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ABSTRACT
We develop an augmented reality-based app that resides on the
attacker’s smartphone and leverages computer vision and raw input
data to provide real-time mimicry attack guidance on the victim’s
phone. Our approach does not require tampering or installing soft-
ware on the victim’s device, or specialized hardware. The app is
demonstrated by attacking keystroke dynamics, a method leverag-
ing the unique typing behaviour of users to authenticate them on
a smartphone, which was previously thought to be hard to mimic.
In addition, we propose a low-tech AR-like audiovisual method
based on spatial pointers on a transparent film and audio cues. We
conduct experiments with 31 participants and mount over 400 at-
tacks to show that our methods enable attackers to successfully
bypass keystroke dynamics for 87% of the attacks after an average
mimicry training of four minutes. Our AR-based method can be
extended to attack other input behaviour-based biometrics. While
the particular attack we describe is relatively narrow, it is a good
example of using AR guidance to enable successful mimicry of user
behaviour—an approach of increasing concern as AR functionality
becomes more commonplace.
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1 INTRODUCTION
Although Augmented Reality (AR) research dates back to Suther-
land’s experiments in the 1960s [46], only recently have advances
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in computer vision, display technologies, and portable graphics
processing power brought it to mass-consumer devices like smart-
phones [21, 35]. This means we may finally be seeing AR used in
fields like architecture, industrial design, health care, marketing,
manufacturing, military, education, and entertainment [3, 7, 49].
And regardless of specific vertical applications, the general idea of
using mobile AR to provide personal or public information to an-
notate and visualize the world will likely touch all of our lives [25].

Of course, every new technology also introduces benefits and
risks for security and privacy. Security researchers have examined
attacks on AR hardware and AR systems [32, 36, 40] and proposed
ways for people to use AR for such things as increasing public
privacy [47] and hiding device authentication [52]. However, we
believe one aspect has not been fully explored — when an attacker
uses AR to break conventional security methods like behaviour-
based authentication.

Knowledge-based authentication systems on smartphones (e.g.,
PIN, passwords, and Android’s Pattern Lock) are susceptible to
shoulder surfing [19]. Researchers have proposed authentication
schemes that rely on the input behaviour of users to defend against
shoulder surfing attacks like user-specific patterns of swiping and
typing [9, 22, 33]. Researchers suggest that these proposals are
secure because a user’s unconscious behaviour is difficult to steal
or mimic by an observer [14, 22, 57, 58].

Other researchers have enumerated ways to steal the input be-
haviour and developed non-AR interfaces to train an attacker to
mimic the stolen behaviour [30, 48]. However, this approach is not
effective when the attacker has to mimic multiple features at a
milliseconds resolution. We demonstrate this against a recent key-
stroke behaviour-based scheme (“keystroke dynamics”) for smart-
phones [9]. Our experiments show that the non-AR training in-
terfaces approach is only moderately successful against keystroke
dynamics. More specifically, while attackers are able to reproduce
the victim’s behaviour on the training interfaces, they often fail to
reliably reproduce the behaviour when mounting the attack on the
victim’s device due to the lack of any guidance.

We present a novel AR-based method that enables an attacker to
precisely mimic the behaviour of their victim in real-time using a
standard smartphone. The attacker captures a sample of the victim’s
behaviour-based input dynamics (such as convincing them to enter
text on the attacker’s phone), then later gains temporary possession
of the victim’s device. The attacker runs our AR-based app on their
own smartphone and positions it so that the camera captures a view
of their hands as they hold the victim’s phone. Using the captured
data, our app overlays guidance information on the camera stream
enabling the attacker to mimic the victim’s input behaviour in real-
time. We also design and test a simple physical AR prototype to
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simulate perfect tracking. The attacker sticks a transparent filmwith
spatial cues onto the victim’s device and uses audio beeps to time
their taps. Note our guidance methods do not require specialized
hardware, they do not require special software on the victim’s
device, and tampering is as simple as sticking a piece of tape onto the
display. While the challenging aspect of capturing user behaviour
makes this attack relatively narrow, it is a good example of using
AR guidance to enable successful mimicry of user behaviour. Our
attack is of increasing concern as AR functionality becomes more
commonplace and as researchers propose more efficient methods
to locate user behaviour from a large population [38].

We recruit 31 participants to evaluate over 400 mimicry attacks
on keystroke dynamics using our AR techniques. The results show
attackers successfully bypass keystroke dynamics for 87% of the
attacks after an average mimicry training of four minutes. For
73% of attacks, attackers bypassed keystroke dynamics in their
first attempt—a considerable improvement over the 6% bypass suc-
cess rate for first attempts without AR. Our AR method can be
generalized to attack other input behaviour-based methods (e.g.,
Touchalytics [22]). Our contributions are:

(1) A smartphoneARmethod and anAR-like audiovisualmethod
to provide real-time input guidance to mimic user behaviour
on a smartphone.

(2) An application mounting the first ever successful attack on
keystroke dynamics for smartphones. Our methods show
that keystroke dynamics is susceptible to these mimicry
attacks.

(3) An opensource release of the AR-based app for researchers
to replicate our experiments and extend our methodology to
attack other input behaviour-based authentication methods1.

2 RELATEDWORK
Researchers have proposed AR-based systems that guide users’
movements for purposes like teaching themhow tomove or dance [2,
6] or play piano [10, 51] or play other musical instruments (see the
survey by Santos et al. [41] and references therein). However, to the
best of our knowledge, no AR-based system has been proposed that
guides users to input in a specific way on a target smartphone. or for
breaking conventional security methods including behaviour-based
authentication. Therefore, we only discuss related tools that have
been proposed to attack behaviour-based authentication systems.

Researchers have used video footage of users to mount shoulder
surfing attacks on a swiping input behaviour-based system [30].
Other researchers have demonstrated that such attacks are inef-
fective against schemes that employ cognitive abilities [1], eye
movement patterns [18] or touchscreen gestures [44, 45]. Such at-
tacks were unsuccessful because the attackers failed to mimic the
behaviour of the user. However, it is an open question whether a
technique like ours, which assists the attackers to precisely mimic
the behaviour of the user, will be able to break these systems.

Attackers may be able to mount mimicry attacks by submitting
the keystroke behaviour on a PC. Serwadda and Phoha [42] eval-
uated generative attacks against a keystroke biometric on a PC.
They built a generative model by analyzing statistical traits from
over 3000 users. They demonstrated that their generative model
1www.crysp.uwaterloo.ca/software/AR-keystroke-attacks

increased the EER of a keystroke classifier from 28% to 84% (see
§ 4.1 for a definition of EER). Their model could be leveraged by a
malware or bot to submit fake keystroke data on a PC. However,
this approach only works for the user-to-website authentication
scenario. This approach is ineffective against the user-to-device
authentication scenario (e.g., a device protected by a password),
where the attacker has to mimic the behaviour on the victim’s de-
vice. Our techniques can be used to attack both user-to-website and
user-to-device authentication scenarios.

