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ABSTRACT

Touch input implicit authentication (“touch IA”) employs
behavioural biometrics like touch location and pressure to
continuously and transparently authenticate smartphone us-
ers. We provide the first ever evaluation of targeted mimicry
attacks on touch IA and show that it fails against shoul-
der surfing and offline training attacks. Based on experi-
ments with three diverse touch IA schemes and 256 unique
attacker-victim pairs, we show that shoulder surfing attacks
have a bypass success rate of 84% with the majority of suc-
cessful attackers observing the victim’s behaviour for less
than two minutes. Therefore, the accepted assumption that
shoulder surfing attacks on touch TA are infeasible due to
the hidden nature of some features is incorrect. For of-
fline training attacks, we created an open-source training
app for attackers to train on their victims’ touch data. With
this training, attackers achieved bypass success rates of 86%,
even with only partial knowledge of the underlying features
used by the TA scheme. Previous work failed to find these se-
vere vulnerabilities due to its focus on random, non-targeted
attacks. Our work demonstrates the importance of consid-
ering targeted mimicry attacks to evaluate the security of
an implicit authentication scheme. Based on our results, we
conclude that touch TA is unsuitable from a security stand-
point.

1. INTRODUCTION

Implicit authentication (IA) employs behavioural biomet-
rics to continuously and transparently recognize and vali-
date the identity of smartphone users. Several biometrics
have been proposed such as device usage behaviour [7, 31],
gait behaviour [6, 19], keystroke behaviour [9, 13] and touch
input behaviour (“touch IA”) [4, 8, 11, 12, 14, 20, 21, 33, 34].
Touch TA schemes rely on the finger movement patterns that
are generated when people use their device normally: no spe-
cial gestures are required. Previous work suggests not only
do they provide lower detection delay compared to other
behavioural biometrics, but they are secure since studies
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suggest less than 5% of random mimicry attackers would be
successful at bypassing them [4, 12, 14]. Consequently, these
touch IA schemes have been called “.. the more natural, un-
obtrusive future of smartphone biometrics”[24]. Researchers
have proposed to use touch TA as a middle ground for users
who do not configure any authentication mechanism due to
usability issues [33] or as a second line of defense if primary
authentication is compromised [14, 20, 33]. Touch IA is even
under consideration as a candidate behavioural biometric in
the active authentication project of DARPA [5].

The accuracy evaluation in existing touch TA proposals
follows a conventional methodology for classifier evaluation.
Touch data is collected from users and a classifier is trained
for each user by employing a subset of their data as positive
training samples and other users’ data as negative samples.
To calculate accuracy statistics, the remaining data from
other users is used as synthetic attack data. Using random
attackers who have no knowledge of their victims’ behaviour
fails to capture more realistic attack scenarios such as shoul-
der surfing and offline training where attackers have access
to their victims’ raw touch data. Only Bo et al. [4] and
Frank et al. [14] acknowledge their evaluations omit these
realistic attack scenarios. Both argue adversaries could not
learn invisible features such as touch pressure and swipe ac-
celeration only by shoulder surfing, and Frank et al. [14] rule
out attacks using a victim’s raw touch data because malware
is needed to gather the data. These arguments have been
considered “sound without doubt” by others [28] and to the
best of our knowledge, these attacks have never been evalu-
ated.

We argue that shoulder surfing and offline training are
realistic for malicious insiders like friends, family, and col-
leagues — insiders that are recognized threats [23]. In a re-
cent study on the security perceptions of TA, potential early
adopters voiced their concern regarding shoulder surfing at-
tacks [17]. Unlike random attackers, malicious insiders are
able to observe their victims’ behaviour, giving them with
an advantage for shoulder surfing attacks. Moreover, an at-
tacker may launch sophisticated mimicry attacks after gath-
ering the victim’s raw touch data by asking that victim to
perform a task on the attacker’s device. This eliminates the
need for malware or sophisticated logging. Previous work
provides no evidence that touch TA protects against these
targeted mimicry attack scenarios.

We perform the first evaluation of targeted mimicry at-
tacks on three diverse touch IA schemes: SilentSense [4],
Touchalytics [14], and Li et al. [20]. These schemes have
hundreds of citations and media coverage [24]. We collect



raw touch data from 55 users and multi-angle video of 9
users during the data collection step. We recruit 32 attack-
ers and motivate them to launch shoulder surfing and offline
training attacks on selected victims. For shoulder-surfing
attacks, the attacker studies videos of the victim to observe
their touch behaviour before launching a mimicry attack.
For offline training attacks, we develop a feedback and train-
ing app, Mimicker, that analyses and visualizes a victim’s
raw touch data to train attackers.

Our results show it is surprisingly easy to bypass touch TA
schemes. For 128 unique victim-attacker pairs, we observe
a bypass success rate of 84% for shoulder-surfing attacks,
much higher than the 5% rate using the random attacker
model [4, 14, 20]. Furthermore, among successful attackers,
90% only shoulder surfed for two minutes or less and 70%
successfully mimicked in their first attempt. Similarly, for
128 unique victim-attacker pairs, we record a bypass rate
of 86% for offline training attacks using Mimicker with over
80% of successful attackers bypassing IA on their first at-
tempt. Additional experiments show that for shoulder surf-
ing attacks, an attacker has about 70% chance of success
without any knowledge of the underlying features of the
touch IA scheme. With offline training, the attacker does
not need to know the exact IA scheme used by the victim be-
cause schemes have many overlapping features. An attacker
can train using one scheme, and bypass other schemes with
a 76% bypass success rate. These targeted mimicry attacks
not only require fewer resources, but are significantly more
devastating compared to a non-targeted generic attack [28].
Our findings provide strong evidence to reconsider the eval-
uation strategy of IA proposals and question the security of
touch TA in general. Our main contributions are:

1. We provide the first ever evaluation of targeted mimicry
attacks on touch IA schemes and show their susceptibil-
ity to these attacks.

2. We show the accepted assumption that shoulder surf-
ing attacks on touch IA are infeasible due to the hidden
nature of some features is incorrect.

3. We outline a method and provide the necessary appa-
ratus for malicious insiders to perform offline training
attacks without installing a malicious app on their vic-
tims’ devices.

4. We release shoulder surfing videos, training models, and
our open source Mimicker Android app for researchers to
replicate our experiments and extend our methodology
to other TA domains®.

