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Abstract—The localization abilities of smartphones have pro-
vided a huge boost to the popularity of geosocial applications,
which facilitate social interaction between users geographically
close to each other. However, today’s geosocial applications raise
privacy concerns due to application providers storing large
amounts of information about users (e.g., profile information)
and locations (e.g., users present at a location). We propose
Zerosquare, a privacy-friendly location hub that encourages the
development of privacy-preserving geosocial applications. Our
primary goal is to store information such that no entity can link
a user’s identity to her location. Other goals include decoupling
storing data from manipulating data for social networking
purposes, designing an architecture flexible enough to support
a wide range of use cases, and limiting client-side computation.

Zerosquare consists of two separate server components for
storing information about users and about locations, respectively,
and optional cloud components for supporting applications.
We describe the design of the API exposed by the server
components and demonstrate how it can be used to build several
sample geosocial applications. We provide a proof-of-concept
implementation using Python for the server components and the
Android platform for the mobile devices and build several real-
world geosocial applications on top of Zerosquare. Finally, we
present experimental results that demonstrate the practicality of
Zerosquare.

I. INTRODUCTION

With the evolution of smartphones into powerful computing
devices, a broad range of applications that make use of the
phones’ localization features has materialized. Early location-
based applications enabled users to retrieve content relevant to
their current location (e.g., points of interests (POIs)). More
recently, geosocial applications have started to appear [37].
These applications facilitate social interaction between users
who may be geographically close to each other. For example,
friend location and proximity detection help users who are al-
ready friends in an online social network meet in person when
they are close (e.g., Google Latitude [4] and Foursquare [2]).
Interest matching can be employed to make more specific
matches between friends, as well as provide a social discovery
service for users in close proximity with similar interests (e.g.,
Badoo [1], Skout [7], and MeetMe [5]).

The most concerning drawback of today’s geosocial ap-
plications is the privacy problem presented by the frequent
use of localization features on smartphones. A user must
provide her location to an application provider in order to
request information from an application or use its features.
An application provider can build up large amounts of location
data along with timestamps indicating when the user made a

request. This data allows the provider to localize users (know
their location at a particular point in time), build up traces of
users’ movement, and even track users. The provider may also
have identifying information and attributes (such as interests)
that users have provided during registration or are part of their
profiles in a social application. This data can be stored over
a long time period and aggregated or statistically analyzed.
Knowledge of a user’s location at particular times, especially
when combined with other information about the user, can
be used by the provider to learn more about the user than
she may have intended when signing up. An alarming amount
of information, such as a user’s home and work locations,
activities, and relationships can be inferred from data that a
provider has [30], [39]. Pseudonymizing or anonymizing loca-
tion data may not be sufficient. An adversary can determine a
user’s home location and identity when given pseudonymized
location data [31] and some outside information (such as a
movement profile [16]). Trajectory information can be used to
link a user’s periodic anonymous location samples [24]. Given
an inference of an individual’s home and work locations, her
anonymity set has been shown to be unique within a census
block [23], [48]. Even when a user only occasionally exposes
her location to a location-based service, the user still faces
privacy risks because her home location and points of interest
remain identifiable from the limited set of data points [20].
Both research (some recent examples are [18], [21], [33],
[36] and [42]) and media reports [10], [26] have demonstrated
that location privacy is of concern to people. However, re-
cent research [19], [40] has also shown that people are not
particularly concerned about making their location available
to a location-based service (whereas there is concern about
making location available to non-location-based services). This
observation makes sense considering that today’s location-
based services need location information and maybe identity
information to provide their service and that many people
assume that this is the only way a location-based service
can function. However, it is an open question whether people
would still be willing to provide their location to a location-
based service if they became aware of the kind of analytics
(see above) or data leaks [44] that this data gathering enables.
In general, the assumed willingness of people to provide their
location to a location-based service should not stop researchers
from investigating whether there are more privacy-friendly
ways to provide these services. Importantly, the principle of
“privacy by design” [28] suggests to proactively embed privacy



into the design of any service. If research demonstrates that
location-based services can be built in more privacy-friendly
ways, this in turn may shift people’s thinking about and
expectations of the inner workings of location-based services.

Some providers of geosocial applications or of location-
based services in general have started to become location
hubs. A location hub is a centralized repository of location
information, collected through servicing application requests,
that lets other providers take advantage of this information
to provide additional location-based services. For example,
Foursquare has introduced Connected Apps [3]. Here, a user
can choose from a set of applications developed by third
parties and have all her location check-ins forwarded to her
chosen applications, which in turn can provide additional
information to the user (e.g., the Weather Channel application
provides weather forecasts for the user’s location). A location
hub stores lots of identifying information about the users
making requests, which is undesirable from a privacy stand-
point. Our research focuses on designing a privacy-friendly
location hub that can be accessed as needed by applications
requiring geosocial functionality. We also aim to make our
design flexible and simple enough to encourage development
of privacy-friendly applications.

We propose to disassociate user identity information from
user location information in our privacy-friendly location hub.
No entity should know both a user’s identity and her location.
The foundation of our location hub, Zerosquare, are two non-
colluding entities, one that stores information about users and
another that stores information about locations. These entities
expose basic API functions that can be used as building blocks
for a wide range of geosocial applications. Users can either
directly retrieve data from these entities or ask an application’s
supporting cloud component to retrieve data on their behalf
to participate in social networking activities. Zerosquare also
provides a callback framework to support scenarios where
a user wishes to be notified when a condition is met (e.g.,
another person that wishes to play basketball checks in at their
location). We make the following contributions:

o We present the design of a privacy-friendly location hub
for building geosocial applications that stores data about
users and data about locations separately.