An attacker may also leverage a robotic device to reproduce the
behaviour of the user. Serwadda and Phoha [43] demonstrated such
an attack on a swiping behaviour-based biometric for smartphones.
They showed that a robotic device equipped with the generic swip-
ing traits poses a major threat to these schemes as it increases their
EER from 5% to 50%. A similar robotic device may be designed to
mimic keystroke dynamics. However, this approach may be imprac-
tical in scenarios where bringing a robotic device to the premises
of the victim may raise suspicion. Our technique is portable since
it only requires an off-the-shelf smartphone.

Using specialized non-AR training interfaces for mimicry attacks
has been demonstrated for touch input and keystroke biometrics.
In earlier work [30], we developed an interface on smartphones
that uses raw swiping data to visualize and train attackers to mimic
the swiping behaviour of their victim. We recruited 32 attackers
to show that by training on our interface, attackers were able to
successfully mount attacks for 86% of their attempts. More related
to our work is that of Tey et al. [48], who trained attackers to
mimic two keystroke features on a PC with a physical keyboard.
Their evaluation showed that 14 of their best attackers (out of 84
attackers) were able to achieve a 99% bypass success rate. Our
proposed techniques are complementary to these approaches and
help the attacker to better mimic their victim by providing real-time
input guidance using AR.

3 AR TO MIMIC BEHAVIOUR BIOMETRICS
Our proposed techniques provide real-time input guidance tomount
mimicry attacks on input behaviour-based authentication systems.
We exemplify this by attacking keystroke dynamics after an op-
portunistic acquisition of the unattended device of the victim for a
limited time only. Such an acquisition may take place at a location
where the attacker has access to limited resources (e.g., at the vic-
tim’s home or work). We followed the following design principles
to satisfy these constraints:
Non-tampering: Attacking a user-to-device authentication sys-
tem entails that the device is protected through an authentication
mechanism and the attacker cannot install or tamper any applica-
tion that may assist them with the attack. Therefore, our techniques
should only require that the attacker has access to device configura-
tion settings that do not require authentication (e.g., the brightness
level of the screen) or that the attacker is able to put a removable
piece of paper or a transparent film on the device for any assistance.
Portable: The location constraint requires that the guidance tech-
niques should be portable. Approaches that require special equip-
ment (e.g., assistance from a robotic device [43]) are impractical
since bringing such equipment to the premises of the victim may
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(a) Device placement. (b) Attacker’s view I. (c) Attacker’s view II. (d) Victim’s device.

Figure 1: Augmented reality-based technique applied to attack keystroke dynamics. (a) Attacker places their device on table
with rear camera hanging over edge. Attacker types on victim’s device held beneath. (b) Attacker looks through their device
to see keyboard of victim’s device and superimposed mimicry guidance on it (target on ‘n’). (c) See attacker’s fingers partially
occluding keyboard. (d) See placement of paper on victim’s device to divide display.

raise suspicion. Our goal was to develop a technique that does not
require any special equipment beyond an off-the-shelf smartphone.

We now provide details of our AR and audiovisual techniques
that satisfy these constraints and provide real-time guidance for
successful mimicry attacks.

3.1 AR-based Approach
We developed an Android app that runs on the attacker’s device
and superimposes mimicry guidance on the victim’s device using
mobile augmented reality in a controlled context. The app captures
the keyboard of the victim’s device through the rear camera of
the attacker’s smartphone, overlays the targets on the captured
frame, and displays the frame on the screen of the attacker’s phone.
Figure 1 shows an attacker using our app to get real-time guidance
during the attack.

In our setup, the attacker adjusts environment lighting and the
display brightness on the victim’s device to ensure that the display
is the brightest part of the frame. (Android allows brightness to be
adjusted on locked phones.) Our app needs a stable, un-occluded
shape to track the victim’s phone. This is achieved by attaching a
thin piece of paper to the victim’s device just above the keyboard
to divide the display into a bright top and bright bottom. The app
further assumes the victim’s device is entirely in the rear camera
angle of the attacker’s phone, and oriented in a known way so the
bright top can be used for tracking. Our app uses the OpenCV 2.4
library with Android KitKat native code wrappers. The following
pipeline runs at more than 60 FPS on a Google Pixel smartphone.

(1) A 640x480 pixel frame is captured by the camera and OTSU
adaptive thresholding [39] is used to isolate the brightest
parts of the image.

(2) Connected-component analysis [15] is used to find the con-
tour polygons of each bright part. The area of each contour
is calculated and contours with an area less than 25% of the
camera frame are removed.

(3) The remaining large contours are reduced to similar contours
with fewer points using theDouglas-Peucker algorithm (with
an epsilon of one-tenth of the original contour perimeter
length) [16]. Contours that do not reduce to quadrilaterals
(i.e., four points) are removed.

(4) If there are multiple quadrilateral contours remaining, only
the top one is retained for tracking (based on the centroid
y-component). This avoids using the bottom contour around
the keyboard for tracking, since fingers will occlude it while
typing.

(5) For stable tracking, the four corners of the top quadrilateral
are smoothed using the one-euro filter [11].

(6) The four corners are then used to find a homography to
transform between a known rectangular representation of
the entire display (including keyboard area) and the perspec-
tive distorted display tracked in the frame. Transforming
to the rectangular representation is called rectification, and
transforming to the perspective distorted frame is called
warping.

(7) A clean image of the keyboard is rectified and extracted from
the first few frames when fingers are not yet occluding it.
The keyboard image is pasted into the correct portion of

43



MobiSys ’18, June 10–15, 2018, Munich, Germany Hassan Khan, Urs Hengartner, Daniel Vogel

Figure 2: Audiovisual technique. Spatial cues are marked on
victim’s phone (left). Audio from attacker’s device (right)
provides cues on inter-stroke interval.

the rectangular representation of the display and mimicry
guidance is pasted on top of the keyboard. Mimicry guidance
is provided in the form of a target that is moving across keys
with the same delay as the inter-stroke interval.

(8) The keyboard image with mimicry guidance is warped into
the position of the display in the frame and blended to appear
partially transparent over the fingers when typing (using
50% alpha transparency).

3.2 Audiovisual Approach
We also propose an audiovisual approach, which is a low-tech phys-
ical AR prototype with perfect tracking but limited static visuals.
This approach provides guidance through audio and visual channels
(see Figure 2). The attacker prints spatial cues on a transparent film
(or a smartphone screen protector) and overlays it over the victim’s
device. Alternatively, the attacker may also mark spatial cues using
a wet erasable marker. The attacker then uses an audio signal from
their own device for cues on the inter-stroke interval of the victim
(i.e., a beep indicates time to move to the next key).

