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Abstract—Voice authentication (VA) has recently become an in-
tegral part in numerous security-critical operations, such as bank
transactions and call center conversations. The vulnerability of
automatic speaker verification systems (ASVs) to spoofing attacks
instigated the development of countermeasures (CMs), whose
task is to differentiate between bonafide and spoofed speech.
Together, ASVs and CMs form today’s VA systems and are being
advertised as an impregnable access control mechanism. We
develop the first practical attack on spoofing countermeasures,
and demonstrate how a malicious actor may efficiently craft
audio samples against these defenses. Previous adversarial attacks
against VA have been mainly designed for the whitebox scenario,
which assumes knowledge of the system’s internals, or requires
large query and time budgets to launch target-specific attacks.
When attacking a security-critical system, these assumptions do
not hold. Our attack, on the other hand, targets common points
of failure that all spoofing countermeasures share, making it
real-time, model-agnostic, and completely blackbox without the
need to interact with the target to craft the attack samples. The
key message from our work is that CMs mistakenly learn to
distinguish between spoofed and bonafide audio based on cues
that are easily identifiable and forgeable. The effects of our attack
are subtle enough to guarantee that these adversarial samples
can still bypass the ASV as well and preserve their original
textual contents. These properties combined make for a powerful
attack that can bypass security-critical VA in its strictest form,
yielding success rates of up to 99% with only 6 attempts. Finally,
we perform the first targeted, over-telephony-network attack on
CMs, bypassing several known challenges and enabling a variety
of potential threats, given the increased use of voice biometrics in
call centers. Our results call into question the security of modern
VA systems and urge users to rethink their trust in them, in light
of the real threat of attackers bypassing these measures to gain
access to their most valuable resources.

I. INTRODUCTION

Automatic speaker verification systems (ASVs) are widely
used for authentication where a claimed identity is verified
by comparing features extracted from a given audio sample
against a “voiceprint” obtained from previously collected
recordings. ASVs have gained popularity, primarily due to
their convenience and increased security compared to pass-
words, becoming the core component of voice authentication
(VA)—a constantly growing multi-billion dollar market [1].

VA has been deployed in security-critical environments,
such as banks (e.g., Citibank [2] and First Direct [3]). Nu-
ance [4] (recently acquired by Microsoft for $19.7B), Acu-
lab [5], and similar products are widely used for authentication
in call centers or for enabling transactions using smartphone
apps [6], [7]. In light of the mass adoption of VA and boastful
statements (“No one else has a voice just like you” [8]) of its

vendors, it becomes imperative to evaluate its security under
realistic threat scenarios.

Several attacks against ASVs have emerged [9]. Yet, the
popularity of VA as a robust authentication platform is still on
the rise. The reason is that no existing attack has demonstrated
a proven ability to circumvent VA under strict security-critical
conditions. Spoofing attacks (or deepfakes), such as speech
synthesis (SS) [10] or voice conversion (VC) [11], [12],
have shown great potential in fooling ASVs via fake audio
generated in the victim’s voice [13]. However, this threat has
been known for years [14], leading to the development and
of spoofing countermeasures (CMs)—complementary systems
deployed side-by-side with ASVs, whose task is to detect
spoofed speech. CMs are now being deployed by VA industry
leaders [15], such as Nuance [16] and ID R&D Live [17].
The high accuracy achieved by these systems [18] and their
increased ability to generalize [19] disqualifies spoofing at-
tacks. On the other hand, non-spoofing, adversarial attacks
against ASVs (and automatic speech recognition systems—
ASRs) fail in security-critical environments as they (unre-
alistically) assume whitebox access [20]-[22], are query-
inefficient (hundreds or thousands to the target model) or time-
inefficient [23]-[28], or are untargeted (cannot impersonate
a specific user) [29]. Finally, while there have been several
attempts to adversarially attack VA platforms by generating
spoofed speech first and then adversarially modifying it to
fool CMs [30]-[34], which is similar to the approach we take,
these share the same limitations with the adversarial attacks
above.

This paper presents the first practical attack on VA in
security-critical environments. This is the only attack so
far that meets all limitations of such environments—fully
blackbox, model agnostic, real-time, query-efficient and, most
importantly, targeted (the attacker can impersonate any cho-
sen victim). Furthermore, our attack accounts for all entities
present in the strictest form of real-world security-critical
VA, which typically employs text-prompted (independent)
schemes. That is, instead of fixed, replayable phrases, the
user is prompted with a random phrase to repeat upon each
access attempt. The entities to be circumvented by the attacker
simultaneously are the ASV, the CM, and a speech-to-text
(STT) unit verifying the random phrase was repeated correctly.
We formalize security-critical environments and their compo-
nents in §II-D. Our attack exploits the known vulnerability
of ASVs to spoofing attacks [13] and mainly targets the
CMs. Unlike the few existing ineffective attacks on CMs, our



attack employs signal-processing (optimization-free), model-
agnostic transformations to grant spoofed speech the ability to
universally bypass CMs, while preserving the readily-existing
voiceprint and textual content to still bypass ASVs and STTs.
As a consequence, users will lose trust in VA, and vendors
will have to invest resources in improving its security.

Overall, this work makes the following contributions:

e Our attack can circumvent any state-of-the-art VA
platform implementing the authentication protocol
in its strictest form and is fully black-box, query-
efficient, real-time, model-agnostic (transferable), and
targeted. To commit fraud or identity theft, attackers
in security-critical environments must mount fargeted
attacks and will not have access to the target model’s
internals nor will they be able to query it repeatedly.
A key contribution of this work is the ability to gen-
erate spoofed audio that simultaneously overcomes all
components found in security-critical VA in a model-
agnostic manner, enabling, for the first time, the execution
of targeted attacks. Unlike traditional adversarial attacks
on VA, we target the CMs. Namely, our contribution is
the discovery of multiple signal processing transforma-
tions that can universally make any CM accept spoofed
speech, without degrading the quality of the sample.
The optimization-free nature of our attack circumvents
the lack of transferability and the query and timing
limitations hindering traditional adversarial attacks on
VA. Due to the known vulnerability of ASVs to spoofed
speech, attacking the newly-identified weakest link (CMs)
drastically compromises the security of VA.

e Our attack is effective against the full VA stack.
Although our attack forces CMs to accept spoofed
speech, the ultimate goal is to bypass the entire VA
stack. Hence, transformed samples must bypass the ASYV,
which follows from the vulnerability of ASVs to spoofed
speech, given that our transformations are subtle enough
to preserve this property. Similarly, the contents of the
transformed samples must match the text expected by
the STT. Therefore, we design our attacks such that
the changes to the spoofed speech are minimal. We
verify these assumptions through large-scale experiments
involving 14 state-of-the-art CMs, five renowned ASVs
(including a commercial system—Amazon Connect Voice
ID [35]), and two commercial STTs [36], [37], proving
them all vulnerable. With only up to six authentication
attempts, the attacker achieves a success rate against the
full authentication stack as high as 99%. Our user study
further proves that even a human inspecting the outputs
of our algorithm will be fooled. Finally, we establish that
our attack remains effective even when executed over the
phone network. To the best of our knowledge, this is the
first-ever targeted adversarial attack over the phone.

« Robustness to various defenses: We analyze the po-
tential of different defenses in mitigating our attack.
While we find adversarial defenses limited, some other
adaptive techniques seem more promising. We evaluate

these techniques and find that, when combined, they can
degrade the attack’s performance. However, the attack
remains effective even after this degradation occurs.

« We make our source code publicly available to aid other
researchers in the construction of future defenses'.

II. BACKGROUND
A. Automatic Speaker Verification (ASV)

At the core of ASVs lies the voiceprint—a set of unique
features of an individual found in their voice. This voiceprint
captures physical factors like the shape and size of the vocal
tract and larynx, and a “behavioral signature” consisting of
one’s accent, thythm, pronunciation and more [38]. This led
to investigating voiceprints as biometrics.

ASVs operate in two phases: enrollment and verification.
During enrollment, the user supplies speech samples used
to extract their voiceprint, which serves as their identifying
signature onward. Upon future verification attempts, the user’s
identity is verified via a provided speech sample x together
with the claimed user identity Urp to whom the sample sup-
posedly belongs. The sample is checked against the voiceprint
outputting a decision (accept/reject). The notation DB(UID)
refers to a database query on the server side with the provided
identity that retrieves the voiceprint, and ASV (z, DB(U;p))
indicates that the ASV accepts x with respect to the voiceprint
of Urp. Verification can follow one of three schemes: 1)
Text-dependent—a fixed phrase is repeatedly used, 2) Text-
independent—the user may provide any random phrase, or
3) Text-prompted—the system requires a specific random text
from the user to be spoken. The second and third options are
more secure due to their robustness to replay attacks.

Researchers have discovered various sets of features for
ASVs, including the Mel-frequency Cepstral Coefficients
(MFCC) and Log Power Magnitude Spectrum (LPMS). ASV
architectures vary significantly, but mainly fall under three
categories: GMM i-vector systems, x-vectors, and DNN end-
to-end approaches (operate on raw waveforms) [39].

B. Spoofing Countermeasures (CMs)

ASVs are vulnerable to spoofing attacks [13], which
are classified into four categories: 1) Mimicking [40]—
manipulating one’s voice (without machines) to sound like the
victim, 2) Speech synthesis (SS) [10]—using technology to
produce samples in the victim’s voice, 3) Voice conversion
(VC) [41]—using technology to convert one’s voice into
the victim’s, and 4) Replay [42]—replaying a previously-
recorded sample of the victim. ASVs are robust to mimicking
attacks [43]. Therefore these are not a real threat. Replay
can be avoided using text-independent/text-prompted schemes.
However, VC/SS attacks pose serious threats to VA [13].

The need for reliable authentication led to the emergence
of spoofing countermeasures (CMs) [14], [44]. These are clas-
sifiers solving the problem of distinguishing between human
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(bonafide) and machine (spoofed) speech. The literature distin-
guishes between active and passive CMs [45]. Active methods
(e.g., VoiceLive [46], VoiceGesture [47], EchoVib [48]) rely
on heuristics and sensory data to capture liveness cues that
accompany human speech, such as articulatory gestures or the
shape of the vocal tract. Passive methods focus on measurable
differences in the audio waveform itself that differentiate
human from machine speech [19], [44], [45]. Active methods
are much less practical since they are sensitive to sensor and
microphone placement and device-dependant, while passive
methods can be integrated into existing VA software [45],
which is done by pioneers in the filed such as Nuance [16]
and ID R&D Live [17]. Our focus is on passive CMs.

Not every VA system is security-critical. For instance, Siri
and Google Assistant neither enforce strong security mea-
sures nor use CMs. However, leading VA providers, such as
Nuance, Aculab, and ID R&D Live, and others are explicit
about deploying CMs to defend against spoofing as integral
components of their systems [5], [16], [17]. Thus, successful
attacks against security-critical VA must circumvent CMs.

C. Speech-to-text Systems (STTs)

Known also as automatic speech recognition (ASRs), STTs
are used to transcribe spoken phrases into text. In the context
of VA, STTs are coupled with ASVs to implement text-
independent/text-prompted schemes and defend against replay
attacks. The STT is used to transcribe the user’s input (sample)
and the transcription output is examined against the expected
text. The STT accepts the authentication attempt only if the
contents match. Given a spoken phrase x and text ¢, the
notation STT'(x, t) indicates that STT accepts = w.r.t t.