« We implement the location hub using Python for the
server components and the Android platform for the
mobile devices.

o We emphasize the flexibility of our design by building
various geosocial applications on top of it. Our experi-
mental results demonstrate its practicality.

We look at related work next. We describe our design goals
in Section III and our system and threat model in Section IV.
In Section V we explain our location hub. We go through
several use case for our location hub in Section VI. Section VII
provides a security analysis. We discuss our implementation in
Section VIII and provide experimental results in Section IX.

II. RELATED WORK

Lots of location privacy research has focused on retrieving
POIs from a service such that the privacy of the accessing
user remains protected from the service provider. Geosocial
applications cover a broader range of services and raise
additional privacy concerns. For example, in a POI application,
the locations of the POIs are typically not sensitive and do
not change. Neither of these properties holds for a geosocial
application, where the POIs are people, whose location may be
sensitive and dynamic. In turn, privacy-enhancing technologies
developed for the retrieval of non-sensitive, static POIs (such
as technologies based on private information retrieval [11],
[12]) have limited applicability to protecting the privacy of
users in geosocial applications. Techniques based on Oblivious
RAM [22] may be applicable, but are still orders of mag-
nitude slower than non-oblivious databases [45]. Techniques
for anonymous communication [12], [17] are useful building
blocks in Zerosquare, but are not sufficient by themselves.

In this section, we focus on related work in the area of
geosocial applications. Krumm [32] and Terrovitis [46] survey
location privacy research with a focus on retrieving POIs.

Several researchers have developed privacy-enhancing tech-
nologies for specific geosocial application use cases. For
example, protocols have been developed to determine if two
users are within a threshold distance without either user
revealing her location to the other [34], [35], [49], to find a
fair meeting point without revealing any of the users’ locations
to a third party or other participants [9], to locate nearby
people with shared interests without broadcasting personal
information [14], [47], or for presence sharing without be-
coming trackable by a third party or by strangers [13]. The
main drawback of these solutions is that they are application-
specific and do not generalize to a wide range of geosocial
application use cases.

In terms of privacy for (not necessarily geo) social appli-
cations, several solutions have been developed. For example,
Persona [8] is a social network designed specifically with
privacy in mind. All user data stored in the social network
is encrypted using attribute-based encryption. However, by
having only users (but not locations) become first-class citizens
in the architecture, the applicability of these architectures to
geosocial applications remains limited because storing or re-
trieving information about locations is difficult. Vis-a-Vis [43]
addresses this concern to some degree. It is a privacy frame-
work for online social networks in which each user has her
own Virtual Individual Server (VIS) in the cloud. Location is
treated as a special attribute, and users can define hierarchical
groups that they are willing to share their location in varying
granularities with. However, the user’s cloud provider can
learn both her identity and her location, which is inconsistent
with our privacy goal (see Section III).

Most relevant to our research are privacy-preserving frame-
works for geosocial applications that provide support for
various use cases and that prevent storage providers from
learning both a user’s identity and her location [41], [29], [25].



Similar to Persona, these frameworks decouple the storage of
data from the actual social networking functionality.

In Puttaswamy and Zhao’s framework [41], an untrusted
server acts as a data store for encrypted data, where only au-
thorized users (like friends) have decryption keys. The server
keeps two databases, one for storing encrypted user profiles,
the other one for storing encrypted place information. The
storage interface allows users to put/get encrypted attributes
in/from their profile and store/retrieve encrypted data to/from
a location. From a privacy point of view, the framework is
susceptible to traffic-analysis attacks. Data about users and
data about locations are stored on the same server. If a user first
updates her encrypted location attribute in her profile and then
adds an encrypted entry for herself to the location database, the
server can link the two updates and learn the user’s location.
The framework may also suffer from performance problems
because to read information produced by a friend about a place
(e.g., a review), a user must download all encrypted data about
the place and attempt to decrypt each item with all keys in
her possession. Functionality-wise, the architecture supports
only applications that are targeted at people with pre-existing
relationships, but it does not support applications that involve
strangers (e.g., an application that matches nearby strangers
with common interests).

Both Trust No One [29] and Koi [25] store information in
plaintext form and rely on double indirection between a user
and her attributes (e.g., her location) for protecting privacy.
This double indirection allows to store knowledge of the link
between the user and her attributes with a separate party, but
without this party learning any information about the actual
user or attributes.

Trust No One is a privacy-preserving platform for locating
entities and relies on three non-colluding components. The
mobile operator maintains mappings between actual locations
and pseudonymized locations. The LBS provider maintains
mappings between business identifiers and pseudonymized
identifiers. The matching service links pseudonymized iden-
tifiers to pseudonymized locations. For a query, a user gets
the pseudonymized identifier of her desired business and her
pseudonymized location from the LBS provider and from the
mobile operator, respectively, and asks the matching service
for a match. Whereas the authors mention that their approach
can be employed for locating nearby friends, this claim is
questionable. The problem is that to generate the links kept
by the matching service, the architecture assumes that the LBS
provider knows the locations of the entities that can be located.
Whereas this is a reasonable assumption for businesses, it does
not hold if the located entity is a user. The assumption would
conflict with the goal of the architecture, that is, preventing the
LBS provider from knowing users’ locations. Functionality-
wise, the focus of Trust No One is on locating nearby entities.
It is unclear whether and how other geosocial applications can
be implemented in the architecture.