4 MIMICRY OF KEYSTROKE DYNAMICS
Wedemonstrate the efficacy of our techniques bymountingmimicry
attacks on keystroke dynamics. Our choice of keystroke dynamics
is motivated by the availability of commercial keystroke dynamics
solutions for financial institutions [5] and also by the keystroke
dynamics’ ability to capture the behaviour through multiple fea-
tures at a milliseconds resolution. In this section, we first provide
the necessary background and outline the threat model. We then
provide the details of the dataset that we used for our experiment
and the features that we target for mimicry attacks. These details
are essential to understand the evaluation of the AR techniques.

4.1 Background
In this section, we provide an overview of various input behaviour-
based proposals and provide details on keystroke dynamics.

4.1.1 Input Behaviour-Based Schemes. Researchers have pro-
posed several authentication schemes that rely on the input be-
haviour of users with their smartphones to defend against shoulder
surfing attacks. The touch input behaviour-based proposals rely on
the unique swiping or typing input of smartphone users [9, 22, 33].
The touchscreen gesture-based proposals rely on the precise man-
ner in which a user draws a free-form or predefined shape on the
touchscreen, where the shape is not a secret [14, 44, 45]. Finally,
some proposals capture the unique device waving and shaking
behaviour of the user through the on-board accelerometer and gy-
roscope sensors [26, 55, 58]. Researchers have argued that these
proposals are secure because the input behaviour is difficult to steal
or mimic for an observer [14, 22, 57, 58].

4.1.2 Keystroke Dynamics. Before we provide an overview of
keystroke dynamics and the scheme that we evaluate, we define
various accuracy metrics that are used in the literature. A true accept
(TA) is when a real-time usage pattern of a device owner is correctly
classified. A true reject (TR) is when a real-time usage pattern of
a non-owner is correctly classified. A false accept (FA) is when a
real-time usage pattern of a non-owner is incorrectly classified. A
false reject (FR) is when a real-time usage pattern of a device owner
is incorrectly classified. The equal error rate (EER) is the operating
point where the rate of FA is equal to the rate of FR. The accuracy of
a scheme is defined as the ratio of the sum of TA and TR outcomes
to the total number of outcomes of an experiment.

Keystroke dynamics has been widely studied for physical key-
boards on a PC (see Banerjee and Woodard [4]). Features that are
derived from physical keyboards include the key hold and inter-
stroke intervals. The key hold interval is the interval between a
key press event and the corresponding key release event. The inter-
stroke interval is the interval between a key release event and the
next key press event. Researchers have deployed these schemes
on smartphones with physical keyboards to achieve varying levels
of accuracy (between 75–90%) [13, 27, 34]. Note that the accuracy
numbers provided in the literature are not directly comparable since
different schemes use different numbers of keystrokes to calculate
the authentication score.

Modern smartphones use soft keyboards, a software-based key-
board rendered on the touchscreen. In addition to temporal features,
researchers have employed contact features, like touch pressure
and area, to improve the accuracy [17, 20]. Giuffrida et al. [24]
added features derived from accelerometer and gyroscope sensors,
which capture the force of the key press and showed that these
features were effective. In addition to temporal and contact features,
Buschek et al. [9] proposed spatial features and showed that they re-
duced EER by up to 23% when compared to temporal features only.
Their scheme employs the most extensive feature set. For a single
bigram resulting from two keystrokes (K1 and K2), it constructs the
24 features listed in Table 1 (also see a subset illustrated in Figure 3).
Their evaluation on data from 28 users against a zero-effort attacker
model using an SVM classifier achieved 3.3% EER. They showed that
spatial features outperform temporal and contact features. They

44



Augmented Reality-based Mimicry Attacks MobiSys ’18, June 10–15, 2018, Munich, Germany

Table 1: Buschek et al.’s keystroke features. K1 and K2 are
two keys of a bigram. ↓ indicates key press; ↑ indicates key
release; t,s,c indicate temporal, spatial, and contact features,
respectively.

Feature(s) Description
key hold intervalt interval between ↓K1 and ↑K1
inter-stroke intervalt interval between ↑K1 and ↓K2
up-upt interval between ↑K1 and ↑K2
down-downt interval between ↓K1 and ↓K2
down & up pressurec touch pressure at ↓K1 and ↑K1
down & up areac touch area at ↓K1 and ↑K1
down & up axisc ellipses axis at ↓K1 and ↑K1
down x & ys x & y coordinate at ↓K1
up x & ys x & y coordinate at ↑K1
offset x & ys tap offset x & y from key centre
jump x & ys x & y distance between K1 and K2
drag x & ys x & y drag between ↓K1 and ↑K1
jump & drag angless jump & drag angles
jump & drag dist.s jump & drag distances

Figure 3: A subset of keystroke features for the bigram “hi”.
(Illustration from Buschek et al.)

demonstrated their scheme’s accuracy superiority by comparing
with proposals for physical [13] and soft keyboards [17]. Our choice
of evaluating Buschek et al.’s scheme is due to its extensive and
more effective feature set and its accuracy advantage over other
keystroke dynamics proposals.

4.2 Threat Model and Attack
We use the same threat model as Buschek et al. An adversary at-
tempts to gain access to a victim’s device, which employs keystroke
dynamics for password hardening for user-to-device authentication
(i.e., a password based primary authentication on the device) or
for user-to-website authentication (e.g., banking). With password
hardening, in case the password is compromised, the difference in
typing behaviour of the attacker is expected to flag the compromise.

The adversary has shoulder surfed the password or obtained it
through known mechanisms [37]. Furthermore, the adversary is
aware that the victim’s device is protected using keystroke dynam-
ics. In order to mount a mimicry attack, an attacker must know the
typing behaviour of the victim. Tey et al. [48] argue an attacker
may learn this behaviour using a compromised biometric database
or key loggers. For smartphones, a cloned banking or email app
may also serve the purpose [23]. In addition, malicious insiders (i.e.,
family, friends, and colleagues) may gain access to raw keystroke

data of their victims through various techniques. They can ask their
victims to type carefully crafted text (e.g., take a note or type a
URL) on the attacker’s device, which contains the same bigrams as
the victim’s password. This method eliminates the need to install
anything on victims’ devices. Malicious insiders can also recom-
mend an instrumented app from the official app store, which in
turn collects and transmits raw keystroke data generated in the
app to the attacker [37, 54]. Once the insiders obtain raw keystroke
data, they can use it to train and mimic their victims’ behaviour.