2. THREAT MODEL AND ATTACKS

We use the standard threat model used for touch IA schem-
es [4, 20, 33]. An adversary attempts to gain unauthorized
access to a victim’s device, which employs a touch IA scheme
to continuously authenticate the device user. The victim
has either not configured a primary authentication scheme
(such as a PIN) or the adversary has bypassed it completely
through known mechanisms like shoulder surfing or smudge
attacks [2]. Furthermore, the adversary is aware of the pres-
ence of a touch TA scheme on the victim’s device.

Accuracy numbers reported in the TA literature evaluate
this threat model against a random attacker model. This
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means that data from random attackers with no knowledge
of their victims’ behaviour is used as synthetic attack data.
While this tests scenarios where attackers have possession
of a stranger’s device, it does not cover attacks by malicious
insiders seeking to mimic their victim’s behaviour. Smart-
phone users are concerned about insider threats from friends,
family members, and colleagues [23]. TA evaluations should
also consider this threat. We evaluate two malicious insider
mimicry attacks: shoulder surfing and offline training.

Shoulder surfing attacks: Malicious insiders may ob-
serve their victims’ interactions. It is impractical for users
to conceal all touch input behaviour by shielding the de-
vice screen or holding the device at extreme angles. While
the “invisible nature of features” argument [4, 14] is true
for a subset of features such as touch pressure, it may not
hold for features such as touch location and swipe duration.
Thus, adversaries may attempt to mimic these observable
features. It is unclear whether mimicking observable fea-
tures by shoulder surfing provides an advantage.

Offline training attacks: Malicious insiders can gain
access to the raw touch data of their victims through vari-
ous techniques. Since any foreground app is able to capture
touch input events, malicious insiders can recommend an
instrumented app from the official app store to their vic-
tims, which in turn collects and transmits raw touch data
to the malicious insiders. Malicious insiders may ask their
victims to visit a webpage where HTML5 TouchEvents are
used to skim raw touch data. TapPrints uses similar meth-
ods to infer tap locations and corresponding keystrokes by
sensing the accelerometer and gyroscope sensors in the back-
ground [22]. Finally, malicious insiders have the convenient
option of obtaining the raw touch data of their victims by
asking them to perform a task (e.g., read an article or view
photos) on the insiders’ device. This eliminates the need to
install or access anything on the victims’ devices. Once the
insiders gain access to the raw touch data, they can use it
to train and mimic their victims’ behaviour.

3. BACKGROUND

Before we describe the three touch TA schemes evaluated
in our work, we review metrics used in the IA literature
when reporting accuracy statistics. A true accept (TA) is
when an access attempt by a legitimate user is granted; a
false reject (FR) is when an access attempt by a legitimate
user is rejected by the TA scheme. A true reject (TR) is
when an access attempt by an adversary is rejected; a false
accept (FA) is when an access attempt by an adversary is
granted by the TA scheme. Equal Error Rate (EER) is the
operating point where the rate of false accepts equals the
rate of false rejects.

With these metrics in mind, we now describe and justify
the three TA schemes we evaluated.

3.1 Touchalytics [14]

Touchalytics extracts 31 features from the raw touch data
of a swipe. These features capture a user’s behaviour us-
ing four features for the swipe location, three features for
the swipe direction, nine features for the velocity and accel-
eration of the swipe, six features for the duration and the
length of the swipe, four features for the curvature of the
swipe, three features for the orientation of the finger and
the device, and the touch area and the touch pressure at the
midpoint of the swipe. An evaluation of Touchalytics on a



dataset of 41 participants shows that with the SVM or the
kNN classifier it provides an EER of 4% for a window of
eight swipes. We chose Touchalytics because in addition to
its low EER, to the best of our knowledge, it captures touch
input behaviour using the most extensive feature set.

3.2 LXG [20]

LXG? derives following features from a swipe gesture:
(1) coordinates of the first touch point; (2) touch area at
the first touch point; (3) moving direction at the first touch
point; (4) moving distance; (5) duration; (6) average moving
direction; (7) average moving curvature; (8) average touch
area; and (9) max-area portion. The authors also evaluate
the tap gesture but they propose using it only as an auxiliary
gesture due to its high EER. The authors evaluate LXG with
the SVM classifier and they create separate training mod-
els for each of the four swipe directions. Their evaluation
on a dataset of 75 participants indicates that LXG provides
an EER of 8% with a window of eight swipes. We selected
LXG because its small feature set complemented our selec-
tion of Touchalytics and enabled us to evaluate the impact
of feature set size on the training effort of the attackers.

3.3 SilentSense [4]

SilentSense uses a combination of the touch input be-
haviour and the device’s reaction to the touch input to cre-
ate a model of touch behaviour. SilentSense uses four touch
features: the touch pressure, the finger area, the duration,
and the location of the swipe; and two device reaction fea-
tures: the device vibration and the device rotation using
the accelerometer and gyroscope sensors, respectively. For
the scenarios where users are walking, the micro-movement
patterns are adjusted using four walking features. However,
since an attacker can choose to stay stationary during the
attack, we omit the walking scenario and the correspond-
ing features from our lab-based evaluations. This omission
does not impose non-trivial restrictions on the attackers. An
evaluation of SilentSense shows that with an SVM classifier
on a dataset of 100 users, it achieves an EER of 1% with a
window of three swipes. We chose SilentSense due to its low
EER and its use of micro-movement features in addition to
the touch features.

4. VICTIM DATA COLLECTION

We collected a dataset of raw touch data and video record-
ings of “victims.” Raw touch data is used to train IA classi-
fiers and train attackers for offline mimicry attacks. Video
recordings are used for shoulder surfing mimicry attacks.
Existing raw touch datasets [14, 33] do not contain accelero-
meter and gyroscope data, nor do they have accompanying
video recordings. Note that we received approval from our
university’s IRB for all experiments involving human partic-
ipants.

4.1 Data collection

We implemented two Android apps to collect raw touch
data using the same tasks as Touchalytics [14]: a Wikipedia
app collects up and down swipes while users read articles
of their choice; and a “spot the differences” app collects left
and right swipes while users navigate between two slightly
different illustrations. Each participant used these apps on

2LXG are the initials of the last names of the authors.
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a LG Nexus 5 device while in our lab. No directions were
given beyond explaining the basic tasks of reading articles
and finding differences. Each participant interacted until at
least 150 swipes in each direction were logged, the minimum
number of training samples required by the TA schemes.

