceCloak looks real (see Section VI-A).

Moreover, by including a user’s personal index key, which

is not known to the social networking site, in the index of

information stored with the third party server, we make it

impossible for the site to query publicly known third party

servers about the existence of encrypted information posted to

the user’s account.

B. Third Party Server

The third party server, which is responsible for storing

encrypted data, can also become the target of attackers, or the

server itself could turn malicious. In these cases, the attacker

can view all the ciphertexts, but not their plaintexts. The

attacker cannot figure out the account owner of the encrypted

information, either. The attacker can modify ciphertexts, but

with the help of the MAC, FaceCloak will detect these modifi-

cations. In a replay attack, the attacker can replace the current

value of an index-value pair with a previous (valid) value.

FaceCloak currently does not detect replay attacks. However,

FaceCloak users might get suspicious when, for example, their

profile all of a sudden reverts to stale information. The users

can then notify the provider of the third party server of the

breakin and the original content can be restored from a backup.

If the provider of the third party server turned malicious, the

user should switch to a new server. In the worst case, the user

could lose all information stored with the old server. However,

the same threat also exists in a world without FaceCloak,

where users have to rely on the social networking site not

to turn malicious. Finally, we note that none of the attacks

that involve the third party server put users’ privacy at risk.

C. Collusion

Even a social networking site that colludes with a third party

server cannot decrypt a user’s personal information stored on

the third party server. However, a social networking site that

colludes with a third party server might be able to detect which

users are using FaceCloak by launching timing attacks. More

specifically, since FaceCloak sends the encrypted data to the

third party server immediately after it submits the fake data

to the social networking site, if both the site and the third

party server log the time when they receive data from users,

the site can compare its own log to the log of the third party

server. When the site detects a FaceCloak user, the site can

suspend the user’s account, which is a nuisance. One way

to mitigate the impact of collusion is to distribute a user’s

encrypted data across multiple servers, which we leave for

future work. Also, different users can use different third party

servers, which makes collusion harder.

D. Web Browser

The most disastrous threat to FaceCloak is the compromise

of a user’s web browser, because FaceCloak is implemented

as a browser extension. Once the attacker takes control of

the browser, she can disable or uninstall the extension. The

attacker may also extract the victim’s keys from the extension,



which will give him access to the victim’s personal information

stored on the third party server. The best security measures to

mitigate this threat are to educate users to constantly patch

browser vulnerabilities and install anti-virus software.

E. Leak of Keys

The security of FaceCloak largely depends on the trust-

worthiness of friends. A user has no control over the master

and personal index keys once she sends them to a friend. In

particular, the friend can send the keys to another person who

is not a friend of the victim. This person will be able to

access the victim’s personal information stored on the third

party server. The person will not necessarily be able to access

the victim’s data through browsing the social networking site

because the victim might have restricted access to her pages

to only her friends. In general, there is no technical solution

that can reliably prevent a friend from maliciously distributing

information that the friend has had access to. One way to limit

the damage resulting from key leakage is key revocation. Our

implementation does not yet support such a mechanism.

VI. IMPLEMENTATION AND EXPERIMENTS

In this section, we elaborate on the implementation of

FaceCloak and present experiments that we conducted by

interacting with a real social networking site and its services.

We also discuss limitations of the current implementation.

A. Firefox Browser Extension

Our current implementation of FaceCloak works only for

Facebook. We chose Facebook because it has become the

largest networking site [9]. However, we do not expect much

difficulty in porting FaceCloak to other sites. We are currently

preparing a public release of our implementation.

Since a large portion of the tasks performed by FaceCloak

involves HTML manipulation, we implemented FaceCloak as

a Firefox browser extension. We use a JavaScript implemen-

tation of AES [14] to carry out data encryption/decryption

and a JavaScript implementation of SHA-1 [15] to compute

indices of encrypted data. All keys have a length of 128 bits.