Koi is a privacy-preserving platform for geosocial appli-
cations and relies on two non-colluding components. The
matcher maintains mappings between actual user identifiers

and pseudonymized user identifiers and between user at-
tributes and pseudonymized attributes. The combiner links
pseudonymized user identifiers to pseudonymized attributes.
For a query, the two parties interact to determine whether there
is a user having the desired attributes. Koi’s main weakness
is its susceptibility to traffic-analysis attacks, as the matcher
can link attributes (which could include location) to a user
by observing which attributes and users get updated/matched
close in time. Similarly, since the matcher sees all location
updates, it may be able to link nearby updates and can track
and ultimately re-identify a user.

Finally, we are not the first ones to propose to separate
knowledge of a person’s identity and her location between
two non-colluding parties. For example, the Virtual Triplines
architecture [27] also exploits this idea. However, the earlier
works focus on specific, non-geosocial applications and are
not as flexible as our architecture.

III. DESIGN GOALS

We envision that our privacy-friendly location hub provides
more privacy than widely deployed location hubs (such as
Foursquare), which typically provide no privacy from the hub
provider, but it may provide less privacy than application-
specific privacy-enhancing technologies for geosocial applica-
tions.! Consider the case of a proximity service for alerting of
nearby friends. The application-specific solutions in Section II
are ideal from a privacy point of view since they do not
require trusted third parties and let a user learn only whether
a friend is nearby and no other information. However, the
solutions cannot be used for other geosocial applications.
Widely deployed location hubs, such as Foursquare, can be
used for different kinds of geosocial applications. However,
they are highly problematic from a privacy point of view since
they let the hub provider continuously learn a user’s identity
and location. In our location hub, we strive for a solution that
supports different types of applications and that has acceptable,
though not perfect privacy properties. In particular, we have
the following goals:

1) Privacy-Friendly By Design: There are two possible ap-
proaches to building privacy-friendly applications. One option
is to attempt to limit data access and transmission to and
from existing applications through external privacy controls.
The other option is to build applications with privacy in mind
from the beginning. The first option is reactive and may cause
some applications not to function properly because they are
being denied information that the original developers assumed
they would have. Our goal is to create a location hub that
encourages an approach to application development in the
spirit of the second option.

2) Privacy based on Separation of Information: In Ze-
rosquare, we protect privacy by separating between a user’s
identity and her location. This approach is based on the
observation that for public locations, such as a hospital or

'We leave the ideal solution of a privacy-friendly location hub that is as
privacy-preserving as application-specific privacy-enhancing technologies for
geosocial applications for future work.



a train station, a user’s location is not sensitive with no other
information associated with it. The same is true for a user’s
identity. However, when a user’s location is linked to her
identity, then there are privacy concerns. Therefore, our goal
is to store and provide data in our location hub such that no
entity can learn both a user’s identity and her location.

3) Support of Various Application Use Cases: Researchers
have developed privacy-enhancing technologies for specific
geosocial applications (see Section II). However, many of
these solutions are inappropriate for use in applications other
than the ones that they were developed for. Our goal is to
build a flexible architecture that exposes basic functions that
can be combined to meet the needs of various geosocial
applications. This simple model for building functionality
eases the development of privacy-friendly applications, which
is desirable in real-world deployment.

4) Decoupled Data Storage and Social Networking Func-
tionality: Existing social networks store all of a user’s in-
formation and also manipulate stored data to provide social
networking functionality for the user. Our goal is to present an
alternative to this model that enhances privacy. Essentially, our
location hub should store data in a manner consistent with our
privacy goals and provide access to that data. Applications that
perform social networking-related functions should be able to
request data from the hub and should only be granted access
to information as desired by the original creator.

5) No Significant Client-Side Computation: Although the
resources available in smartphones are steadily increasing,
asking a device to perform a large number of computations
(especially cryptographic ones) can still cause problems (e.g.,
drain the battery). Our goal is to avoid decryption by trial and
error. More specifically, we would like to avoid a scenario
where a client downloads a batch of data and has to try many
of her decryption keys on each item in the batch.

IV. SYSTEM AND THREAT MODEL

Zerosquare can be used to develop geosocial applications
in which users can store both information about themselves
(e.g., their profile) and information about locations (e.g., users
present at a location or a review a user has for a business at a
location). To ensure that no entity learns both a user’s identity
and her location (separation of information goal), Zerosquare
has two separate entities for storing information about users
and information about locations. In addition, these entities only
store information and do not provide any social networking
functionality. Information is requested from both based on the
needs of applications running on other entities. In more detail,
Zerosquare consists of the following entities:

o U: User-indexed database storing information about users.

o L: Location-indexed database storing information about
locations.

o Cy: Optional component of geosocial application k run-
ning in the cloud under the control of k’s provider. We
will use C to denote the set of all Cy.

o Dj: Device of user i running geosocial application k by
interacting with U and L. and maybe with Cy.

An outline of communications between the entities is shown
in Figure 1. All communications are secured with TLS.