D. VA in Security-Critical Environments

Security-Critical Environments (e.g., banks) manage access
to highly sensitive resources and employ strong authentication
protocols to enforce the following:

Limited number of failed attempts. Multiple failed attempts
must lead the target to stop accepting further attempts. Attacks
on (voice) authentication platforms that ignore this require-
ment are invalid. For instance, credit cards are invalidated if
the user enters their PIN incorrectly 3 times, and Apple locks
iPhones after 6 incorrect pass-codes.

Limited response time. The user (attacker) has to generate
authentication responses and transmit them within seconds.
No access to system internals. The system is blackbox return-
ing only decisions (accept/reject), as assumed in research [25]
and practice [16], [17]. We do not assume more permissive
settings where systems reveal output probabilities.

Success under limited time and attempt constraints sets us
apart from all previous blackbox attacks on VA (see §X),
while attacks that cannot operate in blackbox settings are not
practical. Our attack is fully blackbox, takes 4s on average,
and is highly successful with only three attempts.
Text-prompted/independent scheme. The recommended form
of VA uses text-prompted/independent schemes to mitigate
replay attacks. Some vendors may use text-dependent schemes

with fixed phrases, which are vulnerable to replay attacks.
However, there are CMs that detect replayed speech [44].
Hence, we assume that simply replaying a recording is
not a valid attack and focus on more restrictive text-
prompted/independent schemes.

All in all, for successfully passing an authentication attempt
in a security-critical environment with a phrase x given
identity U;p and text ¢, the following must hold:

ASV(z, DB(Uip)) ACM(z) A STT(z, t).

III. THREAT MODEL
A. Definitions

Attacker. The person aiming to bypass a security-critical VA
platform via adversarial or spoofed audio to pose as the victim.
Victim. The user protected by the VA system whose identity
is at risk of being stolen by the attacker.

Target. The VA system (or any of its components—ASYV, CM,
or STT) the attacker wishes to fool.

B. Attack Channels

Here we list the common channels users (attackers) typically

use to communicate with a remote security-critical VA system.
Designated-app. The user (attacker) issues a transaction using
an app (e.g., a banking app) and authenticates it using their
voice (instead of a password) [16]. The authentication phrase
is passed to the server over TCP (i.e., reliably, without packet
loss, jitter or lossy encodings [4]).
Over-telephony. The user (attacker) calls the service provider
and interacts with the interactive voice response (IVR) system,
which uses VA for identity verification [16]. The input is
transmitted over the phone, introducing additional challenges,
as attacks have to withstand the noisy medium (see VII).

C. Attacker’s Goals, Knowledge, and Capabilities

Goals. The attacker’s goal is to produce an audio sample
capable of bypassing a VA system deployed in a security-
critical environment. Based on the components we introduce
in §II-D, the attacker is concerned with realizing an algorithm
A, whose inputs are text ¢, and the victim identity U;p and
whose output is an adversarial x,q, = A(t, Urp), s.t:

ASV(l‘adv, U]D) A CM(l‘adv) A STT(xadv, t).

The system accepts verification phrases in one of the two
methods described in III-B. The attack must comply with the
protocol described in §1I-D.

Optional goal: We optionally require that the samples pro-
vided be robust to human inspection. In security-critical plat-
forms, authentication attempts can be recorded for future audit
purposes [4] (e.g., disputing suspicious transactions) during
which the recordings may be inspected by humans. Passing
the human judge’s (HJ) inspection, whose task is to listen to
the sample in case of an investigation and verify whether it in
fact comes from the victim, is indicated as HJ(Zqdv, Urp)-

This goal is optional as the attacker may ignore it if an
investigation is not a concern (i.e., if the attacker covers their
traces or can guarantee that the transaction will go through
before any flags are raised—for instance, when stealing typical



amounts for the victim to transfer). Our attack satisfies this
goal, as opposed to traditional adversarial attacks against
ASVs, which do not produce samples in the victim’s voice.
Knowledge. We are concerned with the most realistic black-
box setting, where the attacker only has access to the target’s
decision (accept/reject), without knowledge of the target’s
internals, training data or output probabilities.

Capabilities.  Access to a rooted phone  (designated-app
only): The attacker can bypass the microphone on the device
used to interact with the target to inject audio directly into
the app. This requires that the attacker obtains some rooted
device. We do not assume access to the victim’s device.
Rooting is possible as rootkits are available online [49]. Apps
may be equipped with “root detectors”, but these can often be
evaded [50]. The ability to bypass the microphone has been
assumed in many previous works [21]. This is not required
for over-telephony attacks, as the attacker can use a computer.
Access to audio recordings of the victim (designated-app &
over-telephony): The attacker is in possession of sufficient
data (and computational resources) to train SS/VC models
in the victim’s voice. Modern SS/VC systems accomplish
this with only ~15 minutes of victim speech [51]. Such
data is easy to obtain thanks to social media and conference
calls, especially for a determined attacker targeting a specific
individual. Alternatively, zero-shot algorithms (which we do
not consider) only require 5 seconds in the victim’s voice (but
only retain a 50% success rate against human listeners [13]).
Obtaining PINs (designated-app only): The attacker (pretend-
ing to be the victim) installs the app the victim uses to interact
with the target on the attacker’s rooted device. Most banks
allow their users to install their apps on multiple devices. They
may require entering a PIN [52], which the attacker can obtain
through social engineering [53]— a standard assumption [26].
In the over-telephony scenario, this requirement is waived, as
the attacker may use any phone (even a landline) to place the
call, and no app (therefore no PIN) is required.

IV. ATTACKING A SECURITY-CRITICAL VA SYSTEM

A. Attack Overview
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Figure 1: Attack Overview.

Our attack is motivated by two main hypotheses:
H1: There exist identifiable, removable, and universal key
differences between human and machine speech.
H2: These nuances are among the primary telltales on which
CMs rely to make their decision.

Note: The term universal above implies that these differ-
ences (nuances) are agnostic to the user or spoken text.

Optimization-free universal attacks on ASVs are hard to
realize as they require fathoming features that characterize the
victim’s voice and how they can be injected into different
utterances. This is evident by the variety of target-specific,
non-universal attacks against those systems (see §X), and
absence of universal attacks, despite the recurrent emphasis
on their importance [25]. However, based on HI, which
states that there are human-understandable universal differ-
ences (across users and speech samples) between machine
and human speech, and H2, which states that they are crucial
for CMs to perform correct classification, we identify a new
potential weakest link. Successfully eliminating those intuitive
differences in a universal manner for a given spoofed sample
through designated transformations can make the components
protecting ASVs against spoofing (i.e., CMs) misclassify. This
will leave the entire VA platform vulnerable, due to the known
vulnerability of ASVs to spoofing attacks. Furthermore, the
nature of the targeted nuances entails that defending against
our attack will not be trivial, as we target core CMs features,
leaving them practically useless. The novelty in our work lies
in the realization of these transformations that target com-
monalities of various CMs without resorting to transferability,
which is of limited success (see §VI-A). The challenge is
that these transformations need to be subtle to preserve the
properties of the spoofed sample that make it effective against
ASVs, and its textual content (necessary to bypass STTs).

Overall, the attack is as follows (see Figure 1): 1) The
attacker accesses the target-provided app (or places a call to the
target) and issues a command triggering a transaction. 2) The
target receives the request and 3) prompts the attacker with
a random authentication phrase ¢. 4) The attacker generates
the requested phrase in the victim’s voice via an SS or VC
algorithm S4. 5) The result is forwarded to the adversarial
examples engine AFE, which perturbs it using our transforma-
tions to generate a sample with identical content in terms of
its text, while also preserving the voiceprint of the victim.
6) The adversarial example is injected into the app (call)
and transferred to the target. 7) The target verifies that the
sample bears the victim’s voiceprint (ASV accepts due to the
vulnerability of ASVs to spoofing attacks), the textual content
of the sample is ¢ (STT accepts), and the sample comes from
a human (CM accepts). 8) If the transaction is later reported
as suspicious, the human judge is fooled by the seemingly
genuine sample and confirms the transaction’s authenticity.

B. Universal Transformations Against CMs

We seek transformations than can eliminate identifiable and
removable machine cues, while preserving quality. Hence,



these transformations must be crafted based on an under-
standing of the design of CMs and fake speech algorithms.
We surveyed numerous papers to amass such an in-depth
understanding, leading to the development and testing of
various heuristics. Below we list the selected transformations:
F1. Replacement of Leading and Trailing Silence: When hu-
mans speak into a microphone, there is static noise due to
recording device imperfections (characteristics of the micro-
phone), in addition to involuntary sounds the speaker produces
that accompany the speech (e.g., the speaker inhales before
talking). Spoofed speech lacks these “non-speech” cues, which
may influence the decision of CMs. In fact, applying voice
activity detection (VAD) to filter out silences when training
or evaluating CMs results in a performance degradation [54],
proving these non-speech cues essential for CMs.

One may incorrectly assume that CMs can be trivially made
ineffective by removing silence intervals, eliminating them as a
deciding factor, and making CMs easier to fool [54]. However,
when replicating these experiments, we find that eliminating
silences makes CMs more likely to reject any input. Hence,
this attack will not be successful (the attacker needs the model
to accept spoofed samples) as the performance degradation
when silence is stripped is the result of the inability of CMs to
accept bonafide samples that lack the trimmed silence periods,
which is of no use as spoofed samples are still rejected.

Nonetheless, “natural” silence can be copied from bonafide
samples. Fj replaces leading/trailing silence in spoofed sam-
ples with silence from benign samples. Appending longer
silence intervals to increase the dependence on these cues is
not a valid attack, as research shows trimming long silences
possible, making them shorter but sufficient for classifica-
tion [55].

Fs. Elimination of Inter-word Redundant Silence: F5 further
eliminates non-speech cues that identify spoofed speech by
removing long “synthetic” silence intervals. SS/VC algorithms
fail to generate statistically-natural silence to fill gaps between
consecutive words. Spoofed silence intervals are often too
quiet compared to human speech, since humans have air flow
between their words. Similarly, natural speech exhibits an
echo, as the different reflections of the same sound arrive at
the microphone at different times (see F}), populating those
silent regions. Furthermore, spoofing algorithms often generate
speech by dividing it into time steps, generating each inde-
pendently. This step-by-step (often non-causal) procedure may
cause the output to have extended unnatural silences, although
the words at each step may have a (semi-)natural silence
distribution between them. As opposed to leading/trailing
silences, these cannot be replaced as their location mandates
that the distribution of their static noise must be compliant
with preceding and following intervals and replacing them
with silence from different samples will not accomplish this.
Thus, F» eliminates inter-word silences altogether. We find
that since F} already injects human-like silences, in F5 it is
sufficient to remove redundant silent periods. Using the right
parameters, we reduce only long (empty) silence intervals but
do not eliminate them completely, so the output still contains

the more lively (noisy) silences if they exist, sounding natural
in terms of the speed at which words are uttered.

F3. Boosting the center of the spectrum: The majority human
speech energy is concentrated in lower parts of the spectrum.
Thus, our hypothesis is that this frequency range naturally
becomes the most critical in audio-related tasks compared to
negligible higher frequency components. Furthermore, many
audio classifiers (CMs, ASVs, ASRs) rely on tempo-spectral
representations that emphasize details in lower frequencies
while de-emphasizing high components (e.g., MFCC [10]) or
have higher resolution at lower frequencies (e.g., CQCC [56]).
CMs often use such front-ends. Moreover, the latest state-of-
the-art CMs operate on raw waveforms. Due to the energy dis-
tribution of speech (concentration around lower frequencies),
we expect these systems to naturally assign larger weights to
lower components as well. Thus, CMs are more sensitive to
cues in lower frequencies. Introducing perturbations manipu-
lating the spectra s.t higher frequencies are amplified relative
to these lower components decreases the magnitude of the
cues that can be more precisely classified by CMs, while the
regions that are less accurately learned will be made dominant.
The lack of accuracy in this range causes misclassification.