Logged data: For every touch interaction, we record-ed:
time stamp in milliseconds; touch point x and y coordinates;
touch pressure; area covered by the finger on the screen; fin-
ger orientation; screen orientation; rotation values from the
gyroscope sensor across three axes; and acceleration values
from the accelerometer sensor across three axes. Accelerom-
eter and gyroscope data were collected in a separate thread
up to 100Hz.

Videos for shoulder surfing attacks: We captured
video of nine participants while they used the data collection
apps. At least ten swipes in each direction were captured in
two views, above the device and from the side. Each had an
unobstructed view of the participant’s finger on the touch
screen. All videos were shot in 1080p format (1920x1080
pixels) with a frame rate of 29 FPS. The smartphone occu-
pied 4-5% of the video frame. Given the open-ended task,
the videos were between 23 and 44 seconds (avg 31 secs).

Data statistics: We recruited 55 participants (a subset
of these also participated in the attacks experiment). On
average, the participants took 26 minutes to submit data.
In total, we logged about 35,000 swipes comprising over 1.1
million touch points, and over 2.5 million accelerometer and
gyroscope sensor readings.

4.2 Parameter value selection

We fix two tunable parameters in our experiments, operat-
ing threshold and window size. Operating threshold defines
the desired values for negatively correlated FA and FR en-
tries. By increasing the operating threshold, FRs can be
decreased at the cost of increased FAs (and vice versa).
Theoretically, at lower false accept rates (FAR), it should
be difficult to launch successful mimicry attacks. There-
fore, we set FAR for an arguably higher false reject rate
(FRR) of 20% with corresponding FARs of 0.4% for Touch-
alytics, 4% for LXG, and 0.2% for SilentSense (see §4.3).
The effect of the operating threshold is further investigated
in §8.3. Window size defines the number of swipes used to
calculate a user’s authentication score. Larger window sizes
increase confidence against classification scores at the cost
of increased detection delay. We set the window size to eight
swipes since the TA schemes we evaluate provide reasonable
accuracy at eight swipes or less (see § 3).

4.3 Evaluation baseline

To establish a baseline, we use our dataset to evaluate
the three touch IA schemes against the random attacker
model. We construct non-overlapping training and test sets
for each user using negative instances from other users’ data.
Half of the data is used for training, and the remaining for
testing. Figure 1 shows the ROC curves that plot true accept
rate (TAR) against FAR using an SVM classifier. The ROC
curves show an EER of 4% for Touchalytics, 9% for LXG,
and 3% for SilentSense. These low EERs are very similar to
the rates reported in the original papers and establish the
efficacy of these schemes against the random attacker model.
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Figure 1: Accuracy of the TA schemes against the random
attacker model with a window size of eight swipes.

5. ATTACK DESIGN

In this section, we describe apps and tasks used for offline
training attacks and for attack evaluation.

5.1 Mimicker for offline training attacks

Our Mimicker app trains an attacker to mimic a victim’s
behaviour using feedback and visualizations generated from
that victim’s raw touch data. The three main components of
Mimicker are the target swipe selection module, the train-
ing interface, and the feedback module. The target swipe
selection module chooses an optimal target swipe from ac-
tual victim swipes. The training interface displays the tar-
get swipe so the attacker can swipe along a similar path
(the mimic swipe). If the mimic swipe is rejected by the
TA scheme, the feedback module displays instructions about
a single behavioural aspect to bring the mimic swipe closer
to the target swipe (e.g., move start point towards right).
The attacker continues adjusting their swipe based on these
instructions until their mimic swipe is accepted.

Target swipe selection: Any victim’s swipe classified
as a true accept can be used as a target swipe. However,
our goal is to present the attackers with an optimal swipe
to increase their chances of success. We do this by selecting
a victim’s true accepted swipe with the highest similarity
score with the rest of the victim’s true accepted swipes. This
simple heuristic provides an advantage to the attackers since
their mimicry attempts can focus on the hypothesis space
with the maximum concentration of true accepted swipes
(i.e., the victim’s most typical swipes). The target swipe
selection module accomplishes this as follows: It creates a
dataset, D, with positive samples from the victim’s swipes
and negative samples from other users’ swipes. It uses the
kNN classifier (k = 5) to find a subset of true accept swipes,
Sta, from D. For n = |Sral, it identifies the m nearest
neighbours from D for every swipe that belongs to Sra.
The similarity score is the number of swipes in the n nearest
neighbours that belong to Sta. The similarity score of each
swipe is recorded in the similarity rank table and the swipe
with the highest similarity score is returned as the target
swipe. We also evaluate using non-optimal target swipes in
§8.4.

Training interface: Figure 2a provides a screenshot of
the Mimicker user interface. The target swipe is displayed
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in green and the last mimic swipe is displayed in black. If
the mimicry attempt is successful, “Accepted” is displayed
at the top in green, otherwise the instruction from the feed-
back module is displayed in red. In the upper-left, the suc-
cess or failure of recent attempts are displayed at swipe-
and window-level. The success criteria for window-level are
defined in §6.

Feedback module: The feedback module is responsible
for comparing the mimic swipe with the target swipe to gen-
erate feedback for the attackers. The most obvious way to
achieve this is to give feedback based on the classifier fea-
ture with the largest difference between target swipe and
mimic swipe. However, this would not consider that some
features are easier to mimic (e.g., first touch location is easier
to mimic compared to midpoint velocity). To address this,
the feedback module selects the first feature with absolute
difference greater than a threshold from feature categories
ordered by ease of adjustment: swipe location, swipe length,
swipe duration, touch pressure, touch area, device rotation,
device vibration, and swipe curvature. The feedback mod-
ule focuses on features that are more adjustable for attack-
ers and can be visualized or explained in simple instructions.
Some features, like 50%-percentile pairwise velocity and me-
dian velocity at the last three points are hard to adjust for
and difficult to comprehend. We acknowledge this means
our bypass success rates form a lower bound by focusing on
low-effort attackers.