We note that while a malicious insider may easily collect the
typing behaviour, other adversaries are required to mount targeted
social engineering attacks to collect it. Social engineering attacks
from strangers may not always be successful, thereby limiting the
potential impact of these attacks. We also note the possibility of
keystroke dynamics being used for continuous authentication of
free text—to monitor all keystrokes from the user. Previous research
has shown that application specific differences reduce the accuracy
of behaviour-based schemes (e.g., composing a formal email vs.
texting friends) [28, 29]. This improves an attacker’s chance of
success. Therefore, our proposed attack is effective against both
scenarios.

4.3 Data Collection
We need a keystroke dynamics dataset for our evaluations. Buschek
et al. made their dataset publicly available. We were interested in
using it as victims’ data for our experiment; however, it was col-
lected using a custom Android keyboard. We contacted the authors
but were unable to obtain their keyboard layout. Therefore, we use
their dataset to analyze features and collect an independent dataset
for evaluating our attacks. Note that we received approval from our
university’s IRB for all experiments involving human participants.

4.3.1 Data collection setup. Similar to Buschek et al., we imple-
mented an Android keyboard and an app to collect raw keystroke
data. The app presented the password that the user had to enter
along with their progress on the task. For each keystroke, at both
key press and key release events, we logged the key, the timestamp
in milliseconds, the x and y coordinates, the touch pressure and the
touch area, the x and y offset from the key centre, and the ellipses
axis (the length of the major axis of an ellipse that describes the
size of the contact surface).

Buschek et al. evaluated passwords of different strengths. We
chose a subset of passwords from their set to validate our dataset’s
accuracy against theirs and to limit the study session length. We
chose a 6-character dictionary password (“monkey”), an 8-character
dictionary password (“password”) and a 6-character complex pass-
word (“Igur39”). Users were asked to enter each password 20 times.
If a user made a mistake during the password entry, they were
prompted to repeat the entry.

4.3.2 Statistics of collected data. We approached graduate stu-
dents through word-of-mouth for data collection. The necessary
condition for participation was that the participant owned an An-
droid device for over six months. An LG Nexus 5 device was used
to collect data in a lab setup. Participants were asked to enter the
password in their natural way (i.e., both thumbs or either thumb
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Table 2: Evaluation of Buschek et al’s approach against col-
lected data under zero-effort attacker model.

Our dataset Buschek et al.’s
FAR TAR FAR TAR

monkey 0.03 0.78 0.08 0.82
password 0.004 0.92 0.03 0.99
Igur39 0.002 0.95 0.01 0.98

or either index finger to enter the passwords). Participants were
allowed to take breaks, but were not allowed to change the posture.

We collected data from 18 participants (8 females): six were
between 21–30 years old and the rest were between 31–40 years old.
All participants entered passwords using both thumbs. We collected
304 keystrokes across 27 unique bigrams per subject (“Enter” and
“Shift” were considered a part of bigram). In total, we collected
12,240 keystrokes. To study the effect of the victim’s typing speed,
we used k-means clustering to create two clusters of victims based
on their typing speed. The cluster with faster typists had ten victims
and an average typing speed of 290ms per character (SD = 40ms).
The slower cluster had eight victims and an average speed of 521ms
per character (SD = 74ms).

4.3.3 Evaluation of keystroke dynamics on collected data. We
evaluated our dataset against the zero-effort attacker model to es-
tablish the accuracy of Buschek et al.’s approach. We constructed
non-overlapping training and test sets for each user using nega-
tive instances from other users’ data. Half of the data was used
for training, and the remaining for testing. A critical parameter is
the operating threshold, which defines the desired values for the
correlated false accept rate (FAR) and true accept rate (TAR). FAR
is the proportion of the adversary’s attempts that are incorrectly
classified as those from a legitimate user and TAR is the proportion
of the legitimate user’s attempts that are incorrectly classified as
those from an adversary. By increasing the operating threshold,
FAR can be reduced at the cost of a lower TAR (and vice versa).
Theoretically, at a lower FAR, it should be difficult to launch suc-
cessful mimicry attacks. For our evaluations, we chose a low FAR
(corresponding to a lower TAR).

Buschek et al. found that SVM and kNN provided the lowest EER
within a single session. Therefore, we chose an SVM classifier with
Radial Basis Function (RBF) kernel (parameterC at 1.0 and γ at 0.04
(1/number of features)) [12]. If the binary outcome of at least 60%
bigrams of the password was “accept”, the outcome of the password
was treated as an “accept”. Table 2 shows the results of the accuracy
evaluation under the zero-effort attacker model. It also shows FAR
and corresponding TAR for the password set used in this work on
Buschek et al.’s dataset for the same conditions (i.e., typing with
both thumbs). On both datasets, it shows relatively high error rates
for “monkey” but FARs of 0.01 or lower and TARs of 0.92 or higher
for the other two passwords.

4.4 Analyzing Keystroke Behaviour
Buschek et al.’s approach captures keystroke behaviour through 24
features. However, mimicking 24 features against each keystroke on
smartphones is challenging. To reduce this complexity, we analyzed
Buschek et al.’s dataset to investigate keystroke behaviour at the
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feature level. We withheld our dataset from this analysis to ensure
that our findings are evaluated on a non-overlapping dataset. The
goal of our analysis was to identify highly correlated features and
the key specific or key independent nature of features. This analysis
helps to reduce features required for training by removing the
majority of highly correlated features. Similarly, the identification
of key specific or key independent features helps to build cleaner
interfaces for the one time training of the key independent features.
The feature analysis details are not a required reading and readers
may jump to the findings of this analysis in § 4.4.4.

4.4.1 Temporal features. Figure 4 shows the relationship among
temporal features. Up-up for K2 comprises of the inter-stroke in-
terval between K1 and K2 and the key hold interval of K2. Similar
composition exists for down-down. To identify redundant features,
in Figure 5, we plot the correlation coefficients (an absolute value
between –1 and +1, where a higher value indicates a strong positive
correlation and vice versa) against all pairs of the four temporal fea-
tures. It shows a strong positive linear relationship (0.98 or higher)
between all pairs of down-down, up-up, and the inter-stroke inter-
val. For the key hold interval, it shows a weak positive correlation
with down-down and up-up. This suggests that both up-up and
down-down are redundant for training.

Next, we explore whether users’ behaviour for the inter-stroke
and key hold interval features varies between different keys. We
use the coefficient of variation (CV ) metric, which is defined for
a probability distribution as the ratio of the standard deviation to
the mean. CV enables us to perform relative standard deviation
comparison between two distributions with different spread. For
each user, the intra-keyCV for a feature is computed over all values
of that feature for each key. For each user, the inter-key CV for a
feature is computed over all values of that feature for all keys. We
then plot the cumulative distribution of the CV for the feature for
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Figure 6: Intra- and inter-key differences: (a) For inter-
stroke (IS) and key hold (KH) intervals. (b) For touch pres-
sure (pres.) and area at key press.

both intra- and inter-key differences across all users. A relatively
low intra-key difference indicates that for a majority of users, the
feature value does not vary significantly across different keys for
individual users.