This transformation amplifies the intensity of the signal’s
spectrum around the target region. The range (1 — 4)KHz
has the most considerable effect on speech intelligibility [57].
Higher frequencies (typically above 6KHz) are dominated
by noise, less important to intelligibility, and are naturally
of lower magnitudes. Thus, we ensure keeping these higher
frequency components suppressed by using a sharp (fast-
decaying) filter around the center of the spectrum.

Fy. Local Echo: This is an extension to F5. As opposed to
spoofed speech, natural speech is typically recorded with a mi-
crophone, which receives its input from a user speaking into it.
The user’s voice does not travel to the microphone in a single
trajectory. Instead, voice from their mouths travels in many
directions and gets reflected at different angles and times,
echoed back to the microphone. With time, the amplitudes of
the reflected particles belonging to each utterance dissipate,
no longer being recorded. The lack of echo in spoofed speech
can serve as a sign telling benign and spoofed samples apart.
F; generates local echo, introducing 1ms-shifted copies to the
signal over a short period (100ms), decreasing the amplitude
of the repeated copy as we advance in time.

F5. Pre-emphasis: This transformation applies pre-emphasis to
the input signal. Pre-emphasis [58] is used to alter the signal
at different frequencies by amplifying the relative magnitudes
of higher frequency components at the expense of lower
frequencies. It is popular in high-speed transmission systems,
creating noise-robust signals before transmission. Upon receipt
of the signal, the operation is inverted via de-emphasis.

The intuition behind using pre-emphasis is similar to that
motivating F3— the uncertainty of CMs at higher frequencies.
Yet, a drawback of pre-emphasis is that its frequency response
is monotonically increasing, leading to large magnitudes at
very high frequencies, and yielding outputs with flat spectra
(the energy is evenly distributed along the frequency axis).




Those are unnatural compared to normal speech, wherein the
energy is concentrated at lower frequencies, and will sound
unrealistic. Instead, as in Fj, the target region we wish to
amplify is the center of the spectrum (around 1KHz-6KHz).
To circumvent this, we use a smaller coefficient for the
operation (0.5) instead of typical large coefficients (0.97)
to ensure the output signal complies with the spectral map
of natural speech. This limits the usability of Fj, although
it is still highly effective. F5 can, hence, further boost the
attack’s performance as it enables defining the specific region
to amplify, leaving out undesired frequencies. Yet, F5 enables
us to systematically manipulate the entire spectrum as a well-
established technique, preserving inter-connections between
different frequency components, which is harder with F3.
F§. Noise Reduction: The samples produced by spoofing al-
gorithms often exhibit machine noise, which characterizes the
algorithms used to produce them. In a way, this noise can
be thought of as a fingerprint attesting to the algorithm’s
imperfections. As opposed to naturally-occurring (additive)
noise, it does not exhibit the same normal distribution over
the spectrum, and will be centered around specific frequencies,
forming a cue that CMs may spot. This computational limita-
tion is most likely due to dataset biases, as the settings under
which the training data is gathered (e.g. recording devices)
may introduce such artifacts. If such artifacts are eliminated,
CMs will lose the ability to rely on them to output a decision.
We implement Fg via spectral gating [59], which operates
by first calculating the tempo-spectral representation of the
signal. Afterward, for each frequency, the mean and standard
deviation over time are calculated. Lastly, at each time step,
if the intensity at some frequency is not sufficiently larger
than the mean for that frequency over time, this component
is eliminated. This filters out continuous background noise
at each frequency, leaving only unique, audible (non-noise)
information. Additionally, we find introducing additive noise
at this layer replaces the mechanic with natural noise found
in human samples and enhances the attack.
Fr. Adversarial speaker regularization (ADVSR): We include
a final optimization-based layer (ADV SR). However, this
does not change the optimization-free, model-agnostic nature
of our attack, since we do not use a shadow CM to perform the
optimization. The optimization is done via a model designed
for an adjacent task—an ASV. The objective of this step is not
to achieve high success against target ASVs, nor do we rely on
transferability. The goal is to utilize a shadow ASV to optimize
a spoofed sample to increase its ability to fool CMs. Hence,
this step is still considered a model-agnostic transformation.
ASV-based optimization can eliminate machine artefacts. The
idea is to “engrave” the user’s voiceprint into the spoofed
sample. The rationale is that given a reference sample y by
the victim user, and the spoofed sample z, a non-zero ASV
loss (for x w.r.t y), indicates that there is some uncertainty
as to whether the speaker in both samples is the same, and
we attribute that to one of the samples being “spoken” by the
machine. When the ASV removes these differences, machine
cues are removed as a byproduct making the sample less

machine-like and capable of bypassing the CM.

Aside from F; — Fy, we experimented with various other
techniques (excluded for limited success), including CM-based
adversarial attacks (see §VI-A), vocal tract copying [60], and
marginal filtering at fundamental frequencies and harmonics.
We leave exploring additional transformations to future work.

C. Attack Implementation

First, we replace machine silence with “realistic” silence
segments. We use Librosa [61] to trim leading and trailing
silence, with a threshold of —25.0 db, and replace it with
silence from a bonafide random sample of the same speaker
(F1). F5, uses WebRTCVad [62] to remove inter-word
extended silences (aggressiveness=3), with a frame of 30ms.
We find that this algorithm and hyperparameters retain neces-
sary silence intervals and do not eliminate them completely,
satisfying the requirements of F. We keep the original sample
length after steps F; and F> by choosing bonafide sample
periods that match in length those that F} and F5 trim.

Afterward, we apply F3 by computing the FFT of the
input and amplifying the frequency range 1-6KHz by 1.5
using a sharp Butterworth BPF (with an order of 20). This
limit of 1.5 ensures that the outputs do not sound suspicious
to humans and avoids violating the spectral map of normal
speech (see IV-B). F} is introduced by adding shifted copies
(by 1ms at a time) with decreasing amplitudes. Assuming the
original amplitude is A, the amplitude of the ¢‘th shifted copy
is A/(8 xi+ 1), since the longer it takes the echo to reach
the microphone, the more energy it loses. Next, we apply F5
based on Librosa’s implementation with a coefficient of 0.5.
In Fg, noise reduction is applied [59] and additive noise is
introduced instead with a limited amplitude of € = 0.0035 (to
avoid generating noisy samples). To preserve the effects of
F, we apply noise reduction between the leading and trailing
silences only. Finally, we perform F; with the ASV described
in §V. Since the ASV’s loss requires a reference voiceprint of
the victim, we use multiple bonafide (victim) recordings. We
generate the adversarials using I-FGSM [63] and € = 0.0015.

The transformation order and parameters were determined
empirically and can be explained as follows: F, F» are order-
invariant, operating on different regions. Fj3, F5 are order-
invariant; both perform (frequency) amplification operations.
Fy, F5 replace signal fragments and should precede Fj, F5 to
avoid discarding some of their effects. F introduces noise
that must be minimal (inaudible). Hence, it is applied after
amplification (F3, F5). F7 must be last since it is a volatile
voiceprint-based transformation, while others are voiceprint-
agnostic (destructive if applied afterward). Fy’s (echo) place-
ment (determined empirically) must be between Fs and F7.

V. EXPERIMENTAL SETUP

This section presents the models used, their baseline per-
formance, and our datasets.
System specifications. All adversarial examples were gen-
erated on a server running Ubuntu 20.04 on a PPC64LE,
POWERSNVL 2.33 GHz CPU with 16 physical (128 virtual)



System [ Front-end [ EER (ASVspoof2019 LA eval.)
WAV2VEC [19] | Raw-audio | 0.82%% (ASVspoof2021 LA eval.)
AASIST [66] Raw-audio | 0.83%

AASIST-L [66] Raw-audio | 0.99%

RAWGAT_ST (mul) [67] | Raw-audio 1.06%

SSNet [68] Raw-audio 1.64%

RAWDARTS [69] Raw-audio 1.77%

MCG [70] CQT 1.78%

LCNN_LSTM [71] LFCC 1.92%

MLCG [70] CQT 2.15%

AIR [72] LFCC 2.19%

Res2Net [73] CQT 2.50%

AIR_AM [72] LFCC 3.26%

DARTS [74] LFCC 4.96%

LCNN [75] LPMS 5.06%

Table I: Top-performing CMs with code and pre-trained mod-
els as of October 2021. In the first row, WAV2VEC is the
state-of-the-art w.r.t the ASVspoof2021 LA evaluation set.

cores and 1'TB RAM and 4 Tesla P100-SXM2 GPUs with 16G
of memory each (although our experiments used one GPU
at a time). To mount our over-telephony attack, we set up a
dummy server as an Amazon Connect [64] instance and used
Twilio [65] to programmatically place calls to it over which
the samples were delivered. The samples were recorded at the
receiver in AWS, downloaded to our server, and fed into the
CMs.

Sampling & encoding. All samples in our datasets are
sampled with a rate of 16KHz and represented as FP arrays in
the range [-1.0, 1.0]— a standard representation (we normalize
our transformations’ outputs to this range). When transmitting
samples over the phone, due to bandwidth limitations of the
carrier (Twilio), they are received at a sampling rate of 8KHz,
which we then up-sample to 16KHz to feed into our targets.
Systems. We select top-performing models from the literature
or the industry, depending on availability.

CMs. Commercial CMs, such as Nuance’s, are proprietary and
closed-sourced, without public APIs. We reached out to lead-
ing platforms, such as Aculab and ID R&D Voice, but never
heard back. Thus, to evaluate our attack against the state-of-
the-art, we use open-source systems from the ASVspoof2019
challenge [76]. We focus on these since the challenge has
long been the platform where novel CMs emerge. The chal-
lenge received contributions from renowned corporations (e.g.,
Google, which contributed to the challenge’s dataset [77]),
demonstrating its importance by industry standards. We do
not restrict ourselves to systems that actively participated
in the challenge and include more advanced CMs that have
since appeared demonstrating superior performance (w.r.t the
challenge’s task). We consider the best reported models [66],
[67] (released 2021), and for which the authors provide pre-
trained models and results (that we verified)—see Table 1. We
use pre-trained models to avoid introducing any errors while
reproducing them. These models’ performance is on par with
leading commercial systems. Specifically, the world-leading
ID R&D Voice [17] [15] was the winner of the ASVspoof2019
challenge, achieving an equal error rate (EER) of 0.22%. The
also proprietary system ranking second achieved an EER of
1.86% [76]. Our chosen systems achieve similar numbers, with
some ranking between the top two contestants.

Since the list in Table I was compiled, new systems
have emerged. Therefore we include a representative of such
potentially more robust models. We use the state-of-the-art
WAV2VEC [19], a model designed for the ASVspoof2021
challenge, whose objective was to build generalizable CMs
robust to the audio channel effect (can correctly classify
samples even over phone calls). The model was evaluated
on the ASVspoof2021 evaluation dataset, which augments
the ASVspoof2019 evaluation subset with samples transmitted
over the phone. This model is capable of operating on clean
audio (as found in the ASVspoof2019 dataset) and phone
audio and is so far the best at performing both tasks without
needing further calibration [19]. Note that WAV2VEC achieves
the lowest EER (first row in Table I), and that this EER is
w.r.t the more challenging, augmented ASVspoof2021 dataset.
Since WAV2VEC is a very recent model, we only include it
in our final experiments that evaluate our full attack.