Get/Set (Encrypted) Data About Users User-
$  Indexed
DB (U)

Get/Set (Encrypted)
Data About Locations

Application-Specific
Communication

Responses to Application-

Location-

Cloud Specific Requests
Component ~] [ndexed
© Application-Specific Requests DB (L)

Fig. 1. System Architecture.

U, L, and C are honest-but-curious and do not collude. The
entities will perform according to specification, but any entity
may try to discover additional information using any data they
store or requests they handle. U is trusted to store information
about users, but should not learn sensitive user information,
such as a user’s location. L is trusted to keep information about
locations, but should not learn information about users.> A Cy
can learn sensitive information about a user (e.g., her interests),
depending on the application that Cy is a component of, but
only if authorized by the user, and this information can never
include a user’s location. Learning information about users
enables Cy to offer the expected application functionality,
analyze user data (e.g., to display ads, see Section VI), and
potentially make revenue from this analysis, so there is an
incentive for Cy’s provider to participate in Zerosquare. In
turn, this revenue can be shared with the organizations running
U and L to give them an incentive to participate. U, L, and C
will not become users of Zerosquare or collude with existing
users in an attempt to learn more information.> Dj is trusted
to store and manipulate information for user i and will share
information that it learns about other users only with user i.
Preventing the leakage of sensitive information from a device
is an orthogonal research topic.

A user storing sensitive information about herself in U
encrypts this information with a key specific to the user and
the type of information. We assume that users have access
to out-of-band methods for managing and exchanging these
keys, as key distribution and key revocation are out of the
scope of this research. Users share keys with other users who
they trust (i.e., their friends) or with the cloud component Cy
of an application that they want to use so that their data can
be used for social networking purposes. Importantly, U does
not have access to these keys. This design meets the goal of
decoupling data storage from social networking functionality.

2Since TP addresses can reveal identity or location information, we require
D; to communicate with L and U through an anonymization network
or a proxy. We will ignore these intermediaries in the description of the
architecture. Such intermediaries are also required, though not mentioned,
in related work (e.g., [25], [27]).

3There are several other privacy-preserving infrastructures that rely on the
honest-but-curious model and that assume that a semi-trusted entity does not
become a user of the infrastructure (e.g., [15], [27]).



A user storing sensitive information about a place in L (e.g.,
a review that should be accessible only to her friends) encrypts
this information with a key specific to the user and the type of
information. To meet the separation of information goal, the
encrypted information stored in L cannot be associated with
the identity of the user. Therefore, a device D; that retrieves
ciphertexts about a location (e.g., all encrypted reviews) from
L would have to try (maybe unsuccessfully) all decryption
keys that it got from other users to decrypt a ciphertext and
repeat this for every ciphertext. This would violate the goal of
limiting client-side computation. Therefore, a user attaches a
tag to encrypted information that she stores in L. The tag does
not allow L to learn the identity of the user, but an authorized
Ck can turn a tag back into an identity and can tell D; which
decryption key to use (see Section V).

When storing information about a location in L, a user may
inadvertently reveal her identity if the location is private and
bound to an identity (e.g., her home). Therefore, we assume
that users do not store information about private places in L.
For example, we assume that users do not update (check in)
their location with L if the location is private. (For a public
location, a user would associate a tag with her checked-in
location to hide her identity from L.) If users are at a private
location and wish to store their whereabouts in Zerosquare,
they can always encrypt the location, store the ciphertext as
part of their information in U, and give the decryption key
to whomever they wish to share their location with. Note
that Lindqvist et al. [33] have shown that many Foursquare
users already choose not to check in at private places so our
assumption of users not checking in with L. when being at a
private location is justified.

Another assumption is that users do not frequently update
their location with L. while moving along a contiguous route.
This assumption prevents the user from being re-identified
through a tracking attack by L. Again, if necessary, users can
continuously update their (encrypted) location with U.

We assume that all entities have a key pair with all public
keys certified by a Certification Authority. No entity will share
its private key with another entity, and entities will have the
necessary public keys and certificates available when needed
for opening TLS connections or verifying signatures.

V. ARCHITECTURE DETAILS

This section presents each entity in our system in detail.

A. User-Indexed Database

U provides storage for information about a user i in the
form of a set of attributes. An attribute is indexed by a
unique identifier uid; associated with the user and an attribute
name (e.g., “interests”, “location”, “friends”). The associated
attribute value can be encrypted with a symmetric key chosen
by the user. The user can choose a different key for each
attribute. An attribute can have multiple values. Attribute
values also contain an expiration time.

As mentioned earlier, a user attaches a tag to data stored in
L to mark the data as having been created by this user without

API provided by U
tag < createTag (uid;)
whitelist (uid;, cidg)
uid; < getIdentity (tag, cidg)
setAttribute (uid;, attr, val, ttl)
val(s) <4 getAttribute (uid; or cidy, wid;, attr)
API provided by L
setAttribute (loc, attr, val, tag,
token < registerCallback (loc, attr,
(val(s),tag(s)) < getAttribute(loc,

ttl)
handler,
attr)

ttl)

TABLE 1
APIS PROVIDED BY U AND L.

revealing the user’s identity to L. A user must use a new tag
whenever she stores data in L to avoid becoming trackable
by L. The user requests tags from U, which also maintains
mappings between tags and identities. U also provides an
access-controlled means for Cy to determine which user is
associated with a given tag if needed for social networking
functionality. Typically, Dj; initiates a location-based social
networking operation with Cy, which then retrieves data that
is annotated with tags from L. Cy requests the identities
associated with these tags from U. For a particular tag, U will
inform Cy of the associated identity only if the corresponding
user has previously whitelisted Cy. Cy will then attach the
received identities to the data (e.g., encrypted reviews) in its
response to Dj;. Dj; can use the identities to select the correct
decryption keys. See Section VI for examples.