5.2 Apparatus for attack evaluation

Personal data on smartphones can be broadly categorized
as textual (e.g. emails, texts) and multimedia (e.g.
ages, videos). Our attack tasks reflect these categories. To
further simulate a realistic mimicry attack scenario, the at-
tacker has to multi-task by searching for interesting data
while mimicking the victim. We introduce two tasks that
capture the multi-tasking nature of real-world mimicry at-
tacks. For attacks on textual data, the attacker is presented
with a browser like interface with a collection of paragraphs
from Wikipedia where each paragraph discusses a different
topic. A question precedes the paragraphs and the attacker
has to swipe up or down to find the paragraph that contains
the answer to the question and then find the answer within
that paragraph. For multimedia data, the attacker is pro-
vided with several feline images along with a numeric label
for each image in an image viewer app. The attacker is then
provided with a description of a feline (e.g., a white kitten)
and is asked to swipe left or right to report the numeric la-
bel of the image that matches the description. While the
attacker has to tap the target app icon to launch it, we do
not consider the tap gesture since it provides too few fea-
tures to be discriminative and has a high EER [14, 20].

At launch time, the apps are trained using the SVM classi-
fier on the victim’s training model constructed using positive
samples from the victim and negative samples from other
users. The apps provide no feedback for individual swipes;
however, in case of a reject, the apps display a popup to in-
form the attackers of their failure (simulating the point when
an explicit authentication method should appear in a de-
ployed TA scheme). If the attackers are successful, the apps
allow them to complete the task. Finally, the apps record
the raw touch, accelerometer and gyroscope data of the at-
tackers along with the result of their mimicry attempt.

im-
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Figure 2: Screenshot of Mimicker interface.

6. ATTACK PROTOCOL

We now describe the protocol used to conduct attacks.
The attack protocol was shaped by a pilot study with three
volunteers from our lab. Relevant results from the pilot with
subsequent changes to the final protocol are noted where
applicable.

6.1 Participant recruitment and motivation

We recruited participants to be attackers in September
of 2015 through a university-wide mailing list and using
of the advertisement was “Participate in a research study on
mimicry attacks on a novel authentication scheme for smart-
phones” and it stated adults who owned and used a smart-
phone for over six months could participate. Each partic-
ipant completed a demographic survey and was invited to
our lab for the study.

In a real attack, malicious adversaries are motivated to
snoop the devices of their victims to find valuable infor-
mation. For our experiments, we motivate participants to
mount best effort attacks with performance-based monetary
rewards. All participants were paid $10, but they could earn
another $6 based on performance. If they mounted a suc-
cessful mimicry attack on the chosen victim in their first
attempt, they received $0.75. If they mounted a successful
attack on the second or subsequent attempt, they received
$0.50.

6.2 Study procedure

The procedure began with each participant submitting
raw touch data using the collection apps described in §4.1.
This data forms a baseline to measure adjustments made
by the participant during the attacks. The experimenter
then briefed the participant (using a script and visual aids)
with an explanation of touch TA, comprehensible features
of their target IA schemes, the apparatus, tasks, and the
performance based rewards. We investigate the scenarios
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where the attackers have limited knowledge of touch IA in
68.2.

Each participant mounted shoulder surfing and offline train-
ing attacks as explained below. Attack type order was coun-
terbalanced across participants. For each attack type, the
participant was assigned four victims to mimic up and left
swipes. In the pilot study, each attacker was assigned only
two victims and mimicked four swipe directions, but there
were no significant differences in attack success. By reducing
to up and left swipes, we could double the number of vic-
tims for each attacker. Testing more attacker-victim pairs
is most relevant to our work, and up and left swipes are
predominant directions for viewing new content. All eight
victims assigned to an attacker were unique to avoid carry-
over effects.

The four victims for each attack type were split into two
groups: two were protected using either Touchalytics or
LXG, and two were protected using SilentSense. We decided
to assign either Touchalytics or LXG to make it easier for
the attackers to remember their target TA schemes’ features.
The assignment of Touchalytics or LXG, and the order of
the target IA schemes, were both counter balanced across
the attackers. Attackers trained and mounted their attack
on one victim swipe direction at a time using the assigned
touch TA scheme and attack type. Swipe direction and the
corresponding attack task order was counterbalanced.

Shoulder surfing attacks: The shoulder surfing attack
had two parts: watching videos of the victim and attacking
by mimicking the victim’s swipes while completing the at-
tack tasks (see §5.2). The attacker was shown the victim’s
shoulder surfing video clips on a 50” television. The attacker
was not allowed to hold a device while watching the clips.
They were informed about the camera angles and told they
could watch the clips from either angle as many times as
they wanted. Once the participant indicated they were pre-
pared, the video was closed and they were given the device
to mimic the victim’s swipes while performing the attack
task. Participants were told that if their attack failed, they
could watch the clips again before mounting another attack.
In §8.1, we evaluate a scenario where the attack occurs one
week after shoulder surfing.

Offline training attacks: The offline training attack
had two parts: training using the Mimicker app and attack-
ing by mimicking the victim’s swipes while completing an
attack task. Training and attack were performed on two
different LG Nexus 5 devices to simulate switching to a vic-
tim’s device in a real attack.

Training was completed in two phases, a tracing phase
(Figure 2a) with feedback and the target swipe and a pseudo-
attack phase (Figure 2b) with only feedback overlaid on the
attack task. The participant was informed that they had to
bypass the TA scheme for two consecutive windows during
each training phase before proceeding to the actual attack.
If they were not successful, they had to continue the current
training phase for at least ten windows before given another
opportunity to bypass the IA scheme. During the attack,
no feedback was provided. Attackers had to set the device
down in between the tracing and pseudo-attack phases.

The pseudo-attack phase was introduced after the pilot
study where 25% of the attacks failed despite successful
completion of training. This appeared to be caused by the
abrupt change between the tracing phase and the attack
task: the attackers did not always memorize the location



Gender: 56% Male
44% Female
Occupation: 31% Employed
63% Grad student
6% Undergrad student
Age group: 41% 18 - 25 years

31% 26 - 30 years
28% 31 - 35 years

IT experience: 53% Studied/worked in IT

Table 1: Demographics of the participants (n=32).
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Figure 3: Bypass success rate for the three IA schemes across
all attacker-victim pairs.

of the target swipe during training since Mimicker displayed
the swipe; switching the device after training disrupted their
device holding posture; and, unlike training, the attacks in-
volved performing a task in addition to mimicking. The
pseudo-attack phase increases training quality for attackers:
we argue that a real attacker can leverage similar training
mechanisms by approximating the task they plan to attack.
For the purpose of our experiment, no feedback was pro-
vided for one window (ezperiment window) between the two
phases to measure the efficacy of introducing the pseudo-
attack phase.