Figure 6a shows that the CV difference between intra-key and
inter-key inter-stroke intervals always exceeds 0.35. On the other
hand, for over 90% of key hold intervals, theCV difference between
intra-key and inter-key never exceeds 0.1. This shows that while
the inter-stroke interval changes across keys for a user, the key
hold interval does not vary much for a user across different keys.
Consequently, an attacker likely needs to mimic only one key hold
interval for a victim.

4.4.2 Contact features. Figure 5 shows that a strong positive
linear relationship exists between feature values at key press and
key release events for touch area and ellipses axis (≥ 0.75). For the
touch pressure, it shows a moderate positive relationship between
the two events (≥ 0.5). Due to this relationship the attacker can
choose to focus on an effective mimicry at either of the two events.
We choose the key press event since applying pressure or tweaking
the touch area is more natural during this event.

Figure 5 also shows a correlation among touch pressure, touch
area and ellipses axis. A strong positive linear relationship between
touch pressure and touch area for the key down event also exists
(≥ 0.75). Similar moderate to strong positive linear relationships
exist among touch pressure, touch area and ellipses axis for the key
release event (≥ 0.63). Due to the perfect positive linear relationship
between ellipses axis and touch area, we choose to train for touch
area. We choose touch area as it is easier to comprehend than
ellipses axis.

Figure 6b shows the cumulative distribution of intra- and inter-
key standard deviations between touch pressure and touch area
for the key press event. It shows small differences between intra-
and inter-key scores for these features. The low variation of these
features across different keys for individual users allows us to train
attackers to mimic one behaviour across different keys for these
features for a victim.

4.4.3 Spatial features. Spatial features are inherently key spe-
cific due to the unique location of each key (drag features are an
exception), therefore we only investigate the correlation aspect.

Table 1 shows that all spatial features are a function of four base
spatial features: down x, down y, up x, and up y. There is a strong
correlation between offset features and location coordinate features
because the former are a function of the latter and a constant value
(the centre of the key). Similarly, drag features are derived from
the difference between the down and up coordinates. Finally, jump
features are derived from the difference between the coordinates
for K1 and K2. Therefore, an attacker only needs to successfully
mimic the four base spatial features.

For the four base spatial features, Figure 5 shows a strong positive
linear relationship between values at key press and key release
events for both x and y coordinates (> 0.99). Despite their high
correlation, we need coordinate values at both events to compute
drag features. However, Buschek et al. show that drag features
are the worst among their feature set and under a single feature
evaluation, these features provide an average EER of 0.45 (SD <
0.01) (compared to an average EER for the remaining features of
0.31 (SD = 0.02)). Therefore, we choose to only train for down x and
down y.

4.4.4 Discussion. Our analysis identifies six target features: key
hold interval, inter-stroke interval, down pressure, down area, down
x, and down y. Furthermore, key hold interval, down pressure, and
down area features are key independent and the attacker needs to
train for these once for a victim and not for each key.

5 EVALUATION
In this section, we establish a baseline for our evaluations by evalu-
ating the approach of using non-AR training interfaces for mimicry
attacks. The baseline evaluations also enable us to understand the
limitations of this approach and motivate the need for a guidance
method. We then provide details of the experimental setup and
evaluation results for the proposed techniques.

5.1 Non-AR Training Interfaces Baseline
To establish a baseline, similar to Tey et al., we chose to provide
sufficient training to attackers so that they could learn the typing
behaviour of their victims. During attacks, they were expected to
reproduce the typing behaviour from their learning experience (i.e.,
no guidance was available to the attacker during the attacks). For
the rest of this paper, we use the term “unguided attacks” for these
attacks. We now provide details on the non-AR training interfaces
that we developed.

5.1.1 Training interfaces. We designed separate interfaces for
training key independent and key specific features. For key indepen-
dent features, the interface displays target feature values for the key
hold interval, down pressure, and touch area features. Every time
the attacker presses a key, the interface displays the attacker’s fea-
ture values next to the target values. It also provides feedback to the
attacker on how to adapt their behaviour (e.g., increase pressure).
Once the attacker is able to mimic features such that the generated
feature values fall in the inter-quartile range of the feature values
of the victim, the attacker proceeds to the next interface.

Figure 7a shows the training interface for key specific features.
The target location is provided as a blue coloured target. The inter-
stroke timing is communicated by moving the target to the next

47



MobiSys ’18, June 10–15, 2018, Munich, Germany Hassan Khan, Urs Hengartner, Daniel Vogel

(a) Key specific cues. (b) Feedback.

Figure 7: Cropped screenshot of keyboard during training
for the password “monkey”. (a) Target (on ‘n’) moves across
keys with same delay as inter-stroke interval. (b) All targets
and attacker’s attempts shown. Latter colour coded for feed-
back.

key with the same delay as the inter-stroke interval. The attacker
is expected to tap on the target as soon as it appears.

Figure 7b shows the feedback provided to the attacker. After a
mimicry attempt, all targets and the attacker’s attempts are dis-
played to show the attacker’s accuracy for location features. The
attacker’s attempts are colour coded to provide feedback on the de-
sired inter-stroke behaviour. Attempts coded red suggest increasing
the interval between this key and the previous one (i.e., go slow),
whereas attempts coded green suggest decreasing the interval. At-
tempts coded light blue indicate that no change is required. The
attacker is also able to see the outcome of the SVM classifier (ac-
cept/reject) at the same operating point that is used during attacks.
In case an attacker fails to mimic multiple key independent features,
they are directed to the previous interface for retraining.

5.1.2 Attack protocol and study procedure. We invited recruited
participants to our lab and briefed them about keystroke dynamics,
training interfaces and the attack protocol. We asked participants
to type some text to determine their typing speed. This enabled us
to study the effect of attackers’ typing proficiency on successful
mimicry (§ 5.2.6). We asked attackers to undergo training on an LG
Nexus 5 device. We asked them to remember the victim’s behaviour
so that they could reproduce it later. Once they successfully mim-
icked the victim six times consecutively on the training interfaces
and indicated that they were confident to attempt the attack, they
were asked to mount the attack. We introduced a 30-second delay
between training and attack, and during this period we did not
allow the attacker to hold the device. This delay was introduced
to capture the real-world scenario, where the attacker performs
training on their own device and then switches to the victim’s de-
vice. For attacks, the attacker was asked to successfully mimic the
victim’s behaviour twice consecutively. In case the attacker failed
to do so, they were provided the option to retrain before mounting
the attack again.