The API provided by U is shown in Table 1. All requests must
be signed by their caller. Requests also include a timestamp,
which is used by U to defend against replay attacks. We
assume that user i has registered with U to establish a mapping
between uid; and the public key of her device Dj. The same
applies to geosocial application k and the mapping between
its identifier cidy and Cy’s public key.

e tag ¢« createTag (uid;): U creates a tag for user i,
remembers the mapping from tag to uid;, and returns the
tag. This function will succeed only if called by D;.

e whitelist (uid;, cidg): U adds application k to the
whitelist for user i. By whitelisting application K, the user
informs U that she is using this application and hence U
is allowed to hand over this user’s tag-to-uid; mapping
to Cyk. This function will succeed only if called by D;.

e uid; < getIdentity (tag, cidg): U returns the
identifier associated with a tag. This function will succeed
only if Cy was previously whitelisted by Dj.

e setAttribute (uid;, attr, val, ttl): U
stores the attribute/value pair indexed by wid; until it
expires (indicated by tt1). The value may be encrypted.
This function will succeed only if called by D;.

e val(s) < getAttribute (uid; or cidy, wuidj,
attr): U returns the (maybe encrypted) value(s) stored
for the given wuidj/attribute pair. This function will
succeed only if called by D; or Cy (to defend against
DoS attacks).



B. Location-Indexed Database

L provides storage for information about a location in
the form of a set of attributes. An attribute is indexed
by a representation of the location (e.g., GPS coordinates,
address, labeled region) and an attribute name (e.g., “checked
in”, “reviews, “ads”). The associated attribute value can be
encrypted with a symmetric key chosen by the creator of the
value. An attribute can have multiple values (e.g., multiple
reviews of a restaurant), each from a different creator. Attribute
values can be associated with a tag to trace the value back to its
creator and locate the decryption key for an encrypted value.
Attribute values also contain an expiration time.

D; must encrypt location data with L’s public key in all
requests to L to avoid Ck from learning user i’s location
during social networking operations where Cy makes requests
to L on Dj’s behalf (see Section VI for examples). Cy cannot
learn user i’s location because of our goal that no entity learns
both a user’s identity and her location.

L provides a callback operation for social networking ap-
plications. The idea behind this functionality is to allow Cy
(on behalf of Dj) to register a handler with L for a particular
condition (e.g., a new value being added for an attribute name
at a particular location) and to call the handler when that
condition is met. Like attribute values, callback entries have an
expiry time. After each data storage operation, L must check
all callbacks to see if any have been triggered. Once L has
called the handler to complete the callback operation, Cy can
do application-specific processing and provide results to users.

The API provided by L is shown in Table I.

e setAttribute (loc, attr, val, tag, ttl):
L remembers the attribute/value pair for the given
location until it expires. For example, for the attribute
“checked in”, the value would be a boolean. For the
attribute “reviews”, the value would be a (maybe
encrypted) review. The tag, created by U, contains
information about the creator of the attribute/value pair
but without revealing the identity of the creator to L. For
example, for the attributes “checked in” and “reviews”,
the tag can be used to identify the person who checked
in and who wrote the review, respectively. A tag can be
used only once in a setAttribute request, and L
will reject all future setAttribute requests with the
same tag to defend against replay attacks.

e token ¢ registerCallback (loc, attr,
handler, ttl): L remembers a callback for the
given location/attribute pair until it expires. Namely,
L calls the handler whenever an attribute for the
location/attribute pair is set using the above function.
The handler is a function provided by Cy. The location
can be a specific place or a geographical area.

e (val(s),tag(s)) ¢ getAttribute(loc,
attr): L returns the value(s) and tag(s) stored for a
location/attribute pair. The location can be a specific
place or a geographical area.

C. Cloud Components and Devices

Cy is the optional component of geosocial application k
that runs in the cloud if required for scalability or privacy
reasons. For example, consider an application for matching
strangers with similar interests at the same location. If a
device were to perform matching operations on behalf of a
user, the protocol would either need to run on unencrypted
data from all colocated users (which would violate user
privacy) or run secure multiparty computation on encrypted
data (which would impose too much of a computational load
on the device). A cloud component of this application that
has been whitelisted by individual users and that can decrypt
their “interests” attribute can match nearby users on decrypted
attributes without learning these users’ location and inform
users of a match. In addition, a cloud component has more
computational power (that can also be easily scaled) than a
device and can process a large number of matching operations.

D; (owned by user i) is responsible for accepting requests
through a user interface, communicating with the necessary
entities for the application the user is running, and presenting
the results to the user in a human-readable form.

VI. USE CASES

We have realized a variety of applications to demonstrate the
flexibility of Zerosquare. In particular, our applications consist
of friend locator, friend proximity detection, interest matching,
local search, social recommendations, and advertising services.
Due to space reasons, we focus on a simple service (friend
locator) and two more complex services (interest matching
and social recommendations) in this section. For the remaining
services, we refer to the extended version of this paper [38].
We have implemented the friend locator and the interest
matching services. Again, for details, including screenshots,
please see the extended version. It is also possible to exploit
Zerosquare for “traditional” location-based applications, such
as a POI service. Here, the POIs would be stored in L, and
a user can retrieve them from L. If the user does not want
to reveal her location to L, she can exploit existing privacy-
enhancing technologies for the retrieval of POIs [32], [46].