7. EVALUATION

The study was completed by 32 participants (demograph-
ics provided in Table 1). In total, 512 attacks were logged
(256 for each attack type), which were mounted by 256
unique attacker-victim pairs in up and left directions. We
logged 3656 mimic swipes for shoulder surfing and 2984
mimic swipes for offline training attacks. During training,
17,064 swipes were logged.

7.1 Attacker success

We measure the efficacy of attacks on IA schemes through
the bypass success rate at the victim-level and the TRR at
the window-level. The bypass success rate is defined as the
ratio of successful attacks to all attacks of a particular attack
type or a particular direction.

Figure 3 shows bypass success rate against each IA scheme
for both attack types across all attacker-victim pairs. For
shoulder surfing attacks, 75%, 78%, and 92% of the at-
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Figure 4: Average within window TRR for the three IA
schemes across across all attacker-victim pairs. Error bars
represent 95% confidence intervals.

tacks successfully bypassed against Touchalytics, LXG, and
SilentSense, respectively. For offline training attacks, 81%,
82%, and 91% of the attacks successfully bypassed against
Touchalytics, LXG, and SilentSense, respectively. An in-
dependent samples t-test for bypass success rates between
shoulder surfing and offline training attacks for each scheme
indicates no significant differences. We note that the bypass
success rate may be over-reported due to naturally occurring
false accepts; however, for the random attacker model, our
chosen operating threshold has negligible FAR. Compared
to the random attacker model (Figure 1) at a FRR of 20%,
we observe about 20,000%, 2000%, and 45,000% increase in
FAR for Touchalytics, LXG, and SilentSense, respectively.

To understand the performance of each scheme against
mimicry attacks at the window-level, we calculate the aver-
age TRR across each attack window for all victim-attacker
pairs for both attack types in Figure 4. Figure 4 shows that
significantly lower TRRs are observed for offline training at-
tacks for Touchalytics (¢t = 2.12, p = 0.03) and LXG (¢
= 3.28, p = 0.001). Lower TRRs are expected for offline
training attacks because the attacks were mounted after the
attackers received training. On the other hand, there are
no significant differences between shoulder surfing and of-
fline training attacks for SilentSense (¢t = 0.56, p = 0.57).
Since the device reaction features of SilentSense rely on the
device holding posture, the attackers were able to observe
and mimic it during shoulder surfing. Consequently, the at-
tackers performed better for SilentSense for shoulder surfing
attacks when compared with the other schemes.

In terms of swipe direction, the bypass success rate for
shoulder surfing attacks was 86% and 82% for up and left
swipes. For offline training attacks, the bypass success rates
were 85% and 87% for up and left swipes. An independent
samples t-test indicates no significant differences between
attack type for up (¢t = -0.36, p = 0.71) and left swipes (¢
=1.03, p = 0.3).

Note that IA provides continuous authentication so at-
tackers must continue mimicking a victim swipe after swipe.
While our experiments require attackers to bypass their vic-
tim only once, after learning their victims’ behaviour and
bypassing A for one window, they can mimic the behaviour
on subsequent windows. This is shown in offline training,
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Figure 6: Proportion of attacker-victim pairs who required
training for a window (Remaining) and their distribution
across successful (Wing) and failed (Winr) windows. Win-
dow (‘E’) is the experimental window.

where attackers must bypass IA for three consecutive win-
dows (two pseudo-attack windows and one attack window).

7.2 Attacker effort

To estimate attacker effort, we define three measures: shoul-
der surfing time (i.e., time spent viewing videos) captures at-
tack preparation effort for shoulder shoulder surfing attacks;
the number of windows used during training captures attack
preparation effort for offline training attacks; and the num-
ber of windows until bypass (number of attempts required to
mount a successful attack) captures attack execution effort
for both types of attacks.

Shoulder surfing time: Figure 5 shows the cumulative
distribution of time spent shoulder surfing before successful
attacks. For 15% of successful attacks, the attackers were
able to estimate the victims behaviour by observing them
only for half a minute. Similarly, 40% and 90% of the suc-
cessful attackers required less than a minute and less than
two minutes of shoulder surfing time. These results indicate
attackers require trivial shoulder surfing time for successful
attacks.

Number of training windows: Figure 6 shows the
proportion of remaining attacker-victim pairs who still re-
quired training in a particular window and their distribu-
tion across successful (Wings) and failed windows (Wing).
Recall that our protocol requires attackers to successfully
mimic two consecutive windows in each phase. This means
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that 100% of all attackers will have at least two training win-
dows in both phases in addition to the experiment window
between the two phases. As an example for interpreting Fig-
ure 6, consider window 3 of the tracing phase. Here 33% of
attacker-victim pairs remain because they were unsuccessful
at mimicking the target swipe in both window 1 and window
2. Moreover 15% of attacker-victim pairs were successful at
mimicking the target swipe while 19% failed in window 3.

Overall, 67% and 77% attacker-victim pairs only required
two windows to complete the tracing and the pseudo-attack
phase, respectively. A consistent decrease in the proportion
of remaining attacker-victim pairs and Win g from window 3
to window 7 in the tracing phase shows that Mimicker feed-
back was effective. However, after window 7, only 4% are
able to successfully complete the training. Some attacker-
victim pairs were unable to complete training after ten win-
dows: 11% did not proceed past the tracing phase and 4%
did not proceed past the pseudo-attack phase.

Regarding the efficacy of our pseudo-attack training phase,
observe that the special experiment window (‘E’) with only
the attack task and no feedback has a 25% increase in Winr.
This window simulates the same abrupt jump from training
to attack, and the result is the same as the 25% attack failure
rate in the pilot. However, attacker-victim pairs corrected
their behaviour when they received feedback: Winp drops
to 16% in Window 1 then to 10% in Window 2.