To facilitate users to distribute keys to their friends by e-mail,

FaceCloak provides two useful tools. The first one is an e-mail

list manager, through which the user can add her friends’ e-

mail addresses to her contact list, as managed by FaceCloak.

The user then clicks the “Email” button, which will bring

up her default e-mail client with the subject of the e-mail,

the recipient’s e-mail address, and the pre-composed content

(i.e., the personal index and master keys and some explanatory

information) all filled in. The second tool is dynamically gen-

erated on the Facebook page for adding a friend. After having

sent a friend request, the extension replaces the hyperlink text

“Add as Friend” with hyperlink text “Email Your Keys”, which

the user can click to bring up her e-mail client with all parts

already filled in. This feature is shown in Figure 3.

The browser extension includes a female English first name

dictionary, a male English first name dictionary, and an English

surname dictionary, which are used to generate fake names

(a) The page before the friend request is sent

(b) The page after the friend request is sent

Fig. 3: Facility for e-mailing keys

when users register Facebook accounts. Since Facebook ac-

count registration also requires the user to enter her birth

date, a fake birth date is generated such that the resulting

age is between 15 and 65. If the user decides to hide her

gender, the extension chooses the fake gender randomly. The

fake first name is chosen to conform to the gender. Besides

the registration information, the extension can also protect

all other profile information, such as relationship status, and

political and religious views. FaceCloak does not generate

fake information for this additional profile information, since

Facebook does not require this profile information. When

somebody looks at the user’s profile, FaceCloak retrieves the

real information from the third party server and adds additional

HTML code to the profile to display it. We chose not to replace

optional profile information with fake information because

finding fake information that looks real can be hard. Also, for

some profile information (e.g., an address or a phone number),

it is ethically questionable to replace it with fake information

that turns out to be the real information for somebody else.

Furthermore, to prevent information leakage caused by

Facebook applications, the extension currently also supports

privacy protection for the Facebook Wall and Facebook Notes

applications. Generating fake text for these two applications is

challenging, since the content is not limited and could be about

anything. For instance, a user can publish a poem, a science

article, or a diary in her Facebook Notes. The extension makes

use of the “Random article” feature of Wikipedia to generate

fake text in this case. More specifically, when the user finishes

composing a note and is ready to publish it, the extension

retrieves a random article from Wikipedia and parses the

content to strip off HTML tags. The resulting text is used

as the fake note that is submitted to Facebook, where the user

is given a chance to review the fake note before its submission.

B. Third Party Server

We set up a third party server, with a MySQL database for

storing encrypted data at the University of Waterloo. Face-

Cloak makes use of asynchronous JavaScript to send HTTP

requests to the server for the purpose of storing, updating, and

retrieving data. Based on the value of a parameter in the HTTP

request, the server performs either a “get” or “put” action. The

“put” action refers to storing or updating a piece of encrypted

data and its MAC on the server, while the “get” action involves



retrieving the encrypted data using the corresponding index.

The server responds to a request with an XML string, which

contains an error code, the error message in case the execution

failed, and the requested data in case of a “get” action.

C. Experiments

To verify that the extension successfully conceals user in-

formation and provides acceptable performance, we conducted

the following experiment. Suppose John Doe uses our exten-

sion to register a Facebook account. Before his registration

information is submitted to Facebook, our extension replaces

it with fake information as shown in Figure 4. In order not to

violate the Terms of Use (TOU) of Facebook (see below), we

modified the extension to change the fake information to the

real information of one of the authors of this paper, namely,

Wanying Luo. We omit the real birth date for privacy reasons.

After his account is created, John Doe logs in as Wanying

Luo. Figure 5a shows the page after he logs in. Although fake

information was sent to Facebook, the extension successfully

replaced it with the real information retrieved from the third

party server. A feature of the extension is that any information

(except the fake name due to technical issues) that FaceCloak

replaces or inserts is displayed in red, which makes it easier to

spot problems. For example, the birth date is shown in red (see

Figure 5a, while the gender is shown in the default color since

John Doe chooses to reveal his real gender. To verify that the

real information is invisible to unauthorized Facebook users,

another author of this paper logged in to Facebook with his

own account and added Wanying Luo as his friend. Suppose

John Doe does not trust this user and refuses to send his

keys to this user. As displayed in Figure 5b, this unauthorized

user can only view John Doe’s fake information. During

the experiment, we also observed that the fake information

on most parts of a page is already replaced with the real

information by the time the page is loaded, thus, users will

not be able to tell that page manipulation is taking place.