Due to the known possible lack of generalization [14] to
the over-telephony setting, some CMs may not be appropriate
for this setting. This does not apply to WAV2VEC, which was
specifically designed and evaluated for this task. Thus, in the
over-telephony experiment, we naturally include WAV2VEC.
For other CMs, we determined which can generalize to this
setting and calibrated their decision thresholds accordingly.
Details are in Appendix §B. In conclusion, we only found
seven other models to be somewhat generalizable, although
their performance is inferior to WAV2VEC.

Our chosen CMs vary significantly in their front-ends (see
Table I) and architectures, which proves our attack bypasses
any VA platform.

ASVs. We use various architectures to represent the state-
of-the-art (GMM i-vectors, x-vectors, and end-to-end). Using
KALDI [78], we design three GMM i-vector models of dif-
ferent dimensions and front-ends (ASVShadow, ASVTargetl,
ASVTarget2), and a single x-vector model (ASVTarget3).
KALDI is widely used in academic and industrial projects
and was used to evaluate previous works [79]. Additionally, we
use Resemblyzer [80], which implements Google’s GE2E [81]
as an end-to-end ASV. Resemblyzer is popular and has been
used in academic works [13]. Finally, we include the com-
mercial Amazon Connect Voice ID [35], which is available
for call centers using Amazon Connect [64] to verify callers’
identities. The ID delivered in each call was used to invoke
Voice ID with the (previously-uploaded) voiceprint of the
speaker to whom the delivered sample is claimed to belong.
Each voiceprint consists of 30 seconds of speech, obtained by
concatenating bonafide samples from the ASVspoof2019 eval-
uation set for each speaker. At the time these experiments were
conducted, Voice ID was not using a CM. Details of all ASVs
are in Appendix §A. We used ASVShadow for F7. All other
models were used as targets. The difference in architectures
and training data preserves blackbox assumptions.

STTs: We use two commercial, widely-used (blackbox) STTs:
Google Cloud STT [36] and Microsoft Azure STT [37].
Training datasets. CMs: We mainly experiment with pre-
trained CMs developed for the ASVspoof2019 challenge,




which (except WAV2VEC) were trained on the training subset
of the LA portion of the ASVspoof2019 dataset [82]. It
includes samples from 107 speakers (46 males/61 females).
For each speaker, there are bonafide and spoofed (VC/SS)
samples. The dataset is partitioned into 3 sections: training,
development, and evaluation. The training and development
datasets contain samples from 20 speakers each, while the
evaluation samples come from 67 speakers. The subsets are
disjoint in speakers and spoofing algorithms. For WAV2VEC,
the pretrained model uses the ASVspoof2019 training subset,
augmented with additive and convolutional noise.

ASVs: Training the GMM i-vector ASVs was done using the
bonafide samples from the (disjoint) development and training
subsets of ASVspoof2019 for the shadow and targets, respec-
tively. The x-vector system was trained using Voxcelebl [83],
augmented using MUSAN [84]. Resemblyzer and AWS Voice
ID come pre-trained. To use them, their thresholds must be
calibrated. We generated calibration data from the evaluation
subset of ASVspoof2019 (see Appendix §A for details).
STTs: We used pretrained API-accessible systems.
Evaluation dataset. Spoofed samples in the ASVspoof2019
evaluation subset were generated by various state-of-the-art
spoofing algorithms (as of 2019). As the output quality of
SS/VC models depends on the availability of training samples
and capabilities of the algorithms, we find samples in this
subset to be of different qualities. Since our attack optimizes
high-quality spoofed speech (such as [10]), we decided to
focus on a reduced set of this subset, including only samples
of the expected quality that can initially bypass STTs and
fool humans. This decision is further motivated by the need
to have a reduced set to evaluate in our large-scale experiments
(especially in the costly and time-consuming over-telephony
setting). After listening to a few thousands of recordings, we
chose 474 spoofed samples belonging to 48 users, generated
by 13 different algorithms we deemed of satisfactory quality.
Compared to previous works considering over-telephony ad-
versarials [29] and spoofed speech [85], this number is similar
and the variety in users and algorithms is more extensive. To
promote future research, we make our high-quality reduced
subset available>. We also include the spoofed and adversarial
samples we use in the user study in §VIIL

Evaluation metrics. We define our attack’s success as the
Acceptance Rate (AR) for each system type. For CMs, this is
the probability that the sample is deemed bonafide. For ASVs,
this is the probability that given a reference victim voiceprint,
the ASV’s comparison of the attack sample against this ref-
erence leads to acceptance. For STTs, acceptance indicates a
successful comparison of the transcribed text from the sample
against the phrase expected by the system. We assume spoofed
samples always satisfy this property, due to the quality of
modern audio spoofing. For adversarial examples, acceptance
is the transcribed texts from the original sample and the
adversarial generated from it matching.

2 Available at the GitHub repository accompanying this work

VI. ATTACKING DESIGNATED-APP AUTHENTICATION

This section focuses on the designated-app scenario
(see §III-B), where authentication phrases are passed to the
server as waveforms over TCP (i.e., reliably, without packet
loss, jitter or lossy encoders [4]). First, we show results against
each of the CMs, ASVs, and STTs independently. Then, we
present the joint results for them combined. Recall that we
target CMs—success against STTs/ASVs is due to the quality
of the used spoofed speech, the vulnerability of ASVs to it,
and our attacks’ ability to preserve these properties.

A. Results Against CMs

Shattering the myth of transferability: The reader may ques-
tion the need for our transformations given the existence
of conventional adversarial techniques. Assuming a query-
limited attacker leaves us with transferability attacks (crafted
against a shadow CM and transferred to the target), as done in
previous works [30]-[33]. However, transferability was proven
ineffective for other audio-related tasks [86]. We prove that it
is not a viable attack against CMs either, pinpointing flaws in
previous works. Details are in Appendix §C.

Our transformations: The collective (cumulative) attack re-
sults are in Table II. The transformations should be performed
collectively as they are motivated by various hypotheses and
target different cues. We report individual evaluations of each
transformation in Appendix §D. In a nutshell, each transfor-
mation individually incurs a significant increase in the attack’s
success against several (but not necessarily all) CMs compared
to spoofing baselines. Nonetheless, these do not affect all CMs
similarly as they employ various heuristics, leading to a minor
degradation w.r.t the baselines on rare occasions. The ensemble
attack (discussed below) remains universal, far outperforming
singletons.

For F} (silence replacement), compared to spoofed samples
alone without any additional transformations (first row in
Table II), it is clear that F} leads to a considerable degra-
dation in the performance of several CMs. Even CMs that
were completely unaffected by additive noise or transferability
(RAWGAT _ST, AASIST, AASIST-L—see Tables VIII & IX
in Appendix §C) exhibit a performance degradation under this
simple transformation. This is evidence that silence intervals of
bonafide recordings encode non-speech liveness cues missing
in machine speech. These non-speech cues can be injected by
replacing silent intervals with genuine silences, as done by F7.

Next, we study F> (silence elimination). As explained
in §IV-B, additional non-speech cues guiding CMs are em-
bedded in inter-word silence intervals, as SS/VC algorithms
often fail to mimic genuine silences, generating long, mute
segments. This is cemented by F3’s findings, demonstrating a
significant increase in the attack’s success against all CMs.

F3 (spectrum center boosting) is also highly effective. We
can see that increasing the relative amplitudes of the uncer-
tainty regions at the expense of lower frequencies (see §IV-B)
drastically increases the success rates.

The results for Fj (local echo) indicate that the contribution
of this transformation is only incremental compared to the




Frontend LPMS LFCC

cor

Raw Waveform

w LCNN  AIR  AIRAM DARTS LCNN_LSTM
Transformation

MCG MLCG  RES2NET  SSNET  RAWGAT_ST  RAWDARTS  AASIST  AASIST-L

None 3.16% 3.59% 4.01% 2.95%

| 2.32%

1.90% 4.01% 2.95% | 2.74% 3.16% 1.90% 2.32% 2.32%

F1
FI-F2
FI-F3
F1-F4
FI-F5
FI-F6

13.71%
19.41%
20.25%
19.83%

15.61%
23.00%
38.40%
39.87%
21.31% | 44.30%
12.03% | 45.99%

13.92%
17.30%
28.90%
30.17%
34.39%
42.19%

13.08%
16.03%
14.98%
16.46%
20.46%
20.68%

10.97%
15.40%
24.89%
24.89%
24.05%
25.11%

12.66%
16.24%
32.70%
34.60%
45.99%
67.51%

9.28%
15.82%
20.04%
20.46%
27.85%
45.15%

4.85%
4.22%
7.59%
8.44%
8.02%
16.03%

12.66%
41.56%
43.46%
47.05%
54.01%
57.81%

7.59%
9.70%
9.92%
10.76%
11.81%
11.18%

1.69%
3.38%
4.64%
5.49%
12.03%
15.82%

4.85%
13.29%
15.40%
15.82%
18.99%
24.68%

5.27%
10.97%
13.08%
14.35%
17.93%
21.73%

FI-F7 (Full Attack) ‘ 17.93% ‘ 58.02% 51.27% 20.04% 15.61%

| 65.82%

52.74% 15.82% | 61.81% 12.03% 15.82% 24.89% 21.94%

Table II: Attack results against CMs. Bold entries represent the best success results for each system.

other transformations. Nonetheless, we still see some improve-
ment over the cumulative attack without F); for the majority
of CMs, especially for the harder systems to spoof, such as
RAWGAT_ST and RAWDARTS. These systems have proven
so far to be far more robust than counterparts and therefore
any improvement is significant and proves the reliance on this
echo as a cue. For instance, this is the first time we see a
success rate of above 5% against RAWDARTS.

F5 (pre-emphasis) is among the leading transformations,
especially against CMs operating on raw waveforms. Recall
that for the pre-emphasis filter, to ensure the output sample’s
spectrum conforms to the spectral map of natural speech
(see §IV-B), we chose a smaller constant than the typi-
cal. Interestingly, while large coefficients produce unnatural-
looking (sounding) spectra failing human inspection, most
CMs (except LCNN, LCNN_LSTM, DARTS) are vul-
nerable to pre-emphasis with a large coefficient (0.97) (see
Appendix §D). Not only will such samples likely fail human
inspection, pre-emphasis with large coefficients can also be
defeated by adding a component measuring the statistical
distribution of the signal’s spectrum to reject unnatural-looking
samples. Comparing the spectral density against the natural
distribution of speech is a vital step currently missing in
many CMs. Nonetheless, our attack produces natural-looking
examples, robust to this proposed defense.

Fg (noise reduction) eliminates characteristic noise due to
imperfections of spoofing algorithms that may be identified by
CMs, replacing it with additive noise following the observation
that bonafide samples often exhibit such noise. We see a
significant increase in the success against most CMs (except
RAWGAT_ST), making Fg among the most important trans-
forms, and highlighting CMs’ dependence on removable cues.