Number of windows until bypass: Figure 7 shows
the cumulative distribution of the number of windows until
bypass. This captures the attack execution effort in terms
of number of attempts to successfully mount each type of
attack. Recall attackers were allowed to retry in case of a
failed attack attempt and they could optionally shoulder surf
or retrain before their next attempt. For the shoulder surfing
attacks, about 73% of the successful attackers only required
a single window and 93% required three windows or less to
bypass the TA scheme. For offline training attacks, about
85% of the successful attackers bypassed the IA scheme in
their first attempt and 90% required two attempts or less to
gain access to the victim’s device. There were no significant
differences across the number of attempts to bypass for TA
schemes or attack types.

Attacker effort and success: For shoulder surfing at-
tacks, a Pearson correlation test indicates a slightly negative
correlation between success rate of an attacker (the ratio of
successful attacks among all attacks of a particular attack
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Figure 8: Difficult and easy to mimic features across failed
and successful attempts, respectively.

type or direction executed by this attacker) and the amount
of time they shoulder surfed (r = -0.07). We also observe a
negative correlation between the success rate and the num-
ber of retries (1 = -0.19) for the shoulder surfing attacks.
These results indicate that the failed attempts are not due
to the lack of effort by the attackers. A similar analysis
cannot be performed for offline training attacks since Mim-
icker requires the attackers to attempt training for at least
ten windows before giving up and only the attackers who
successfully complete training mount attacks.

7.3 Difficult or easy to mimic features

To measure how difficult or easy it was for the attack-
ers to mimic TA schemes, we calculate mismatch and match
scores for individual features for successful and failed at-
tempts, respectively. We first calculate the absolute differ-
ences between individual features of the target and mimic
swipes. The target swipe is explicit in offline attacks, but
not when shoulder surfing. For shoulder surfing, the victims’
swipe that is the nearest neighbour of the mimic swipe is se-
lected as the target swipe. Mismatch and match scores are
calculated by computing the normalized distribution of the
occurrence of features in the top three most divergent and
similar features, respectively. The Kullback-Leibler (KL)
divergence [18] score for features is also calculated for the
attacker-victim pairs on the raw input data from the device
usage dataset. The KL divergence score provides a baseline
for feature similarity and indicates the extent of adjustments
made by the attackers for a feature. A higher KL divergence
score indicates that the feature values are different across the
participants.

Figure 8 shows features with high match or mismatch
scores (features with low scores omitted due to space con-
straints). Features related to swipe curvature, velocity, and
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acceleration have higher KL divergence and mismatch score
for both attack types (see Figure 8a). Mimicker does not
provide feedback for acceleration or velocity related features
since they are hard to comprehend, so we cannot fully con-
clude they are hard to mimic for offline training attacks.
However, we can conclude these features are difficult to
mimic for shoulder surfing attacks.

Figure 8b shows that swipe duration and touch pressure
are easier to mimic. Some location based features (first
and last touch coordinates) fall in both difficult and easy
to mimic feature groups, especially for shoulder surfing at-
tacks. We suspect that this is because some attackers are
more critical observers than others.

Figure 8a shows that for almost all the features, the mis-
match score is lower for offline training attacks. Since Mim-
icker provides feedback, attackers know how to adjust their
behaviour to improve performance. This is quite pronounced
for the location-related features such as ‘1st X', ‘1st Y’, and
‘Last Y’ because Mimicker renders the target swipe.

There is an anomaly between LXG and SilentSense mis-
match scores for the ‘1st X’ location feature for offline train-
ing attacks. We suspect the higher mismatch score for Silent-
Sense is due to its small feature set size and low KL diver-
gence scores for vibration and rotation features. This indi-
cates an overlap in behaviour across participants, increasing
the chance that ‘1st X’ is in the top three mismatched fea-
tures.

8. DISCUSSION

In this section we discuss constrained attack scenarios and
the effect of key parameters.

8.1 Basic shoulder surfing attacks

In our evaluation of shoulder surfing attacks, we assume
attackers can record a video of their victims and watch it
immediately before launching the attack. We were curious
about the performance of a basic shoulder surfing attack us-
ing direct observation with hand written notes and a delay
between observation and attack. To investigate this sce-
nario, we repeated the shoulder surfing portion of the ex-
periment with ten of the participant attackers, but inserted
a one week delay between watching the videos and the at-
tack. Each attacker viewed shoulder surfing videos of one
victim they did not encounter in the main experiment. They
were encouraged to make notes. One week later, the attacker
returned to mount the attack on the victim. They were en-
couraged to consult their notes.

Table 2 compares mean bypass success rates across attack-
ers for shoulder surfing attacks with delay and without delay
(taken from their performance in the main experiment). De-
layed attacks had a bypass success rate of 80%, 90%, and
90%, which an independent samples t-test did not find signif-
icantly different compared to attacks without delay. To gain
insight into what attackers felt was important and what fea-
tures they were mimicking, the notes were collected and their
content categorized. Eight attackers drew the device screen
with the corresponding location and curve of the swipe. Six
of these attackers also noted the holding posture of the vic-
tims by drawing the holding hand and the location of the
fingers of their victims. Two attackers wrote textual notes
(such as: “right bottom on the edge”), seven noted the swipe
speed (five noted it as slow/medium/fast; one marked a lo-
cation on a continuous scale from slow to fast, and one wrote



Attack Success Rate
follow up Touchalytics | LXG | SilentSense
Immediate 80% 90% 95%
Delayed 80% 80% 90%

Table 2: Effect of introducing one week delay between shoul-
der surfing and the attacks.

“one-mississippi”). Three attackers noted of the swiping fin-
ger or thumb of the victim. This small experiment suggests
basic shoulder surfing is surprisingly effective, even when
behavioural characteristics are mimicked at a coarse level.

8.2 Attacks with limited knowledge

In our evaluation, we assume the attacker has full knowl-
edge regarding the victim’s TA scheme. We were curious how
performance is affected if the attacker has limited knowledge
about the IA scheme or its features. In a scheme-oblivious
offline attack scenario, the attacker has the victim’s raw data
and a training app like Mimicker, but they do not know
the exact IA scheme used by the victim (e.g., whether it
is Touchalytics or LXG). For the feature-oblivious shoulder
surfing attack scenario, the attacker has no knowledge of any
of its features. We evaluate the performance of attacks for
these scenarios using the data from our main evaluation.