However, on some parts of the page, the replacement occurred

about one second after the page is loaded, which makes users

see the fake information first. This phenomenon is due to the

fact that asynchronous JavaScript is heavily used by Facebook

for rendering the page. By the time the basic structure of

a Facebook page is loaded, it does not necessarily have the

entire page fully rendered, and some parts may still be fetching

contents. Therefore, the extension has to wait until the fake

information appears on the page, and then starts to replace it.

This experiment actually uses our extension in the opposite

way than a user is supposed to use it, because we used the real

information of one of the authors to replace the information of

an imaginary person, John Doe. The purpose is simply to avoid

breaking Facebook’s TOU [16], which make the user agree to

submit accurate profile information. Nevertheless, if a user is

concerned about the privacy of her name and birth date, she

does have to choose between protecting this information and

breaking the TOU. For example, the Information and Privacy

Commissioner of Ontario registered a Facebook account under

a fake name [17]. If a user is not willing to break the TOU,

she can still use our extension to protect profile information

other than her name and birth date and postings to Facebook

Wall and Notes. Here, the user would register with Facebook

under her real name and birth date. In this scenario, our

extension gives the user the flexibility to acknowledge add-

friends requests from not very close friends, in order not to

annoy them. However, she would give her keys and hence

access to her complete profile only to close friends.

D. Limitations

For simplicity, the current implementation of our extension

assumes that a Firefox profile is used by only one user, so

it associates this user’s Facebook account with her Firefox

profile, and all the files related to this user’s Facebook account

(such as her keys, the list of her friends’ e-mails, etc) are

stored under the directory of her Firefox profile. Therefore,

the extension will not function properly if a Firefox profile is

shared among multiple Facebook users.

The retrieval of the real information requires keys. There-

fore, a user could not use FaceCloak on computers without

her keys. The keys are stored in the extension, so a user may

move these keys between computers using a USB stick.

Our implementation of FaceCloak currently supports only

Facebook. However, the architecture is also applicable to other

social networking sites, and we do not foresee any technical

difficulties in porting our current implementation other sites.

In fact, implementing FaceCloak for other sites might actually

be easier than our Facebook implementation. Though not

confirmed by Facebook, we read from other sources that

Facebook engineers may have used very obscure ways to

render their pages, which makes replacing part of the content

difficult. Our experiences confirm this observation, and the

extension required some tweaking.

VII. CONCLUSIONS AND FUTURE WORK

Online social networks have acquired enormous popularity

and become an essential part of many people’s daily life.

Along with the convenient ways of socializing with others on-

line comes the threat to privacy. While the research community

has devoted intensive efforts to looking for effective means

of protecting user privacy, incidents resulting from privacy

breaches on social networking sites continue to happen. We

have developed a solution to provide privacy protection for

users of social networking sites. The solution takes a strong

privacy stand that not only should the sensitive information

of a user be protected from unauthorized users, it should also

be shielded from the social networking site. Furthermore, the

solution allows a user to be selective of which information she

wants to safeguard and which to leave as it was, based on her

own judgment of the value of privacy. Compared to previous

approaches, this feature dramatically improves the usability

and deployability of our solution. In addition, we implemented

our design of FaceCloak as a Firefox browser extension

and showed its practicality. Although the implementation is

currently useful only for Facebook users, the architecture is

general enough to be applied to other social networking sites.