Each participant was asked to mimic the three passwords (in
order from weakest to strongest) from a single victim. We chose
the top five fastest and top five slowest typists from our 18 victims’
dataset and randomly assigned them to the participants. Partici-
pants were allowed to spend up to ten minutes to train for a pass-
word. If they failed to complete training in ten minutes, they were
asked to proceed to the next password. They were given the option
to retry the password that they failed to train later. This was done
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Figure 8: Evaluation baseline using unguided attacks. (a) By-
pass success. (b) Training effort on key independent and key
specific interfaces for successful attacks.

to ensure that the participants did not get overtired or bored for
the remaining experiment. Participants were encouraged to take
breaks between passwords.

5.1.3 Participant recruitment and motivation. We used our uni-
versity’s graduate students mailing list to recruit participants for a
30-minute session. We restricted participation to those who owned
an Android device for over six months. Ten people participated
(six females): five were between 21–30 years old and the rest were
between 31–40 years old. To motivate participants, we offered a
performance-based reward in addition to $5 for participation. For
a successful mimicry, we offered $1 reward for “monkey” and $2
each for “password” and “Igur39”.

5.1.4 Results for unguided attacks. We report on attackers’ suc-
cess and the amount of effort required to mount successful attacks.
Figure 8a shows the overall bypass success rate of attacks. Since
attackers retrained in case of a failure during attacks, we show their
success separately for different attempts. We note that while the
bypass success rate may be over-reported due to the non-zero FAR,
our chosen threshold has very low FAR for the zero-effort attacker
model.

Figure 8a shows that 90% of attackers used the training interface
to mimic (six times consecutively) “monkey”. 70% and 80% of attack-
ers were also able to mimic “password” and “Igur39”, respectively.
However, the majority of successful attackers failed to mimic pass-
words in their first attempt for the attacks. Only two attackers were
able to correctly mimic “monkey” in their first attempt. 20–30% of
the attackers were able to mimic these passwords in their second
attempt and another 20–30% required three attempts. Finally, 20%,
20% and 30% of the attackers were able to complete training but
unable to mimic their victim in three attempts for “monkey”, “pass-
word” and “Igur39”, respectively. z-tests (Bonferroni corrected) on
the binary outcome of bypass success for passwords of different
strengths indicate no significant differences (all p > 0.05).

Figure 8b shows the attacker’s effort for successful attacks in
terms of the amount of time spent on training (including retraining).
It shows the attacker’s training effort separately for the interface for
key independent features (which requires only per victim training,
not per password). It shows that the successful attackers spent
an average of 2.8 minutes (min = 1.5; max = 4.4; SD = 1) to learn
to mimic key independent features. For “monkey”, the successful
attackers spent an average of 1.3 minutes (min = 0.8; max = 2.1;
SD = 0.4) on training. The successful attackers spent an average
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Figure 9: Differences between feature values for last two
successful training attempts (“Success-Success”) and last
successful training attempt and first failed attack attempt
(“Success-Fail”) for failed attacks.

of 1.9 minutes (min = 1.6; max = 2.4; SD = 0.3) and 2.6 minutes
(min = 1.9; max = 3.4; SD = 0.60) on training for “password” and
“Igur39”, respectively. We conduct t-tests (Bonferroni corrected) to
compare the attacker’s effort for passwords of different strengths.
Only the t-test comparing the attacker’s effort between “monkey”
and “Igur39” shows significant differences (p < 0.01).

5.1.5 Discussion. Our experiment shows that while more than
70% of the attackers were able to successfully mimic their victim
during training, 29% of the successful trainees failed tomimic during
the attacks. To investigate the high rate of failure during attacks, for
each feature, we plot the difference between the attackers’ mimicked
values for the last successful training attempt and the first failed
attack attempt (“Success-Fail”) in Figure 9. For comparison, we also
plot the difference between the attackers’ mimicked values for the
last two successful training attempts (“Success-Success”).

Figure 9a shows the differences for the two temporal target
features. For the inter-stroke interval, it shows an average difference
of 15ms (SD = 7ms) for Success-Success, but 24ms (SD = 44ms)
for Success-Fail. Furthermore, for Success-Fail, the difference is
more dispersed for the third quartile than in Success-Success. This
indicates that for half of the attacker’s attempts (the third quartile),
the difference in mimicked value is higher than Success-Success.
A similar trend is observed for the key hold interval (Figure 9a),
the two spatial target features (Figure 9b), and down area (results
omitted due to space constraints) but not for down pressure. Our
analysis suggests that the performance gets worse during attack
attempts in the absence of guidance for all features except down
pressure. These results show that in the absence of guidance, the
margin of error for attackers increases despite the training.

5.2 Evaluation of AR Techniques
We now evaluate the efficacy of our AR techniques to provide
real-time mimicry guidance during the attacks.

5.2.1 Attack protocol and study procedure. The recruited par-
ticipants were invited to our lab and were briefed about the setup.
The attackers required training on the training interfaces intro-
duced for the unguided attacks since the guidance methods can
neither provide feedback to the attacker nor communicate the vic-
tims’ behaviour against key specific features. We followed the same
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Figure 10: Overall bypass success for proposed techniques.

procedure for attackers’ data collection and training as for the un-
guided attacks (§ 5.1.2). However, during attacks, attackers were
provided real-time guidance through one of the guidance methods.
For the AR-based method, we used a Google Pixel device to provide
guidance. For the audiovisual method, we rendered the spatial cues
on the victim’s device through an app. The rendered cues were the
same as the cues used for training. Due to time constraints, render-
ing cues was favored over printing them on a screen protector or
drawing them with an erasable marker. However, since an attacker
could print or draw cues that are visually similar to the rendered
cues, this minor deviation is unlikely to affect our research findings.
Each participant was asked to mimic the three passwords (weakest
to strongest) for two victims (one from each typing speed pool) for
each type of the guidance method. The orders of the two victims
and guidance methods were counterbalanced across attackers.

5.2.2 Participant recruitment and motivation. The recruitment
procedure and restrictions were the same as for the unguided at-
tacks (§ 5.1.3). 30 people participated in this experiment (16 females):
20 were between 21–30 years old and the rest were between 31–40
years old. Eight participants from the unguided attacks experiment
also participated in this experiment (two participants from the
unguided attacks experiment were unable to participate due to
scheduling conflicts). In addition to $10 for participation, in a first
round the attackers were offered $0.5 for successfully mimicking a
password (up to $6). In a second round they were offered up to $4
if they successfully mimicked up to two victims ($2 per victim) that
they had failed to mimic in the first round. This round was intro-
duced to measure the effect of attackers’ consistency on mimicry
outcome. In case a participant failed to mimic more than two vic-
tims in the first round, we chose victims with fast typing speed
(ties were broken in favor of strongest passwords). If a participant
successfully mimicked all victims in the first round, they received
the remaining $4.