The last layer is ADVSR (F%). When coupled with the rest
of the transformations, it achieves the highest attack success
rate for multiple CMs, cementing the reasoning behind it.
State-of-the-art (WAV2VEC): WAV2VEC was designed for
channel generalization and trained on noise-augmented data,
which was proven to increase noise robustness and improve
generalization [19]. This is a natural defense against our attack,
since the non-speech cues we target in F; and F5 are linked to
the absence of natural silence in spoofed samples. Addition-
ally, our transformations boost central frequency components
(F5 and Fj5). Although we boost these components that are of
utmost import to intelligibility and CM classification, higher
frequencies are amplified as a byproduct, which may also
contribute to our attack’s success. Higher components include

AWS Voice ID

System
M ASVShadow

65.19% |
100% |

ASVTargetl ‘ ASVTarget2 ‘ ASVTarget3

Google/Resemblyzer

Spoofing | 66.24% | 69.15%

943% |

5992% | 99.79% |

100% |

85.65% |
75.1% |

Our attack | 81.86% | 65.3%

Table III: Attack results against ASVs.

noise-dominated information, which CMs should overlook
(see §IV-B). WAV2VEC was designed to operate on telephony
data, which often lacks components above 4KHz (see §VII).
Hence, it should be able to disregard these components, while
other CMs may be vulnerable to perturbations in this range.
The spoofed samples have an initial success rate of 1.89%
against WAV2VEC, making it the most robust CM we experi-
ment with. After applying our transformations, the success rate
increases to 11.6% (a 6.14x performance degradation), making
it highly untrustworthy by the standards of a strict security
platform. In conclusion, even the state-of-the-art is vulner-
able to our transformations. The additive and convolutional
noise used to train WAV2VEC does not necessarily capture
microphone or articulatory sounds, which are the liveness
cues found in the silence of bonafide speech, and therefore
are less effective, leaving effective data augmentation an open
challenge. Furthermore, WAV2VEC shares the vulnerability of
being more accurate at lower (compared to central) frequency
regions. Resistance in higher frequencies is found ineffective.
Summary: Our attack defeats state-of-the-art CMs, with a suc-
cess rate of 11.6% against the most robust CM (WAV2VEC)
and 65.82% against the most vulnerable (MCG). The main
takeaway is that the cues these systems rely on can be easily
spoofed. We also proved that adversarial transferability across
CMs is an impractical attack strategy (see Appendix §C).

B. Results Against ASVs

Table III shows the success rates against ASVs. The first
row shows the success of spoofed samples. Currently, there are
even stronger spoofing algorithms that achieve higher success
rates against ASVs. For instance, Wenger et al. [13] achieve
a success rate of 100% against Resemblyzer, whereas our
spoofed samples only attain a rate of 85.65%. Nonetheless,
our spoofing attacks’ rates demonstrate the vulnerability of
ASVs to spoofing and the need for CMs. Our attack’s success
(second row) proves it retains the victim’s voiceprint in the
spoofed samples as it does not lead to considerable degradation
in the success against any of the ASVs. The systems belonging
to entirely different architectures (ASVTarget3, Resemblyzer)
compared to our shadow (ASVShadow) in addition to AWS
Voice ID, which the results imply is of a different architecture,



are almost insensitive to our transformations, maintaining high
success. ASVTargetl and ASVTarget2 exhibit a significant
increase in the attack’s success. We attribute that to our ASV-
based adversarial layer (ADVSR), where ASVShadow is used
to apply the optimization. Since all i-vector models share
the same architecture (up to the variation in dimensionality),
adversarial perturbations naturally transfer to the other two
i-vector models (ASVTarget1/2) as opposed to different archi-
tectures. These results align with previous findings regarding
the lack of transferability across different ASVs/ASRs [26].
We reported our findings about Amazon Connect Voice ID
to Amazon, which has since deployed a CM. Evaluating our
transformations against Voice ID’s CM is left to future work.

C. Results Against STTs

To evaluate our attack w.at STTs, we use Google
Cloud’s [36] and Microsoft Azure’s STT modules [37], and
test whether 25 random adversarials generated using samples
from our evaluation dataset are transcribed to the same content
as the original samples. The success rates are 76% and 96%
against Google and Azure respectively, (see Appendix §E).

D. Results Against the Combined Defense

We evaluate success against the combined defense com-
ponents (CMs, ASVs and STTs). The human judge is only
consulted after the fact in special cases (see §III). Thus, we
exclude this component here. This is the most restrictive (and
practical) setting under which VA attacks can be evaluated.
We report success rates for 3 and 6 authentication attempts
since these are typical numbers used in practice (see §III).

The results were calculated as follows: for each ASV-
CM pair, we extracted the number of samples that bypassed
the two systems jointly and divided it by the size of our
evaluation dataset (474), yielding P4c—the probability to
bypass the ASV-CM pair. Given that our experiment with
STTs only included 25 samples, we could not calculate the
joint probability against all systems similarly. We assume the
success rates against STTs to be independent of the success
rates against the other components (since our attack is almost
always successful against STTs)—in the future a more precise
evaluation can be done. We use the average success rate
against the two STTs (86%). Thus, the success rate against
an ASV-CM-STT deployment becomes P4cs = Pac * 0.86.
Finally, even though our transformations lack randomness
(except ADVSR), we still assume that success at each attempt
is independent of other attempts, due to the large space of
spoofing algorithms and the infinite space of recordings of the
victim that can be used to train them. Thus, success after n
attempts has the probability 1 — (1 — Pyes)™.

The results are in Table IV. The combined systems indeed
provide strong security against spoofing, with success rates
as low as 0% even after 6 attempts (MCG/ASVTargetl). Yet,
all combinations become unreliable against our attack, with
the strongest (RawDarts/Voice ID) suffering success of 8.1%
after 3 attempts and 15.55% after 6. For others, such as

MCG/ASVTargetl, we approach 100% success. These results
demonstrate how the strictest VA can be bypassed.

VII. OVER-TELEPHONY-NETWORK ATTACKS

To the best of our knowledge, we are the first to explore
the over-telephony setting for targeted adversarial attacks—the
only known adversarial attack against VA over the phone is
non-targeted [29]. We present superior attacks impersonating
specific victims and fooling security-critical VA. Adversarial
attacks over the phone are harder due to three main challenges:
transcoding, packet loss and jitter [86]. An additional factor
is bandwidth limitations. Samples are typically recorded with
off-the-shelf devices at a high sampling rate. For instance, our
inputs from ASVspoof2019 were recorded at 16KHz. Phone
carriers typically operate at a lower rate (8KHz), causing
information loss at high frequencies. Our goal here is to ensure
that our attack can withstand these distortions.

We used the setup in §V to send samples over the phone.
While Amazon Connect is robust to packet loss and jitter,
the transcoding and bandwidth losses persist. As explained
in §V, only WAV2VEC and seven other CMs are effective
in the over-telephony setting and only they are considered.
Table V shows the results of our over-telephony experiments
involving the same 474 samples from §VI. The results clearly
demonstrate the threats associated with our attack even in the
over-telephony setting. Even the most powerful CM for the
over-telephony task to date (WAV2VEC) is affected, bringing
the success against it to 6.03% from 1.52% (3.97x). While
the attack is less successful than in the app setting, it is still
highly powerful especially after multiple attempts.

VIII. FOOLING A HUMAN JUDGE

In our threat model, attacks must fool humans (HJ) if they
are asked to inspect the samples (see III). Given an audio
sample and a claimed user identity (to whom the sample
supposedly belongs), H.J verifies that the sample comes from
that user. Since H.J is not necessarily acquainted with the
user, this is done via a comparison to samples previously
provided by the user (e.g., at enrollment). We restrict the
spoofed samples involved in this study to those belonging
to the reduced set of 474 (high quality) samples introduced
in §V. The adversarial examples were generated from spoofed
samples in this set using our F'ull attack algorithm. The study
also includes bonafide samples, selected from the evaluation
subset of ASVspoof2019. We do not listen to adversarial
samples before using them in our study. We use the same
human-imperceptibility study from FakeBob [26], randomly
assigning participants one of two tasks to be completed online:
Task 1: Clean or Noisy. Participants listen to 24 samples and
indicate whether each is noisy. The options are clean, noisy,
or not sure. We randomly select 12 spoofed samples from
the batch described above and 12 adversarials, crafted from
spoofed recordings in the same batch (not necessarily the same
samples). To ensure quality of the responses, we include three




ASV

M ASVTargetl ASVTarger2 ASVTarget3 Resemblyzer AWS Voice ID
Spoofing Our Attack Spoofing Our Attack Spoofing Our Attack Spoofing Our Attack Spoofing Our Attack

(3 Ants./6Atts.) (3 Atts./6 Atts.) (3 Atts./6Atts.) (3 Atts./6 Atts.) (3 Atts./6Atts.) (3 Atts./6 Atts.) (3 Atts./6Atts.) (3 Atts./6 Atts.) (3 Atts./6Atts.) (3 Atts./6 Atts.)
LCNN 1.88%/3.72% 34.7%/57.36% 3.73%/7.33% 31.79%/53.47% | 9.18%/17.52% 39.49%/63.39% | 2.5%/4.94% 17.38%/31.74% | 1.91%/3.78% 4.9%/9.55%
AIR 1.88%/3.72% 84.79%/97.69% | 3.12%/6.14% 78.11%/95.21% | 6.8%/13.14% 87.42%/98.42% | 2.5%/4.94% 71.15%/91.68% | 1.91%/3.78% 60.9%/84.71%
AIR_AM 2.5%/4.94% 79.27%/95.7% 4.35%/8.5% 71.39%/91.82% | 10.36%/19.65%  82.52%/96.94% | 3.73%/7.33% 62.29%/85.78% | 0.63%/1.25% 48.11%/73.07%
DARTS 1.25%/2.49%  39.1%/62.92% 3.12%/6.14% 35.929%/58.93% | 10.94%/20.69%  43.3%/67.86% 1.88%/3.72% 23.9%/42.09% 1.91%/3.78% 6.51%/12.6%
LCNN_LSTM | 1.25%/2.49% 32.62%/54.6% 1.88%/3.72% 27.92%/48.04% | 8.59%/16.44% 35.11%/57.89% | 2.5%/4.94% 20.21%/36.34% | 1.91%/3.78% 7.57%/14.56%
MCG 0.0%/0.0% 90.07%/99.01% | 1.25%/2.49% 84.16%/97.49% | 5.56%/10.82% 91.83%/99.33% | 1.88%/3.72% 80.21%/96.08% | 1.91%/3.78% 71.63%/91.95%
MLCG 4.96%/9.67 % 80.4%/96.16% 5.56%/10.82%  73.24%/92.84% | 11.53%/21.72%  83.68%/97.34% | 10.36%/19.65%  70.19%/91.11% | 9.38%/17.88%  59.69%/83.75%
RES2NET 2.5%/4.94% 30.94%/52.31% | 3.73%/7.33% 28.78%/49.28% | 8.59%/16.44% 35.51%/58.42% | 4.96%/9.67% 22.08%/39.29% | 3.18%/6.25% 11.21%/21.17%
SSNET 4.35%/8.5% 88.22%/98.61% | 4.35%/8.5% 82.52%/96.94% | 8.0%/15.35% 89.72%/98.94% | 5.56%/10.82% 80.58%/96.23% | 4.43%/8.67% 78.83%/95.52%
RAWGAT _ST | 3.73%/7.33% 24.8%/43.45% 4.35%/8.5% 19.27%/34.83% | 9.18%/17.52% 27.92%/48.04% | 7.4%/14.25% 16.9%/30.95% 0.63%/1.25% 9.15%/17.46%
RAWDARTS 0.63%/1.25% 33.04%/55.16% | 1.25%/2.49% 30.09%/51.13% | 4.96%/9.67% 35.51%/58.42% | 2.5%/4.94% 19.27%/34.83% | 2.56%/5.05% 8.1%/15.55%
AASSIST 4.35%/8.5% 48.36%/73.33% | 4.35%/8.5% 41.03%/65.23% | 6.8%/13.14% 51.45%/76.43% | 4.96%/9.67% 40.65%/64.77% | 2.56%/5.05% 30.21%/51.3%
AASSIST-L 3.12%/6.14%  43.67%/68.27% | 1.88%/3.72% 35.92%/58.93% | 6.8%/13.14% 46.6%/71.48% 4.9690/9.67% 35.92%/58.93% | 1.28%/2.55% 26.66%/46.22%
WAV2VEC 4.35%/8.5% 21.62%/38.57%  3.12%/6.14% 17.86%/32.53%  5.56%/10.82% 24.35%/42.78%  4.96%/9.67% 15.44%/28.49%  4.43%/8.67% 8.62%/16.49%

Table IV: Attack results against combined ASV-CM-STT deployments.
Frontend cor Raw Waveform . .
N MCG  RES2NET SSNET RAWGAT ST RAWDARTS AASIST ~AASIST-L WAV2VEC samples. SpOOde Samples are machlne—gener ated’ which may
Spoofing | 10.95% 10.52% | 138%  8.09% 11.55% $67%  1053%  1.52% leave cues that can be Sp0tted by a Vlgllant listener. This

Our attack ‘ 32.46%  30.70% ‘ 57.46%  22.15% 23.03% 26.54% 23.03% 6.03%

Table V: Attack results against over-telephony-network CMs.

additional samples that are completely silent as a concentra-
tion test. Respondents who find these samples noisy fail the
concentration test and their questionnaires are excluded.