A. Friend Locator

Suppose user i and user j are friends (i.e., they have
exchanged decryption keys for the attribute “location”), user j
has made a recent (encrypted) location update with U, and user
i would like to locate user j. D; makes a getAttribute
request to U with wid;, uid; and the attribute name “location”.
U returns user j’s encrypted location, and D; can decrypt to
learn user j’s location.

B. Interest Matching

The purpose of this application is to match users at the
same location (who can be friends or strangers) with each
other based on attributes. For example, if Alice wishes to play
basketball at a nearby park, she can indicate to the application
that she is interested in basketball and give her location. She



can then be matched with other users at the same location who
are also interested in basketball.

Suppose user i and user j are both at location ¢ and have
at least one common interest stored with U. Also, matching
application Kk is supported by cloud component Cy.

1) D;  whitelists Cx with U by calling
whitelist (uid;, ctdy) and gives the decryption
key for the attribute “interests” (stored with U) to
Ck. Ck retrieves user i’s interests by sending a
getAttribute request to U, decrypts them, and
caches them for later use in matching.

2) D; asks Cyg to register a callback for her current loca-
tion ¢. For this purpose, she provides C with her location
encrypted with L’s public key so that C cannot learn it.
Then C sends a request to L’s registerCallback
function with the encrypted location, the attribute name
“checked in”, a time-to-live value, and the URL of a
function that L can call to complete the callback.

3) D; updates her location with L. Namely, D; retrieves
a tag for uid; from U using a createTag request
and sends a setAttribute request with the location,
the attribute name “checked in”, the tag and a time-
to-live value to L. This is done to immediately trigger
callbacks and generate results for users at user i’s
location (including user i herself).

4) Dj does steps 1)-3).

5) Dj’s location update has L trigger callback handling for
location ¢. L calls Cy’s callback handler with the list of
all tags checked in at location /.

6) While executing the callback, Cy’s handler issues
getIdentity requests for the tags received from L
to get a list A of mappings from tags to user identities
for all users who have whitelisted Cy.

7) Cy’s handler matches the interest attributes associated
with the users in A against each other. Any matching
algorithm can be used because Cy can see plaintext
interests. Since both user i and user j are at location
¢ and whitelisted Cy, they are in the set to be matched.
Matching occurs and matching attributes for sets of users
are stored. At least one match is stored for users i and
J because they have (a) common interest(s).

8) If D; and Dj support push notifications, Cx can alert
them of the match immediately. Otherwise, D; and Dj;
periodically poll Cy to retrieve their matches.

C. Social Recommendations

A social recommendations application allows users to write
reviews of POIs that are accessible (maybe only) to their
friends. Suppose user i writes a review about a place and D;
stores it in L. User j would like to read reviews about the
location. User i and user j are friends, which means they have
each others’ decryption keys for the attribute “reviews”. The
social recommendations application k is supported by cloud
component Cy.

1) Dj calls whitelist (uid;,cidg). It also gives the

decryption key for the attribute “friends” (stored with

U) to Ck.

2) D; creates a review. Namely, D; retrieves a tag for
uid; from U using a createTag request and stores an
encrypted review with L using setAttribute (loc,
‘‘reviews’’, <review text>, tag, ttl).
The value <review text> is encrypted with D;’s
key for attribute “reviews”. Alternatively, D; can store
a public review with L using setAttribute (loc,
‘‘public_reviews’’, <review text>,
tag, ttl) and leaving <review text>
unencrypted.

To retrieve public reviews, Dj calls getAttribute (loc,
‘‘public_reviews’’). For encrypted reviews, D; fol-
lows these steps:

1) Dj sends its location (encrypted with L’s public key to
avoid Cy learning its location) to Cy.

2) Cy calls getAttribute (loc, ‘‘reviews’’)
with the encrypted location and gets back data in the
form (<review text>, tag), where <review
text> is encrypted with the attribute key of the writer.

3) For each tag that is attached to an encrypted review, Cy
calls getIdentity (tag, cidg) and receives the
identity of the review writer if the writer has whitelisted

Ck.
4) For each received identity, Cyx invokes U’s
getAttribute with the attribute “friends” to

get a list of the writer’s friends.

5) If a writer (e.g., D;) lists Dj as a friend, Cy passes on
the encrypted review and the identity of the writer to
D;.

6) Dj uses the review decryption key received from Dj to
decrypt the review.

VII. SECURITY ANALYSIS

The main focus of Zerosquare security-wise is the separa-
tion of information goal, which states that none of U, L or C
can know both a user’s identity and her location. Using our
previously stated trust assumptions, we study each of these
entities in turn and discuss if this goal is met.

U knows a user’s identity as each request must include a
user’s identifier. When a user stores her location in U, she
encrypts it with a symmetric key specific to her “location”
attribute. For U to discover her location, it would have to
collude with the user’s friends to decrypt her stored location
or collude with L to look up the location where the user’s
most recent tag was seen, both of which we rule out in our
threat model. We also rule out other types of actively malicious
behaviour, like U creating a fake user and becoming friends
with the user to obtain her decryption keys, or U querying
several public locations in L around the known home location
for a user (which could be learned from the phonebook) and
compare results with recently generated tags for the user.