5.2.3 Attacker’s success. We report results against 360 attacks
(30 attackers x 2 victims x 2 guidance methods x 3 passwords) and
cover only the first round. (See § 5.2.5 for the second round results.)
For 323 of the 360 attacks, the attackers successfully completed the
training. Figure 10 shows that for both guidance methods, 97% of
the successful training sessions also resulted in a successful attack
in at most three attempts. Furthermore, for 81% of these attacks,
the attackers were able to mount the attack in their first attempt.
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Figure 11: Attackers’ success at bigram level and effort. (a)
Distribution of number of accepted bigrams. Threshold set
at star. (b) Training effort on key independent and key spe-
cific interfaces for successful attacks.

We also compare the two guidance methods. Our results show
that after successful training, only seven and three attacks failed for
the AR-based (Figure 10a) and audiovisual method (Figure 10b), re-
spectively. A Fisher’s Exact test on the binary outcome of the attack
for the two methods indicates no significant differences (p > 0.05).
We also observe a difference in the proportion of successful attacks
in the first attempt between the two methods. For the audiovisual
method, we note that 88% of the attacks only required one attempt
as compared to 76% of the attacks for the AR-based method. A
Fisher’s Exact test on the binary outcome of the first attack attempt
indicates significant differences between the two methods (p = 0.04).
We suspect that these differences were observed for the AR-based
method because it required typing while watching the keyboard
through a smaller view window on the attacker’s smartphone.

In Figure 11a, we plot the cumulative distribution of the number
of accepted bigrams for different passwords for 48 failed (i.e., part
of curve below the star) and 312 successful attack attempts (i.e., part
of curve above the star). (Failed attempts also include 37 training
failures.) For both failed and successful attempts, we considered
attempts with the largest number of accepted bigrams. Recall that
a successful attack requires successful mimicry of over 60% of the
bigrams. Figure 11a shows that for only 5% of the attacks, the
attackers were unable to mimic more than two bigrams for all three
passwords. It also shows that for 62%, 60%, and 53% of all attacks,
the attackers were able to successfully mimic 80% or more bigrams
for “monkey”, “password”, and “Igur39”, respectively. Finally, for
10% or more of all attacks, the attackers were able to successfully
mimic all bigrams. While a key level analysis of mimicry outcome
(e.g., character vs. numeral keys) may provide interesting insights,
it is difficult to conduct because a feature vector is derived from a
bigram (comprising of two keys).

5.2.4 Attacker’s effort. We report the attacker’s effort for suc-
cessful attacks in terms of the amount of time spent on training
(including retraining). For the AR-based method, attackers prac-
ticed typing random text through the smaller view window. This
was a one time training where the attackers spent an average of
3.2 minutes (min = 2; max = 4.6; SD = 0.9).

Figure 11b shows the attacker’s effort separately for the key
independent features (required per victim, not per password) and

Table 3: Effect of typing speed on mimicry attacks.

Bypass Success Rate
monkey password Igur39

Victim Slower 0.94 0.89 0.89
Faster 0.89 0.89 0.83

Attacker Slower 0.86 0.82 0.82
Faster 0.96 0.96 0.93

key specific features. It shows that the successful attackers spent
on average between 3.3–4.1 minutes to complete their training
for different passwords. t-tests (Bonferroni corrected) between the
attacker’s effort for different passwords show significant differences
between all three pairs (all p < 0.001).

We use t-tests (Bonferroni corrected) to compare the attacker’s ef-
fort between unguided and guided attacks. A t-test for the attacker’s
effort to train the key independent features between unguided (avg
= 2.8 minutes) and guided attacks (avg = 2.1 minutes) indicates
significant differences (p < 0.01). t-tests also indicate significant
differences (all p < 0.001) for the attacker’s effort to train “pass-
word” and “Igur39” between unguided (avg = 1.9 and 2.6 minutes,
respectively) and guided attacks (avg = 1.6 and 2 minutes, respec-
tively). While the attackers used the same training interfaces as in
the unguided attacks, the reduction in the training time is a result
of the higher success rate for the first attempt (thereby requiring
fewer retrainings.)

5.2.5 Effect of attacker consistency. For the second round, at-
tackers were offered a reward if they successfully mimicked up
to two victims that they had failed to mimic in the first round. 14
attackers successfully mimicked all victims and were not a part of
this experiment. Three attackers declined to participate when they
were informed that the victims were the ones that they had failed
to mimic during the first round. Their reason was that they had
already tried their best and more practice would not change the
outcome. Therefore, 13 attackers participated in the second round.
Seven of these attackers had to mimic only one victim and the rest
had to mimic two victims.

For the second round, eight attackers were able to mimic at least
one of the assigned victims. Furthermore, while all attackers were
initially unable to mimic different features, for 7/19 attacks they
successfully adapted their behaviour with practice. We also note
that for 12/19 attacks, attackers were unable to mimic despite prac-
tice of up to six minutes. For the successful attacks, the attackers
spent an average of 3.8 minutes on training whereas they spent an
average of 2.4 minutes on training for the failed attacks. A t-test for
the training time between successful and failed attacks indicates
no significant differences (p > 0.05). These results suggest the pos-
sibility that mimicry success is affected by the typing proficiency
of attackers or victims (examined further in § 5.2.6).

5.2.6 Effect of victim’s and attacker’s typing speed. Each partici-
pant was assigned two victims of different typing speed. While all
victims in our guided attacks experiment were successfully mim-
icked by one or more attackers, we investigate whether there is
a relation between the typing speed of a victim and the bypass
success against that victim. For this evaluation, we only use data
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from the top six fastest and top six slowest victims. We show the
bypass success rates against each typing speed in Table 3. A Fisher’s
Exact test on the binary outcome of the attack for the two typing
speeds indicates no statistically significant differences (p > 0.05).

The attackers in our experiment had varying levels of typing
proficiency. We use the attacker’s typing speed to characterize
their proficiency. This speed is calculated over the typing data
that attackers submitted before training. For this evaluation, we
only consider data from the top ten fastest attackers and top ten
slowest attackers. The average speed for faster typists was 282ms
per character (SD = 45ms) whereas it was 477ms per character (SD
= 71ms) for slower typists.

Table 3 shows the bypass success rates against both groups of
attackers. To determine whether a relationship exists between the
typing speed and the bypass success rate of an attacker, we use
Fisher’s Exact test on the binary outcome of the attack and between
the two typing speed groups. A Fisher’s Exact test indicates statisti-
cally significant differences between the two groups of attackers in
terms of their success (p < 0.05). These results show that attackers
with faster typing speeds are more likely to mount a successful
attack than attackers with slower typing speeds.

6 DISCUSSION
In this section, we discuss how effective the AR guidance techniques
were compared to the evaluation baseline (i.e., unguided attacks)
and to provide guidance against different features. We ground this
discussion in additional analysis of our attack data. We then dis-
cuss how the proposed techniques can be extended to attack other
behaviour-based biometrics.