Task 2: Identify The Speaker. Participants listen to 24 sample
pairs and indicate for each pair whether the samples were
uttered by the same speaker. The options are same, different,
and not sure. We randomly select 6 speakers (3 males and 3
females) from the reduced set. For each speaker we generate
four pairs: 1) Same Benign-Benign (SBB)—bonafide samples
by the same speaker, 2) Different Benign-Benign (DBB)—
bonafide samples from different (same gender) speakers, 3)
Same Benign-Spoofed (SBS)—samples by the same speaker;
one bonafide and one spoofed, 4) Same Adversarial-Benign
(SAB)—samples by the same speaker; one bonafide and one
adversarial. As a concentration test, we include three opposite-
gender pairs of bonafide samples. Responses with answers
to the concentration tasks not finding the speakers different
are disqualified (as in FakeBob). To isolate the effects of our
attack, adversarials in SAB pairs were all generated from
the spoofed recordings in the SBS pairs. Our objective is
comparing the adversarials’ results to those collected for their
spoofed precursors. We include the SBB and DBB pairs as
a quality test (see below). Compared to FakeBob, our task
adds two categories, SBS and SAB, and omits bonafide-
adversarial pairs, since they generate adversarials from benign
samples while we use spoofed samples.

For both tasks, we only select adversarials that successfully
bypass several CMs to evaluate the attack’s overall potential.
Results. We ran our IRB-approved study on MTurk [87] and
received 21 responses per task. We restricted our participants
to those with an MTurk approval rate of 95% or higher. Out of
all responses, two (one per task) failed the concentration test,
leaving us with 20 responses for each. As opposed to FakeBob,
we reveal our study’s purpose to participants, guaranteeing
they simulate real judges inspecting suspicious samples.

Task 1. As shown in Fig. 2, 40% of our participants heard
noise in spoofed samples, compared to 55% for adversarial

explains the relatively high rate of spoofed (baseline) samples
flagged as noisy. Modern algorithms can generate better fake
speech and reduce these rates [51]. However, our transforma-
tions increase this rate by only a factor of 1.375x (from 40%
to 55%), which is relatively low. Compared to FakeBob, our
transformations are much less obvious as their attack produced
adversarial samples ~3x noisier on average w.r.t their initial
samples. We focus on this degradation factor, since their attack
starts from cleaner (bonafide) samples, while ours modifies
fake speech, which may be initially noisier. Finally, noise
level is simply a quality metric, not ultimate to determine the
attack’s potential in fooling humans (even natural samples may
include noise). Task 2 is the more relevant metric.

Task 2. As done in FakeBob and in accordance with our de-
scription of H.J’s role, we say that a listener can differentiate
between the speakers of two samples only if the user selects
“different” for the two samples in the pair (“not sure” still
indicates uncertainty). 74% of our participants believe that
samples in DBDB pairs were uttered by different speakers
(see Fig. 2), and only 18% deemed SBB pairs to be from
the different speakers, indicating the high quality of our
responses. For SAB pairs, only 50% of participants deemed
the speakers different. Compared to SB.S pairs, we still see
a degradation as the detection probability for those is 30%,
which is expected since our transformations manipulate the
spectra of the samples. However, even after the degradation,
detection is only as good as a random guess (50%), demon-
strating the inability to spot our adversarials. In comparison,
FakeBob reports results for two types of adversarials; effective
and ineffective. Effective adversarials remain successful after
being played over the air, while ineffective ones lose this
ability. For effective adversarials, FakeBob reports that 54%
of their participants could tell that they belonged to a different
speaker (compared to the benign sample in the pair), while for
ineffective ones, this rate drops to ~30%.

Our adversarials (50% detection) outperform FakeBob’s ef-
fective adversarials (54% detection), highlighting their quality.
When comparing our results (50% detection) to FakeBob’s
ineffective samples (30% detection), it is important to note
that our study is more restrictive; participants were informed
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Figure 2: Results for Tasks 1 and 2.

that some samples are machine-generated, making them more
vigilant and harder to fool [13], as opposed to FakeBob,
wherein the study’s purpose is never disclosed to participants.
Second, FakeBob’s study contained more samples per cate-
gory, whereas ours has more categories but fewer samples
in each, making a single “bad” frequently-spotted adversarial
more influential. Considering this and our adversarials’ 50%
detection avoidance rate, the study proves our attack’s strength.

IX. DISCUSSION

Practicality. Our attack takes around 4 seconds per attempt
and requires a limited number of attempts, making it highly
practical. The attacker first needs to generate spoofed samples,
which is instant with modern VC/SS algorithms [88].
Potential defenses. Traditional adversarial defenses: These
include methods such as spatial smoothing, audio squeezing,
and adversarial training [89]. FakeBob [26] shows smoothing
and squeezing are ineffective against attacks on acoustic
systems, and adversarial training and similar methods [90]-
[94] lose effectiveness against unseen attacks [95]. We also
believe our attack is naturally robust to such defenses against
optimization-based adversarials since it conceptually deviates
from the hypotheses behind them.

Liveness detection: As explained in §II-B, active liveness
detection methods are hyper-sensitive and therefore less prac-
tical. Other non-traditional approaches include Voicefox [96],
which suggests that higher mistranscription rates by STTs may
indicate that a sample is spoofed but the quality of modern
spoofing algorithms and the pace at which they develop will
soon make such methods invalid. Blue et al. [85] detect
spoofed speech through vocal tract reconstruction. However,
vocal tract manipulation tools [60] may defeat this defense.
Attack-specific defenses: We considered defenses specific for
our attack. The first is eliminating silence (applying VAD),
nullifying the effects of “non-speech” cues that we inject in
F1&F5. Although we state that these intervals are crucial
for CMs (see §IV-B), Zhang et al. [97] propose a model
(SENet_FFT) capable of classifying silence-free speech.
We implement it but find applying VAD leading to poor perfor-
mance on the test set even without our attack (EER=24.34%).
We attribute this to us using a well-known VAD algorithm
(WebRTCVad [62]), which is aggressive at filtering out
silence, while they provide no details regarding their probably
much more permissive VAD algorithm, which leaves many

silence intervals in the samples, enabling proper functionality.
Thus, VAD is not a viable defense. Noise reduction will
similarly filter out vital silence information.

The second defense is low-pass filtering. We boost the
center of the spectrum, but higher components are amplified
as well. These should not be considered for audio classifica-
tion as they are noise-dominated, unreliable and missing in
bandwidth-limited scenarios (see §VII). Yet, this byproduct
could be a key reason behind the attack’s success, which can
be defeated by rejecting information in this range. Zhang et
al. [97] also suggest using SENet_FFT with frequencies
above 4K H z discarded to increase robustness. We reproduce
this, and achieve a comparable EER—2.11% (without VAD).
Afterward, we run our attack. For spoofed samples, the model
is robust, with a success rate of 0.63%. Yet, with our attack,
the rate rises to 11.18% (single attempt), proving our spectral
manipulation effects (F5& F5) are deeply rooted in the central
regions of the spectrum, where relevant information resides.
Identifying promising VA improvements: The best evaluated
defense against our attack comes in the form of a CM already
evaluated (WAV2VEC), for it having the potential to reject
background noise and high frequency components. We explain
this in §VI-A, but demonstrate how even this defense falls
short. The over-telephony setting, however, reveals additional
interesting findings: transcoding together with the bandwidth
loss, combined with training on noise-augmented data (e.g.,
WAV2VEC) can lead to a degradation in the attack’s success
(see §VII). We believe that this is a promising research avenue
to explore in the search for robust spoofing countermeasures,
both in the designated-app setting and for phone-call authen-
tication. Despite the fact that the loss incurred by transcod-
ing and down-sampling is a byproduct of transmission over
the telephony network, these components can be simulated
algorithmically, potentially raising the bar for attackers who
are currently more easily capable of mounting attacks in the
designated-app scenario, especially when combined with chan-
nel invariant models (obtained by training on noise-augmented
data) such as WAV2VEC. However, at this embryonic stage
our attack still achieves concerning success rates after a
number of attempts against this configuration (see §VII).
Outlook. Spoofing detection is a cat-and-mouse game, wherein
novel algorithms and threats are emerging at an unprecedented
rate without a reliable solution to make for robust VA. The
threat of replay attacks alone is still unaccounted for, despite
many works describing potential solutions in top venues [44],
[98], as new studies are constantly demonstrating how slightly
different settings or audio channels [13], [99] and attacks [98]
can severely degrade the performance of such systems. The
facts are similar for fake speech detection, as despite the
tremendous efforts invested so far, reports discussing the lack
of generalization to different settings and algorithms continue
to appear [54], [97], [100]. Nonetheless, replay/spoofing de-
tection systems continue to gain popularity in practice due
to the lack of better alternatives. While recent efforts present
somewhat generalizeable models (e.g., WAV2VEC), the true
ability of these to generalize to all settings remains an open




question. Regardless, we attacked the state-of-the-art available
passive solutions, which are suitable and being deployed in
security-critical environments, and proved their vulnerability
to our transformations under the settings and assumptions at
which they perform best. In the future, it is imperative to study
the link between our findings and generalization.

X. RELATED WORK

Non-Proactive Spoofing Attacks: These attacks fall under four
sub-classes: replay [42], mimicking [40], voice conversion
(VC) [41], and speech synthesis (SS) [10] (see §II). Replay
and mimicking are often disqualified as ASVs can be easily
made robust against them (see §II). We restrict the discussion
to SS/VC attacks, which are successful in fooling ASVs,
achieving success rates up to 100% [13]. This motivated the
development of (CMs) [44], [101] to protect ASVs. Many
advanced CMs have since appeared, demonstrating robustness
and generalization [14], [19], [44], [76], [101], and such CMs
are deployed by leading VA vendors [18]. Thus, we disqualify
non-proactive spoofing attacks assuming CMs defeat them.
Adpversarial Attacks on ASVs and STTs: In targeted adver-
sarial attacks on ASVs, the attacker starts from some audio
sample (typically, but not necessarily a human recording) and
adversarially optimizes it to fool the ASV into believing it was
uttered by the victim. Against STTs, the task is to make them
transcribe the sample into a text of the attacker’s choice.