L receives requests to set attributes about locations from
users that are annotated with tags. Only U can reverse
map tags back into identities so L cannot find out a user’s
identity in this manner. L could also collude with U or a



Cy that the user has whitelisted (and can therefore call U’s
getIdentity to get the identity behind the tag) but we
rule out collusion in the threat model. L could also attempt to
query U’s getIdentity, which will fail because L is not
whitelisted with U.

Separating U from L addresses the traffic-analysis threat
that exists in related work [25], [41]. All updates to a user’s
attributes in U are seen only by U, not by L. Sensitive
attributes of a user, such as her location, have their values
encrypted with a key not known to U. Updates to a location
in L are seen only by L, not by U, and the update reveals no
information about the creator to L. Therefore, as long as U
and L do not collude, which is forbidden by our threat model,
neither U nor L can link between updates to a user and updates
to a location.

C receives a user’s identity and can see attributes in plaintext
if a user has provided it with decryption keys. In all requests to
C containing a location, the coordinates are encrypted with L’s
public key and are passed to L. during a subsequent operation.
C could launch active attacks similar to the active attacks that
we discussed for U to learn location information, but our threat
model rules out active attacks.

If an adversary is a user of the system, she can register many
callbacks in locations that are close together to try and get
matched with a particular user. Rate-limiting at C could solve
this problem. She cannot impersonate another user without
their private key because to communicate with U all requests
must be signed. A user also cannot find out the location of
a user who is not a friend because she does not have the
decryption key for the attribute stored in U and we assume
in the threat model that no other entity will collude with the
adversary to provide them with the decryption key.

As for threats not coming from entities in the system, a
passive adversary can learn only which entities are communi-
cating with each other but cannot learn anything because all
communications are secured with TLS. An active adversary
cannot launch a replay attack at U because a timestamp must
be included in all requests, which are signed, and U verifies
that a timestamp has not been presented before by the user
making the request. An active adversary can check in with L
with a tag generated by the adversary (instead of by U) because
L is oblivious to tag semantics. However, the fake tag will be
detected when C asks U to map it to an identity. An active
adversary that learns a tag associated with a user (e.g., using
L’s getAttribute call) will not be able to replay the tag
in a setAttribute call since L remembers tags that it sees
and discards re-used tags.

VIII. IMPLEMENTATION

This section presents the implementation of the key com-
ponents of our framework. U, L, and C are written in Python
using the CherryPy web application framework and use the
PostgreSQL object-relational database system for storage of
persistent data. Each of these components exposes a WSGI
interface with TLS support that can be accessed using HTTPS
requests. All communications between components package

data using protocol buffers [6] in the bodies of HTTPS POST
requests. For symmetric-key encryption operations, AES with
128-bit key size is used. RSA with 2048 bit key size is used
for public-key encryption and signatures.

U’s getTag function creates a tag by encrypting a user’s
identity with a probabilistic, symmetric-key encryption scheme
whose secret key is known only to U. We extended U’s
getAttribute and getIdentity functions to support
batch operations for efficiency and let queries include multiple
attributes or multiple users and multiple tags, respectively,

The devices D; were built using the Android platform. A
device polls Cy for results from callback processing. Although
native push-messaging is available on the Android platform,
use is restricted heavily and it is difficult to configure.*

IX. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental evaluation of
Zerosquare. We describe experiments to determine the server
processing overhead as well as the end-to-end processing time
at the client for each of the API functions offered by U and
L. We also analyze the time taken to run operations in the
cloud component Cy associated with an interest matching
application. During the experiments, L and Cy run on a 3.4
GHz quad-core machine with 4 GB of RAM, and U runs on
a 2.4 GHz dual-core machine with 4 GB of RAM. The client
runs on a Nexus One smartphone with Android 2.3.6 installed,
and comparison measurements are collected using a client
written in Python connected to the same wireless network
and running on a 2.4 GHz dual-core machine with 4 GB of
RAM. For each API function in the server entities, we perform
500 trials with the Python client. Due to instability issues
in the Android platform over a large number of consecutive
executions of a function, we perform only 250 trials for each
API function with the Android client. We present mean and
standard deviation across all trials.

A. Experiments on U

In the first round of experiments on API functions provided
by U, getIdentity is executed with only one tag in the
request and getAttribute is called for a uid/attribute pair
that returns only one attribute value. Since get Identity is
called only from C, measurements are done only using Python
test code (to mimic a cloud component written in Python)
and not performed on the Android client. The results are in
Table II.

Function Server Python Client | Android Client

createTag 1.0+ 0.0 | 27.4 £ 6.5 181.4 + 28.3

whitelist 6.6 2.5 | 394 +7.0 181.8 + 214

getIdentity 40+0.0 | 39.6 £54 —

getAttribute | 29 £ 0.5 | 234 £ 43 182.1 + 18.7

setAttribute | 6.7 = 1.4 | 31.4 £ 9.1 176.0 + 28.3
TABLE II

SERVER PROCESSING LATENCY AND CLIENT END-TO-END LATENCY FOR
API FUNCTIONS OFFERED BY U [MS].

4To hide their IP address from U and L, devices access U and L via proxies
that support the HTTP CONNECT command (see Footnote 2).