6.1 Mimicry Accuracy of Proposed Techniques
Our evaluations show that the guidance provided by the proposed
techniques improved the bypass success rate against keystroke
dynamics. More specifically, compared to the at most 70% bypass
success rate in three or fewer attempts for unguided attacks, 97%
attempts were successful with our techniques. Similarly, compared
to the 6% bypass success rate for the first attempt of unguided
attacks, 81% of the attacks were successful in the first attempt
with our techniques. For the eight attackers that had previously
mounted unguided attacks, 96% of the successful trainings ended
up in a successful attack (compared to 70% without our techniques).
Similarly, 87% of these successful trainings resulted in the first
attempt success for the attack with the guidance (compared to 6%
without the guidance). These results demonstrate that the proposed
techniques provide a significant improvement over the unguided
approach.

We also quantify the mimicry accuracy of attackers for the tem-
poral and spatial features that they received guidance against. To
this end, for each feature, we plot the difference between the target
feature value and attackers’ mimicked values for the first successful
attack attempt with each technique in Figure 12. Figure 12a shows
that on average the AR-based approach enabled attackers to mimic
key hold intervals within 10ms (SD = 3ms) of the target values. The
audiovisual approach enabled attackers to mimic key hold intervals
within 14ms (SD = 5ms) of the target values. Similarly, the AR and
audiovisual approaches enabled attackers to mimic the inter-stroke
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Figure 12: Differences between target feature values and
mimicked values for the proposed techniques.

intervals within 16ms (SD = 6ms) and 23ms (SD = 7ms), respectively,
of the target values. We conduct t-tests (Bonferroni corrected) to
compare the mimicry accuracy for the two features for both tech-
niques. T-tests indicate significant differences (p < 0.05) for the
difference of target and mimicked values for both features between
the two approaches. This indicates that the AR approach enabled
the attackers to more accurately mimic the temporal features.

Figure 12b shows that on average the AR and audiovisual ap-
proaches enabled attackers to mimic the down x feature within 5
pixels (SD = 3 pixels) and 4 pixels (SD = 3 pixels), respectively, of
the target values. Similarly, on average, the AR and audiovisual
approaches enabled attackers to mimic the down y feature within
10 pixels (SD = 5 pixels) and 8 pixels (SD = 4 pixels), respectively,
of the target values. We conduct t-tests (Bonferroni corrected) to
compare the mimicry accuracy for the two spatial features for both
techniques. T-tests indicate no significant differences (p < 0.05)
for the difference of target and mimicked values for both features
between the two approaches.

6.2 Extending our Attack Techniques
Several input behaviour-based authentication proposals (e.g., those
discussed in § 4.1) are presumed secure with the assumption that
the attacker is unable to steal and reproduce the behaviour of the
user. However, advances in computer vision suggest that novel
attack vectors must be considered during the security evaluation of
these proposals. In the wake of a recent attack on Android’s Pattern
Lock [56], where computer vision was used to process the video
footage to crack the authentication secret, the “unstealable” prop-
erty of input behaviour-based biometrics is questionable. Similarly,
our findings strongly suggest that security researchers must con-
sider the threat posed by novel methods that precisely reproduce
the behaviour of the user.

While the audiovisual approach is limited by static visuals, our
AR technique can be easily extended to attack swiping behaviour-
based authentication schemes [22, 33, 53]. Among other features,
these schemes rely on the location, curvature and speed of the
swipe. These features can be easily depicted using a cursor similar
to the one used by our AR prototype. Touchscreen gesture-based
approaches that rely on similar features [44] may potentially be
mimicked if the swiping behaviour is known. A limitation of the
current AR prototype is its inability to communicate features like
pressure. However, Serwedda et al. [43] demonstrated that a large
number of users are clustered around a narrow band of values. One
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possibility is to mimic these values by suggesting various levels
of the target pressure (e.g., low, medium or high pressure). More
experiments need to be conducted to determine the viability of this
approach.

Schemes that rely on how users shake or wave their device [26,
55, 58] are also susceptible to AR-based attacks. Anderson et al. [2]
developed an AR system that allows users to record and reproduce
movement sequences. This approach can be used to reproduce
device shaking and waving behaviour. AR-based attacks may be
used to attack other behaviour-based authentication systems. For
instance, iOS apps that teach users how to dance by dictating where
to put the feet (e.g., Dance Reality [6]) might be extended to attack
gait behaviour-based authentication systems [8, 31].

7 LIMITATIONS
Like most studies involving human subjects, the scope of our study
is limited to people willing to participate. We discuss more specific
limitations below.

We used the same device for data collection and attacks. If an at-
tacker collects data using a device with a different form factor than
the victim’s, appropriate transformation would need to be applied
to the features. Furthermore, we used the same device for training
and attacks. If the training device has a different form factor or
manufacturer than the attack device, the attacker may not be able
to reproduce the trained behaviour due to the underlying differ-
ences in device sizes or the pressure values returned by different
manufacturers.

We chose a subset of passwords from Buschek et al.’s work. This
allowed us to validate our dataset’s accuracy against theirs and limit
the study session length (to keep attackers motivated and avoid
fatigue). While our experiments do not investigate more complex
passwords, Zezschwitz et al. found that simple passwords are more
widely used on smartphones due to their ease of input [50]. Despite
this limitation, our work calls attention to the well-established as-
sumption that weaker passwords can be hardened using keystroke
dynamics.

We allowed participants to spend up to ten minutes to train for
a given password. This ensured that attackers did not get overtired
and provided comparable data across attackers. A real-world at-
tacker might be highly motivated to train for longer periods to
mount a successful attack. Nevertheless, our experiments establish
a lower-bound on attackers’ success.

We did not collect data from victims across sessions. However,
Buschek et al. showed that the classifier’s accuracy reduces for
datasets collected across sessions. This made our attacks more
challenging for the attackers.

The number of participants for the unguided attacks may seem
low; however, the data collected was sufficient to draw statistically
significant conclusions on the efficacy of the training interfaces,
and motivate the need for attack guidance mechanisms.

8 CONCLUSION AND FUTUREWORK
We present AR smartphone methods that provide real-time input
guidance to enable an attacker to attack behaviour-based authenti-
cation systems. We evaluate our methods on keystroke dynamics to

demonstrate that they enable an attacker to precisely mimic multi-
ple behavioural features at a milliseconds resolution. Our methods
only require an off-the-shelf smartphone and do not require tam-
pering with the software on the victim’s device. Potential future
work includes an evaluation of our AR-based method for mimicry
attacks on other input behaviour-based systems. Another interest-
ing research avenue that will result in wider applicability of these
attacks is exploring advancements in computer vision to obtain the
input behaviour of users through their video footage.
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