The literature offers many such attacks. However, they
fail to break VA under security-critical assumptions. First,
many assume (semi-)whitebox access (at least some crucial
parameters are known) to the target models [21], [79], [102]
(STTs), [22], [39], [103]-[107] (ASVs), and [20] (both).
They all either fail to attack blackbox systems or rely on
transferability to do so. However, adversarial transferability
across ASVs/STTs has been proven very limited [86], and
works demonstrating good transferability rates (for targeted
attacks) only do so when their targets and shadows share
many commonalities, making them unsuitable for our black-
box setting. Other approaches attacking STTs [23]-[25] and
ASVs [25]-[27] circumvent the lack of transferability via
target-specific attacks that repeatedly query the target to infer
its decision boundary. These are query-inefficient and do not fit
into our threat model. Recently, NI-OCAAM [25] satisfied the
large query budget requirement. Yet, their techniques are based
on CommanderSong [79], which is extremely slow, violating
the response time constraint (see §II). The same issue is faced
by SirenAttack [28].

Another class of attacks operates at the signal processing
level, such as Pipe Overflow [100], which fools ASVs via
acoustic resonance perturbations. However, it assumes access
to the probability scores of the target system, requires external
devices, and is not query efficient. Abdullah et al. [29] target
ASVs/STTs and show high success rates. Yet, it is untargeted
and can only make a model arbitrarily misclassify, which is
of no use in our case. Abdullah et al. [108] show how certain
transformations can make audio impossible to understand by
humans, while maintaining correct classification by ASVs

(STTs). However, they consider a different goal, which is
hiding a previously-recorded bonafide sample of the victim
in unintelligible audio to deceive humans, while we do not
assume access to such recordings, as the phrases to repeat are
generated randomly by the target (see §II).

Adpversarial examples against ASVs/STTs can probably fool
CMs. CMs detect machine-generated speech, while the above
adversarials typically introduce changes to natural speech,
leaving them undetectable by CMs. In fact, Ahmed et al. [100]
conduct an experiment proving their attack bypasses CMs. It
is crucial to understand that CMs may not defend against these
attacks, but are still highly successful against spoofing [19],
[44], making them essential in critical environments.
Adpversarial Attacks on CMs: Adversarial attacks on CMs
are advanced attacks that combine spoofing with adversarial
examples and are conceptually similar to our own. They add
adversarial perturbations to SS/VC outputs to get CMs to
misclassify them as bonafide. Due to the vulnerability of ASVs
to spoofing and the high quality of spoofing algorithms, such
perturbations, when subtle enough, can make spoofed speech
bypass all VA components combined. However, similar to
adversarial attacks on ASVs/STTs, known attacks on CMs still
have not achieved this goal under security-critical assumptions.

Most attacks on CMs (or joint ASV-CM systems) [30]-[33]
have been whitebox and are of limited applicability, or relied
on transferability to attack blackbox systems. However, trans-
ferability attacks against CMs, as is the case with ASVs/STTs,
are extremely limited in potential and we attribute observed
high transferability rates to not considering fully blackbox
settings and experimenting with small sets of CMs lacking
robustness in real-world settings (see §VI-A). Finally, Ding
et al. [109], [110] propose a novel method for adversarially
enhancing VC outputs to bypass CMs. Yet, their attack is only
(semi-)whitebox and they experiment with a single CM. There
are target-specific attacks that require many target queries [34],
[111] to estimate the decision boundaries. These attacks are
ineffective under security-critical constraints (see §II). In a
concurrent work, Hua et al. [112] propose enhancing VC
outputs to spoof CMs by adding global noise and replacing
the silent intervals in the generated speech with ones from
bonafide samples in a post-generation phase. We integrate sim-
ilar (yet different) stages into our transformations (see §IV-B).
However, the improvement of these alone is not drastic, and
other steps are vital to generate robust adversarials.

XI. CONCLUSION

We presented the first practical attack on security-critical
VA, through targeting a newly-identified weakest link— CMs.
Our novel targeted, real-time and model-agnostic attack gen-
erates high-quality fake speech fooling both machines and
humans, and enabling the attacker to impersonate the victim,
severely compromising users’ security. Our attack’s success is
concerning, primarily due to it being mounted in blackbox and
practical settings, including the designated-app and phone con-
versation scenarios. Our findings highlight the severe pitfalls
of modern VA systems and the need for defenses.
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APPENDIX
A. ASV Models

Details of our chosen ASVs are in Table VI. To use Amazon
Connect Voice ID and Resemblyzer, we had to calibrate them
to obtain decision thresholds for our specific use case. To
calibrate Voice ID, first, we enrolled all the speakers in the
evaluation subset of the ASVspoof2019 dataset using the
process outlined in §V. Afterward, we selected 480 bonafide
samples from the evaluation subset of ASVspoof2019 s.t none
of these were used for speaker enrollment. We denote this
set as AWSCalibrate. For 240 of the samples, we invoked
Voice ID with the ID of the actual speaker of the sample.
For the other 240 samples, Voice ID was invoked with a

different speaker’s ID. The scores were used to calculate the
EER threshold.

As for Resemblyzer, for each bonafide sample in the
evaluation subset of ASVspoof2019, we performed verification
with two bonafide reference samples; one that belongs to
the same speaker, and another which belongs to a different
speaker. The scores were used to calculate the threshold.

B. CM Calibration for The Over-Telephony Setting

Due to the costly nature of our over-telephony experiments,
preventing us from transmitting thousands of samples over the
phone, and the need to have well-substantiated results that war-
rant including the different CMs in this experiment, calibration
was done in two phases. First, we use the ASVspoof2021
dataset [14], which evaluates the ability to deal with the
channel effect. The results are in Table VII (first row). For
reference, we include the EER (9.5%) for the baseline model
in the ASVspoof2021 challenge (RAW N ET?2). The state-
of-the-art WAV2VEC [19] is missing from the table, but as
explained in §V, it is superior to all known models with a 0.8%
EER. Performance is degraded significantly for some models
due to the channel effect, while for others, the degradation is
not as drastic. We filter-out models lacking generalization to
the phone setting, leaving only those with EERs below 15%.
While this is not practical, it is on par with the RAW N ET2
baseline. The attacker also needs to bypass other components
as well, further decreasing the actual success rates.

After choosing the models that are somewhat generalizable
to the phone scenario, we empirically verify their ability to
perform classification under our specific settings (i.e., when
transmitting the samples using Twilio to Amazon Connect) as
the different codecs used and system specifications may reveal
that not all models are in fact applicable for this use case. We
choose a subset, named AWSCalibrateCM, of spoofed and
bonafide samples (the same 474 spoofed samples from §V
and 230 other bonafide samples) from the evaluation section of
ASVspoof2019 and transmit them using Twilio to our Amazon
Connect instance. We then extract the transmitted samples
from the conversations we record at the receiver and use
these samples to test whether the CMs can still differentiate
between the bonafide and spoofed samples and calculate their
alternative EERs (w.r.t AWSCalibrateCM) accordingly. The
results can be found in the second row of Table VII and
prove the model’s ability to generalize, achieving relatively
low EERs. Furthermore, the thresholds for achieving these
EERs (in parentheses) are higher, making the attacker’s task
ever harder (a higher score is needed to accept the sample).
Hence, we use these EERs for our over-telephony experiment.

C. Shattering the Myth of Transferability

Our guiding principle is this: models for audio-related tasks
must be robust to various types of naturally-occurring noise,
the most common of which being additive (white). This is
known to the anti-spoofing community [14]. Models lacking
this robustness are untrustworthy and should not be deployed
in real-world environments. Specifically, spoofed samples tend
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System | ShadowASV | ASVTargetl | ASVTarget2 | ASVIarge3 | Google/Resemblyzer | AWS-Voice ID
) GMM-IVECTOR GMM-IVECTOR GMM-IVECTOR
Architecture (Gaussians: 1024, IVECTOR Dim.: 300) | (Gaussians: 2048, IVECTOR Dim.: 400) | (Gaussians: 2048, IVECTOR Dim.: 400) | ~XVECTOR DNN NA
Frontend | MFCC | MFCC | LPMS | MFCC | Mel Spectrogram | N/A

Training Set ‘ ASVspoof2019-dev(bonafide only) ASVspoof2019-train (bonafide only)

ASVspoof2019-train (bonafide only)

| Voxcelebl-Train | Voxceleb] &2 &LibriSpeech | N/A

Calibration/Eval Set |

ASVSpoof2019-eval (bonafide only)

| Voxcelebl-Test | ASVspoof2019-eval (bonafide only) | AWSCalibrate

ASVspoof2019-eval (bonafide only) ‘

ASVspoof2019-eval (bonafide only) ‘
2.76% |

EER \ 3%

4.65% | 6421% | 13% | 645%

Table VI: Architectures, datasets, and EERs of the different ASVs w.r.t their evaluation/calibration datasets.

Frontend LPMS LFCC

cor

Raw Waveform

W LCNN AIR AIR_AM DARTS LCNN_LSTM MCG
Dataset

MLCG

RES2NET SSNET RAWGAT_ST ~ RAWDARTS AASIST AASIST-L RAWNET2 (BASELINE)

ASVspoof2021 ‘ 29.37% (1.561) ‘ 18.231% (-0.87)  19.93% (0.21)  17.157% (2.94)  17.07% (0.00) ‘ 11.81% (0.57)

18.16% (0.12)

12.7% (0.09) | 13.8% (1.15)  8.09% (-2.47)  11.55% (0.01) ~ 8.67% (-2.7)  10.53% (-0.45) 9.5% (N/A)

AWSCalibrateCM | N/A | N/A NA N/A N/A | 10.95% (0.98) N/A

10.52% (0.31) | 1041% (2.06)  4.77% (-1.35)  6.61% (0.00)  5.74% (-1.44)  4.33% (-0.45) NA

Table VII: CMs’ EERs (thresholds) in the phone setting w.r.t ASVspoof2021/AWSCalibrateCM. EERs below 15% are in bold.

to be clean as the outputs of computer algorithms, whereas
bonafide samples are recorded using microphones by humans
and are more likely to exhibit natural noise (see §IV-B).
Transferability is useless unless it affects noise-robust systems.

There are currently a variety of models that have demon-
strated robustness to noisy samples, making them suit-
able for real-world environments, such as Void [44] and
WAV2VEC [19] (which was trained on noise-augmented data
and with which we experiment in §VI-A). This is trivially
expected, especially from commercial systems used in prac-
tice. The participating systems in ASVspoof2019, being on
par with industry standards (see §V), may very well be able
to generalize to noisy settings. Yet, there is no guarantee
that all these systems do as they have not been evaluated
in these settings. Previous works demonstrating adversarial
attacks on CMs [30]-[33] overlook this fact, which we assume
to be the main reason behind their high transferability rates.
Our hypothesis is that models that exhibit a significantly
degraded performance under transferability are not robust to
noise, enabling any noise to bring them out of balance and
cause them to misclassify. Additionally, such models are all
overfitted to the training data and therefore it would be natural
that they would share many common decision boundaries, as
opposed to robust models. Our goal is to determine which
systems are not robust to additive noise and test its connection
to transferability.