Zerosquare performs well with unnoticeable latency at the
clients. Executing the operations involves verifying a digital
signature to verify the caller’s identity. For the createTag
function, we find that this verification consumes most of
the server’s processing time. For functions involving addition
of data to the system (whitelist and setAttribute),
the database insert operations occupy the greatest portion
of the latency. For the remaining functions, execution time
is split between retrieving information from databases and
cryptographically verifying a requestor’s identity.

Some of the differences between the Android and Python
clients can be attributed to the amount of computation time
the Android application uses to maintain its state. Traceview
(an Android profiling tool) shows that a lot of time is spent
making calls to Ul-related functions and other functions for
keeping the application running. The rest of the differences
are probably caused by the differences in computational power
available (i.e., the Android device has less resources available).

For a batch experiment, we test getAttribute for a
user/attribute pair with an increasing number of attributes to
determine how the amount of data being returned affects the
execution of the function. The number of returned results
is increased until the test becomes unstable on the Android
device. The timing results are shown in Table III.

Attributes | Server Python Client Android Client

10 3.0 £ 0.1 225 + 1.1 287.5 £ 85.17

100 10.0 £ 0.4 397 £ 1.6 403.9 + 184.0

500 454 £ 1.7 822 £5.8 782.1 + 371.8
1,000 84.5 + 2.6 139.1 £ 6.5 1,052.5 £ 71.4
5,000 418.1 £79.3 | 589.9 £ 16.0 4,670.4 £ 610.8
10,000 624.1 + 208 | 873.4 +284.2 | 10,575.4 £+ 2,812.7

TABLE III

SERVER PROCESSING LATENCY AND CLIENT END-TO-END LATENCY FOR
U’S GETATTRIBUTE FUNCTION WITH VARYING NUMBERS OF
ATTRIBUTES RETURNED [MS].

A breakdown of the results shows that for ten attributes,
33% of the server processing latency is due to verifying
the requestor’s identity. For 100 attributes, the percentage
decreases to 10%. Increasing the amount of data returned by
getAttribute even further causes encoding of the data for
transport and retrieving the data from the database to dominate
execution time. For the Android device, the time spent waiting
for a request to return a large number of attributes becomes
high for more than 5,000 attributes.

We also examine the batch behaviour of getIdentity.
Due to space limitations, we refer to the extended version [38].

B. Experiments on L

For the experiments on API functions provided by L,
getAttribute is executed for a location and attribute
for which there is only one value. setAttribute is ex-
ecuted for a location that does not have any callbacks reg-
istered to get an application-independent measurement. Since
registerCallback is always called on a user’s behalf by
C, no measurements are done with the Android client. The
results are shown in Table IV.

Function Server Python Client | Android Client
getAttribute 173 £4.9 | 35.1 + 8.1 235.1 &+ 54.9
setAttribute 428 +48 | 626+ 7.3 462.1 + 108.7
registerCallback | 23.5+ 43 | 1065 £ 13.7 | —

TABLE IV

SERVER PROCESSING LATENCY AND CLIENT END-TO-END LATENCY FOR
L’s API FUNCTIONS [MS].

Like in the experiments on U, we find that cryptographic
operations consume a significant time on L because L uses
public-key cryptography to decrypt locations received in re-
quests. Nearest-neighbour queries to determine the registered
location in the database closest to the coordinates provided in
a request are also noticeable in the server processing latency.
From the viewpoint of the user, none of the operations require
noticeable time on the Android device, which contributes to
the practicality of Zerosquare.

C. Experiments on C

We now evaluate the cloud component Cy built to support
an interest matching application. An API provided by Cyg
allows Dj to register with the application and to retrieve
matches and L to invoke callback handlers. Matching of two
users is done by directly comparing attribute/value pairs until
one common pair is found or each pair belonging to a user
has been compared against all of the other user’s pairs and no
common pairs were found.

We test the registration function exposed to D; and measure
a latency of 188.1 ms & 14.5 ms at Cy. The Python client and
Android client experience end-to-end latencies of 241.1 ms +
38.6 ms and 602.6 ms 4 72.8 ms, respectively. From a user’s
perspective, neither of these times is noticeable enough to be
impractical.

To test callback processing at Cy, we set up a scenario
where two users with five attributes each are checked in at
and have registered for matching for the same location. The
execution time for the callback processing operation initiated
upon the registration and check in of the second user is
measured at Cy (77.3 ms + 6.8 ms) and at L (129.6 ms
+ 5.9 ms).

D. Experiments on D

We use the same scenario to measure the time needed
by a client to complete all of the operations necessary to
receive a match with another user (registering for matching,
checking into a location, and retrieving results). From a user’s
perspective, the Android client takes a noticeable amount of
time (1,388.5 ms £+ 151.2 ms). In comparison, the Python
client takes less than half as long (506.6 ms £+ 52.7 ms) to
complete the same operations.

X. CONCLUSIONS

We have presented Zerosquare, a location hub for building
geosocial applications that is designed with privacy as the
primary feature. Secondary goals include being able to support
various application use cases and not requiring unreasonable
amounts of computation from a mobile device. We have



discussed the API of the entities in our system and shown how
applications can be built using these functions. We have also
provided a working implementation of Zerosquare and proof-
of-concept applications. Our experimental results demonstrate
real-world practicality of Zerosquare.

Future work includes weakening the assumptions made in
our threat model (e.g, defending against actively malicious U,
L, or C) and enabling users to continuously check in with L
without them becoming identifiable or trackable.
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