8.2.1 Scheme-oblivious offline attacks

We simulate this attack scenario by mounting attacks on
a different IA scheme than the one used for offline training.
For example, if an attacker trained and successfully attacked
a victim using Mimicker for LXG, would the attacker have
been successful if they trained for LXG but that victim ac-
tually used Touchalytics? We accomplish this by replaying
attack swipes logged during successful attacks in the main
experiment on the same victim protected with a different TA
scheme. Note there is some inherent overlap in schemes since
they share some features, or capture touch behaviour across
limited dimensions like location, pressure, area and speed.
However, the specific model built by the scheme classifier
could still be very different.

Table 3 shows that after training on Touchalytics, by-
pass success rates increased by 3% when the victim was ac-
tually protected by LXG and decreased by 8% when they
used SilentSense. After training for LXG, bypass success
decreased by 6% for Touchalytics and 11% for SilentSense.
Finally, after training SilentSense, bypass success decreased
by 17% for Touchalytics and 14% for LXG. There appears to
be a greater drop when attackers train on Touchalytics/LXG
and attack SilentSense (and vice versa). This is due to less
overlap between Touchalytics/LXG and SilentSense (more
touch features in the former, more device reaction features
in the latter). Overall, 70% or higher bypass success rate for
scheme-oblivious attacks indicates attackers may not even
need to know the exact scheme used by their victims.

8.2.2 Feature-oblivious shoulder surfing attacks

We evaluate the success rate for feature-oblivious shoulder
surfing attacks with an experiment using ten participants
from our data collection (they were not attackers in the
main experiment). The main experiment shoulder surfing
attack protocol was followed except attackers were provided
no details about touch IA and were simply told they would
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Training Scheme for Attacks
Scheme Touchalytics | LXG | SilentSense
Touchalytics 81% 84% 73%
LXG 76% 82% 1%
SilentSense 75% 78% 92%

Table 3: Bypass success rates for offline training attacks
when attack attempts are replayed for different schemes.

FRR
20% | 25% | 30% | 35%
Shoulder surfing | 84% | 81% | 8% | 7%
Offline training | 86% | 85% | 83% | 83%

Table 4: Bypass success rates for the attackers for different
operating thresholds.

attack a device protected using a scheme that employs the
touch input and device holding behaviour.

The results show a bypass success rate of 60%, 50% and
80% for Touchalytics, LXG, and SilentSense, respectively.
Unsuccessful attackers were briefed on the features after
they ended their attempted attacks. These attackers viewed
the videos again and mounted attacks on the victims they
failed to mimic. For these retry attempts after a briefing, by-
pass success rates were 75%, 80% and 85% for Touchalytics,
LXG and SilentSense, respectively. These results indicate
that attackers have a 50% or higher chance of defeating these
schemes without any knowledge of the underlying features,
but the chances of success increase with feature knowledge.

8.3 Effect of operating threshold

In the main experiment, we chose a FRR of 20%, which
created FAR of 0.4%, 4%, and 0.2% for Touchalytics, LXG
and SilentSense, respectively. To understand the effect of
different operating thresholds on mimicry attacks, we eval-
uate attacks efficacy at FRRs from 20% to 35% and cor-
responding FARs. Note that a FRR of 35% is impractical
since the TA scheme would reject the device owner for a
third of their swipes making it quite unusable. We perform
an offline evaluation by replaying the attack data through
the TA schemes with different operating thresholds and log
the bypass success rates for each threshold. A limitation
with this simulated evaluation is that offline attackers are
likely to perform better if they trained at the tested FRR.
However, these results do provide a lower bound for bypass
success rate.

The results in Table 4 show only a 7% decrease in suc-
cess rate when the FRR is increased from 20% to 35% for
shoulder surfing attacks. For offline attacks, the decrease
in success rate is only 3%. There is a sublinear decrease in
bypass success rate for a linear increase in FRRs, which is
similar to the sublinear increase in FAR for linear increase in
FRR (see Figure 1). We believe the lower relative decrease
in the bypass success rate for offline training attacks is a
result of the low intra-window TRR (see Figure 4).

8.4 Effect of different target swipes

The Mimicker target swipe selection module selects the
‘best’ swipe from a set of 150 swipes of the victim (§5.1).
We were curious how an attacker’s bypass success rate was
affected if they could not collect a large number of their



victim’s swipes and had to train using a suboptimal tar-
get swipe. To evaluate this, ten volunteers from the main
experiment participated in a smaller experiment spanning
three ten-minute sessions of offline training attacks, with
each session spaced one week apart (to mitigate carry over
effects). Each attacker was assigned two victims; one vic-
tim was protected with LXG and the other with SilentSense.
For each session, the attackers performed offline training at-
tacks using the best, average, and worst swipes (the order
was counter balanced across attackers). The best, average
and worst swipes correspond to the top, middle and bottom
locations of the similarity rank table, respectively (see §5.1).
These well defined categories of swipes avoided a possible
confound when randomly picking a target swipe.

The bypass success rates for the best, average and worst
target swipes for LXG were 90%, 100% and 60%, respec-
tively. For SilentSense, the bypass success rates were 100%,
100% and 80% for best, average, and worst swipes, respec-
tively. A one way between subjects ANOVA score indicates
a significant effect of target swipe on the intra-window TRR
for the three target swipe types (F(2, 27) = 9.18, p
0.0009). Post hoc comparisons using the Tukey HSD test
indicated that the mean for the intra-window TRR for the
best (M = 0.05, SD = 0.07) and average (M = 0.02, SD
= 0.04) swipes were significantly different than the worst
swipe (M = 0.47, SD = 0.44). However, the intra-window
TRR for the best swipe did not significantly differ from the
average swipe. These results indicate that while there is
a reasonable chance (> 70%) of success using any true ac-
cepted swipe as the target swipe, attackers can increase their
chances of success by collecting more raw data to mine for
an optimal target swipe.

8.5 Attacker- or victim-bound success?

Previous work has shown the performance of a generic
attack against touch TA schemes is victim dependent [28],
meaning some victims are easier to attack than others. We
investigate if the same is true for mimicry attacks. A Kruskal-
Wallis test comparing bypass success rates found no signifi-
cant effect across victims, indicating no victims were easier
to bypass than others. The same test was used to compare
bypass success rates across attackers. No significant effect
was found, indicating no attackers were better at mounting
attacks than others.