Our large-scale experiment is this: first, we introduce ad-
ditive noise to all the samples in our evaluation dataset
with various budgets. Then, we generate adversarial examples
using common methods (I-FGSM [63], PGD [63], Carlini &
Wagner [113]) and LCN N (trained on the development subset
of ASVspoof2019, as opposed to the LCNN target in all
of our tables, which was trained on the training subset— to
enforce blackbox settings) as the shadow. This system was
used in previous works, leading to high transferability [30].

Additive noise and transferability results are in Tables VIII
and IX, respectively, and prove a direct link between lacking
noise robustness transferability. LC'N N shares its architecture
with the shadow, so the high success rates are expectable
(not blackbox). LCNN_LSTM, RES2NET exhibit good
noise robustness and, while some transferability occurs for
these, it remains limited. Systems that are highly noise-robust
(RAWGAT_ST, RAWDARTS, AASIST, AASIST-L)

are insensitive to transferability. The systems vulnerable to
transferability (AIR, AIR_AM, DARTS, MCG, MLCG)
are those lacking noise robustness and not suitable for practical
use, proving transferability is not effective in practice.

D. Results for Individual Transformations

Individual results are in Table X. We reiterate the statement
made in §VI-A noting that each transformation targets a
specific set of heuristics and the dependence of the CMs on
these principles varies according to their design and underlying
features. Hence, the transformations individually do not always
succeed in attacking all CMs. The universal nature of our
full attack lies in its ability to target multiple identifiable
and removable cues simultaneously. F; — F7, when employed
together as shown in §VI-A, suffice to achieve this goal.
Individual evaluations, while helpful in bench-marking each
of the techniques independently, cannot alone determine their
suitability as part of the attack. We select transforms that show
potential against several CMs even if they are not effective
against all systems or lead to a slight degradation against
some, as the existence of other methods in the full attack can
make up for such minor losses. The transformations’ order is
somewhat deterministic (see §IV-C). Hence, evaluating each
transformation’s actual potential as part of the attack is better
done in a cumulative manner, as is in §VI-A.

We can see that F (silence replacement) is highly effective
against almost all CMs. F5 is not as universal as for three
systems (AIR, MLCG, RES2NET) we observe a mild
attack degradation w.r.t the spoofing baseline. Yet, for the
majority of systems, F» increases the attack’s success (often
considerably— MCG, SSNET, RAWDARTS, AASIST-
L), warranting its inclusion. Similar to Fj, Fj (spectrum
center boosting), Fys (noise reduction), and F7 (ADVSR)
drastically increase the success rates for several systems and
should naturally be included. As for Fj (local echo), the
findings are similar to F5, being effective especially against
CQT-based systems. Finally, F5 (pre-emphasis) is powerful
against raw waveform-based systems (SSNET, AASIST-
L, specifically). That said, its potential appears limited com-
pared to when integrated into the full attack (see Table II).

To fathom this, recall that we use a small pre-emphasis
coefficient (0.5). As noted in §VI-A and demonstrated in
Table XI, Fy is considerably stronger upon increasing the



Frontend LPMS LFCC cor Raw Waveform
M LCNN AIR AIR_AM  DARTS LCNN_LSTM  MCG  MLCG RES2NET SSNET RAWGAT_ST RAWDARTS AASIST AASIST-L

None ‘ 3.16% ‘ 2.32% 3.59% 4.01% 2.95% ‘ 1.90% 4.01% 2.95% ‘ 2.74% 3.16% 1.90% 2.32% 2.32%
0.0005 9.28% 7.17% 8.44% 6.12% 3.80% 1.69% 5.49% 2.74% 6.54% 3.16% 1.90% 2.32% 2.32%
0.0015 9.28% | 17.09% 14.98% 17.51% 4.85% 4.64% 9.49% 6.54% 14.98% 3.16% 1.90% 2.32% 2.53%
0.0025 9.28% | 18.99% 15.61% 19.83% 5.06% 12.24%  6.96% 4.43% 18.14% 2.95% 1.90% 2.32% 2.53%
0.0035 9.49% | 20.25% 15.19% 20.46% 5.27% 18.35%  6.33% 1.69% 17.09% 2.95% 1.90% 2.32% 2.53%
Best | 9.49% | 20.25% 15.19% 20.46% 5.27% | 18.35%  9.49% 6.54% | 18.14% 3.16% 1.90% 2.32% 2.53%

Table VIII: CM performance under additive noise. Bold numbers indicate the highest success rate against each system.

Frontend LPMS LFCC cor Raw Waveform

Algorithm M LCNN AIR  AIR_AM DARTS LCNN_LSTM  MCG  MLCG RES2NET SSNET RAWGAT_ST RAWDARTS AASIST  AASIST-L
None ‘ None ‘ 3.16% ‘ 2.32% 3.59% 4.01% 2.95% ‘ 1.90% 4.01% 2.95% ‘ 2.74% 3.16% 1.90% 2.32% 2.32%
iters=5, eps=0.0005 23.00% | 18.14% 15.61% 18.78% 7.17% 9.70%  12.03% 8.86% 8.86% 3.16% 1.90% 2.32% 2.32%
iters=5, eps=0.0015 30.80% | 30.38%  21.10%  22.15% 6.96% 27.43%  16.24% 2.95% 17.51% 2.95% 1.90% 2.32% 2.53%
iters=5, eps=0.0025 41.56% | 39.03%  23.84% = 22.36% 5.49% 34.39%  23.63% 0.42% 17.30% 2.95% 1.90% 2.32% 2.53%
Tterative FGSM iters=5, eps=0.0035 47.26% | 44.51% 26.79% 22.36% 4.22% 41.14%  26.16% 0.21% 16.67% 2.74% 1.90% 2.32% 2.74%
iters=5, eps=0.0045 49.37% | 50.63%  28.69%  23.00% 3.80% 37.13%  24.47% 0.21% 16.67% 2.53% 1.90% 1.90% 2.95%
iters=5, eps=0.0055 51.48% | 54.85%  31.86%  23.42% 3.59% 43.67%  25.74% 0.00% 16.24% 2.74% 1.90% 1.90% 3.38%
iters=10, eps=0.0015 47.68% | 35.23% 23.00% 22.36% 7.38% 2827%  15.40% 2.32% 17.93% 2.95% 1.90% 2.32% 2.53%
iters=15, eps=0.0015 5591% | 36.50%  23.63%  22.15% 7.17% 29.32%  14.56% 2.32% 17.93% 2.95% 1.90% 2.32% 2.53%
Carlini & Wagner iters=20, confidence=0.0 22.15% | 31.01%  17.93% 19.20% 2.32% 25.95%  27.85% 2.53% 11.60% 1.27% 1.05% 0.84% 1.05%
(learning rate=0.01) iters: 20, confidence=>5.0 16.24% | 20.89% 17.30% 19.41% 1.05% 10.55%  17.51% 1.69% 5.27% 1.69% 0.84% 0.84% 1.05%
PGD iters=20, eps=0.003 70.46% | 42.62%  23.00%  21.73% 8.23% 45.36%  16.67% 1.05% 15.82% 2.32% 1.90% 2.32% 3.59%
(restarts=5) iters=20, eps=0.0003 25.53% | 12.87% 14.56% 18.14% 6.33% 7.17% 9.07% 5.06% 9.28% 3.16% 1.90% 2.32% 2.32%
Best | N/A | 70.46% | 54.58%  31.86%  23.42% 8.23% | 43.67%  27.85% 8.86% | 17.93% 3.16% 1.90% 2.32% 3.59%

Table IX: CM performance under transferability. Bold numbers indicate the highest success rate against each system.

Frontend LPMS LFCC cor Raw Waveform
M LCNN ‘ AIR AIR_AM  DARTS LCNN_LSTM  MCG MLCG  RES2NET  SSNET  RAWGAT_ST  RAWDARTS AASIST AASIST-L
None | 3.16% | 2.32% 3.59% 4.01% 2.95% | 1.90% 4.01% 2.95% | 2.74% 3.16% 1.90% 2.32% 2.32%
FI 13.71% | 15.61% 13.92% 13.08% 10.97% 12.66%  9.28% 4.85% 12.66% 7.59% 1.69% 4.85% 5.27%
F2 3.16% 2.11% 3.80% 4.22% 3.80% 5.06% 3.38% 1.05% 6.96% 4.85% 2.74% 2.95% 3.16%
F3 4.01% 11.81% 11.81% 6.12% 21.10% 6.75% 6.33% 6.33% 2.11% 2.95% 2.95% 2.95% 2.32%
F4 2.95% 2.95% 4.01% 4.22% 4.43% 1097%  6.12% 3.38% 2.53% 3.38% 2.11% 2.53% 2.74%
F5 4.01% 4.64% 4.85% 4.43% 1.90% 3.16% 3.80% 2.11% 5.49% 3.38% 2.11% 3.38% 4.43%
F6 1.48% 1.90% 4.64% 4.22% 3.59% 15.40%  6.12% 3.59% 3.59% 2.32% 1.90% 2.95% 4.22%
F7 9.28% | 29.32% 27.00% 18.57% 11.18% 8.65%  16.67% 8.65% 17.51% 2.95% 1.90% 2.32% 2.74%

Table X: Independent transformations’ success rates against CMs. Bold entries represent the best results for each system.

Frontend  LPMS LFCC cor Raw Waveform
System | LCNN ~ AIR AIR_AM  DARTS LCNN_LSTM  MCG  MLCG RES2NET SSNET RAWGAT_ST RAWDARTS AASIST AASIST-L
ASR | 0.63% | 13.5% 9.07% 0.00% 2.53% | 35.65% 9.7% 13.92% | 13.5% 10.97% 10.55% 9.49% 12.03%

Table XI: Results of a simple pre-emphasis attack with a large coefficient (0.97).

coefficient to 0.97. In the collective attack, F5 is coupled
with F3, which itself similarly performs amplification in higher
frequencies, serving as a precursor that compensates for using
a smaller coefficient, making F3’s effects dominant again.
We observe similar results for other transforms that are more
powerful when applied jointly, such as F, when preceded
by F} (see Table II). The reasoning is similar, as there is a
direct connection between these transformations and while one
individually eliminates some machine cues, it requires others’
assistance to achieve its full potential.

E. Content Preservation

We use the Python API of Google Cloud STT [36] and the
REST API of Microsoft Azure STT [37]. For Google, we use
the “video” model for transcription, as it is recommended for
inputs with a 16KHz sampling rate, as in our case.

Our attacks assume state-of-the-art spoofing algorithms,
such as Shen et al.’s [10] are accessible to the attacker. Such
algorithms are known to produce high-quality speech and we

assume they can generate speech that is transcribed correctly
by STTs. Thus, we randomly select 25 spoofed samples from
our high-quality evaluation dataset of 474. For each sample
we generate an adversarial using our full attack.

We test whether the STTs transcribe both samples iden-
tically. The common metric for evaluating STTs is the word
error rate (WER), which is the percentage of words transcribed
incorrectly in a given input on average. Since STTs are not
perfect and make mistakes often, we cannot assume that if the
provided input does not exactly transcribe to the requested text
then it will be rejected. Instead, the system must account for
its own mistakes. Thus, instead of strictly requiring that the
two samples (spoofed and adversarial) transcribe exactly to the
same text, we consider the adversarial attack successful if the
ratio of different words is below the average WER for each of
the STTs. We get the WER values from a benchmark [114].
Results. We achieve an attack success rate of 96% against
Microsoft Azure STT and 76% against Google Cloud STT.
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