(a) Page before clicking submit (b) Page after clicking submit

Fig. 4: Facebook account registration

(a) View of account owner (b) View of unauthorized members

Fig. 5: A Facebook account under protection

Several directions of future work are possible: (1) To allow

better damage control in case keys are leaked, we should

incorporate a key revocation mechanism. (2) The extension

currently makes use of the “Random article” feature of

Wikipedia to generate fake data for Facebook Notes and

Wall. This strategy may give away which users are using our

extension by checking their Notes and Wall postings. (3) The

extension supports only the protection of textual information.

We would like to explore the protection of pictures and videos.

REFERENCES

[1] BBC News, “Crew sacked over Facebook posts,”
http://news.bbc.co.uk/2/hi/uk news/7703129.stm, October 2008,
accessed April 2009.

[2] Switched, “Teacher Suspended for Gun Pictures on Facebook,”
http://www.switched.com/2009/02/06/
teacher-suspended-for-facebook-gun-pictures/, February 2009,
accessed April 2009.

[3] R. Gross, A. Acquisti, and J. H. Heinz, “Information Revelation and
Privacy in Online Social Networks,” in Proc. of 4th ACM Workshop on

Privacy in the Electronic Society (WPES’05), November 2005, pp.
71–80.

[4] darknet.org.uk, “Another 0-day MySpace XSS Exploit,” http:
//www.darknet.org.uk/2007/02/another-0-day-myspace-xss-exploit/,
February 2007, accessed April 2009.

[5] CyberInsecure.com, “New Cross-Site Scripting Vulnerability Found On
Facebook,” http://cyberinsecure.com/
new-cross-site-scripting-vulnerability-found-on-facebook/, May 2008,
accessed April 2009.

[6] VALLEYWAG, “How Facebook employees break into your profile,”
http://valleywag.gawker.com/tech/your-privacy-is-an-illusion/

how-facebook-employees-break-into-your\-profile-319630.php,
November 2007, accessed April 2009.

[7] Facebook, “Privacy Policy,” http://www.facebook.com/policy.php,
November 2008, accessed April 2009.

[8] L. Sweeney, “k-anonymity: a model for protecting privacy,”
International Journal on Uncertainty, Fuzziness and Knowledge-based

Systems, vol. 10, no. 5, pp. 557–570, 2002.
[9] TechCrunch, “Facebook Now Nearly Twice The Size Of MySpace

Worldwide,” http://www.techcrunch.com/2009/01/22/
facebook-now-nearly-twice-the-size-of-myspace-worldwide, January
2009, accessed April 2009.

[10] M. M. Lucas and N. Borisov, “flyByNight: Mitigating the Privacy
Risks of Social Networking,” in Proc. of 7th ACM Workshop on

Privacy in the Electronic Society (WPES 2008), October 2008, pp. 1–8.
[11] S. Guha, K. Tang, and P. Francis, “NOYB: Privacy in Online Social

Networks,” in Proc. of 1st Workshop on Online Social Networks

(WOSN 2008), August 2008, pp. 49–54.
[12] A. Felt and D. Evans, “Privacy Protection for Social Networking

Platforms,” in Proc. of Web 2.0 Security and Privacy (W2SP 2009),
May 2008.

[13] A. Acquisti and R. Gross, “Imagined Communities: Awareness,
Information Sharing, and Privacy on the Facebook,” in Proc. of 6th

Workshop on Privacy Enhancing Technologies (PET 2006), June 2006,
pp. 36–58.

[14] H. Hanewinkel, “AES (Rijndael) Encryption Test in JavaScript,”
http://www.hanewin.net/encrypt/aes/aes.htm, 2005, accessed April
2009.

[15] Movable Type Scripts, “SHA-1 Cryptographic Hash Algorithm,”
http://www.movable-type.co.uk/scripts/sha1.html, 2005, accessed April
2009.

[16] Facebook, “Terms of Use,” http://www.facebook.com/terms.php,
September 2008, accessed April 2009.

[17] CBC, “Search Engine with Jesse Brown,” http://www.cbc.ca/
searchengine/blog/2009/03/podcast 25 cctvs biometrics an.html,
March 2009, accessed April 2009.