9. LIMITATIONS

Like most human subjects studies, the scope is limited
to people willing to participate. We discuss more specific
limitations below.

We used similar devices for data collection and attacks. If
an attacker collects a victim data using a device with a dif-
ferent form factor than the victim’s device, a transformation
would need to applied to the features.

We used the same tasks to collect victim data and evalu-
ate attacker performance. This setup represents a resource-
ful adversary able to obtain a victim’s data using an app
similar to the target. Even if an adversary used apps with
different input behaviour, the results will likely be similar
(previous work reports 5-8% increase in EER due to signifi-
cantly different apps [16]).

The participants who volunteered for the additional experi-
ments (reported in §8) did not receive remuneration for their
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participation. Consequently, these participants may had less
motivation, which may have affected their performance.

We omitted difficult to comprehend features from briefings
and the feedback module of Mimicker. We note that ded-
icated attackers may have increased their chances of suc-
cess by training on the omitted features. However, our
experimental setup demonstrates the vulnerability of these
schemes against relatively effortless attacks.

Our protocol trained an attacker to mimic their victim’s
swipes one direction at a time excluding multi-touch gestures
like pinch to zoom [12]. This simplified the attack tasks and
expedited attacker training.

It might be difficult for the attacker to mimic multi-touch
gestures or multiple swipe directions simultaneously. How-
ever, swipe is the predominant form of gesture and an at-
tacker can view content using one directional swipe for most
target applications (email and messaging apps using up swip-
es while gallery app using left swipes). Due to their infre-
quent use, Touchalytics also ignores multi-touch gestures.
While efficacy of mimicry attacks on multi-touch gestures
is an open research question, we do not address it in this
paper to conform to our realistic attack scenario. In terms
of mimicry attacks on multiple swipe directions, given the
trivial shoulder surfing and offline training time required,
the attacker can leverage Mimicker or observational notes
to train for different directions in real-time to mount these
attacks.

10. RELATED WORK

Since the focus of our work is targeted mimicry attacks on
touch TA, we do not discuss spoofing attacks on physiolog-
ical biometrics (such as fingerprint and facial recognition).
In this section, we discuss attacks on behaviour-based au-
thentication systems.

Generative algorithms based attacks employ general pop-
ulation statistics and have been proposed for handwriting
recognition, keystroke and touch IA. For handwriting recog-
nition, Ballard et al. [3] show that a generative model based
on concatenative synthesis exceeds the effectiveness of forg-
eries rendered by skilled humans. Serwadda and Phoha [27]
analyze keystroke data from over 3000 PC users to observe
statistical traits and then feed it to their generative algo-
rithm to increase the EER of a keystroke classifier from
28% to 84%. More related to our work is a generative algo-
rithm based attack on touch IA by Serwadda and Phoha [28].
They show that a robotic device equipped with generic traits
across touch data poses a major threat to touch IA schemes
as it increases their EER from 5% to 50%. While, unlike the
targeted attacks discussed in this work, an attacker mount-
ing their generic attack does not require shoulder surfing or
the collection of the raw data of the victims, the attacker re-
quires a mechanical robot to mount the attack, which may
be impractical or suspicious in a work environment. Fur-
thermore, the evaluations of the generic attack show that
it failed for up to 40% of the victims because their touch
behaviour was distinct. Targeted mimicry attacks can be
leveraged to target any victim with more devastating effect.

Crowd sourcing based targeted mimicry attacks have been
demonstrated for speaker and gait verification systems. Pan-
jwani and Prakash [25] propose a method to crowdsource
search for candidate mimics for speakers in a given target
population. They show that while the probability of finding
a successful match is only 3%, MTurk workers are easier and



cheaper to locate and recruit than mimicry artists. Gafurov
et al. [15] used a database of 760 gait sequences from 100
subjects to show that while trained forgery attacks were un-
successful for the gait biometric, closest matching subjects
from the database could be used to increase the EER up
to 80%. Given that an inter-user overlap exists across touch
behaviour [28], similar crowd sourcing attacks might be pos-
sible on touch TA schemes. However, our evaluations show
that the attackers can effortlessly adjust their behaviour to
mimic their victims thereby eliminating the need to locate
and recruit users with similar touch behaviour.

Shoulder surfing attacks have been evaluated for IA pro-
posals that employ cognitive abilities [1] and eye movement
patterns [10]. Shoulder surfing attacks have also been eval-
uated for explicit authentication schemes that employ user
defined touch gestures [26, 29, 30]. These research endeav-
ors indicate that shoulder surfing attacks are not a threat
for their respective proposals. We suspect that user defined
gesture based schemes are resilient because of the smaller
intra-user divergence for a gesture. We evaluate touch TA
and show its vulnerability to shoulder surfing attacks.

Finally, targeted mimicry attacks that train the attackers
to mimic their victims have been demonstrated for hand-
writing and keystroke biometrics. For handwriting recogni-
tion, Ballard et al. [3] show that some users — who are better
forgers than others — can be trained using a naive method
to successfully attack the handwriting biometric. Tey et
al. [32] use the keystroke data of the victim to train attack-
ers to mimic two keystroke features on PCs. Their evalu-
ations show that with the full knowledge of the keystroke
patterns of the victims, 14 of their best attackers (out of 84
attackers) were able to achieve a 99% bypass success rate.
While our offline training attacks are inspired by the work
of Tey et al., we perform the first ever evaluation of offline
training attacks on touch IA.

11. CONCLUSION & FUTURE WORK

We evaluate two simple attacks by malicious insiders that
effectively circumvent touch IA; showing for the first time
that it is unsuitable from the security standpoint. We show
that the widely accepted assumption that shoulder surfing
attacks on touch IA are infeasible due to the hidden nature
of many touch input features is incorrect. We also demon-
strate how dedicated attackers can use an app like Mimicker
to train themselves to mimic victims offline with very high
success. Moreover, mimicry attacks appear practical even if
the attacker has limited knowledge of the victim’s TA scheme
or limited logged examples of the victim’s touch behaviour.

As future work, an extended evaluation of offline train-
ing attacks considering all features (including difficult to
comprehend features) is a logical next step for evaluating
mimicry attack efficacy. A more hopeful focus for future re-
search is the identification of a set of mimicry-resilient fea-
tures that bolster TA security.
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