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ABSTRACT

Smart devices are commonly used in multi-user scenarios, such as shared household devices and shared corporate
devices for front-line workers. A multi-user device requires both identification and authentication to defend
against unauthorized access and distinguish between legitimate users in real-time, especially when multiple
users participate in the same session. Although implicit authentication (IA) has been proposed to provide
continuous and transparent authentication throughout a session, most existing IA solutions are optimized for
single-user scenarios. The challenges of designing multi-user IA systems include fusing multiple modalities for
good accuracy, segmenting and labeling behavioral data while authenticating, and adapting IA models to new
users and new incoming data. We propose SHRIMPS, an evaluation framework to support IA researchers in the
design of multi-user, multi-modal IA systems. SHRIMPS allows the evaluation of multi-user IA solutions that
incorporate multiple modalities and supports adding new users and automatically labeling new incoming data
for model updating. SHRIMPS supports different score fusion strategies, including a novel score fusion strategy
based on Dempster-Shafer (D-S) theory to improve accuracy with considering uncertainties among different
IA mechanisms. SHRIMPS enables composing tasks with public datasets to evaluate and compare different IA
schemes. We present and evaluate two sample use cases to showcase how SHRIMPS helps address practical
design questions of multi-user, multi-modal IA systems. The evaluation results show that D-S theory based score
fusion methods can effectively reject attackers and detect user switches for the multi-user scenario in real-time.

1. Introduction

Smart devices play a significant part in people’s daily life. Since peo-

(Khan et al., 2014a; Crawford et al., 2013) are designed for a single
user. With the expansion of usage scenarios, multi-user shared devices
have become common, including shared household devices (Matthews

ple are increasingly relying on smart devices to access personal and
corporate data, the demand for security and usability drives the evo-
lution of user authentication mechanisms. Researchers have introduced
more usable authentication mechanisms, such as fingerprint and face
recognition, to replace passwords. However, these authentication mech-
anisms only authenticate a user once for unlocking and fail to provide
protection afterwards. Behavioral biometrics based implicit authentica-
tion (IA) (Jakobsson et al., 2009; Frank et al., 2012; Bo et al., 2014) is
a promising technology that provides continuous and transparent pro-
tection by leveraging distinct users’ behaviors. Most existing IA systems

* Corresponding author.
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et al., 2016; Al-Ameen et al., 2021) and mobile devices for front-line
and medical workers (Microsoft Azure, 2023; Draffin et al., 2013). It
is important to design an IA framework that secures sensitive data on
shared smart devices in multi-user scenarios.

A multi-user IA system needs to identify a user in addition to re-
jecting imposters. A single behavioral biometric is insufficient to ensure
good identification accuracy due to data unavailability or poor qual-
ity (Gofman et al., 2016). Existing studies (Vhaduri and Poellabauer,
2019; Hintze et al., 2019; Abuhamad et al., 2020) have shown that
multi-modal authentication systems provide more accurate and robust
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performance in comparison to single-modal systems. However, little ef-
fort has been made to design a multi-modal multi-user IA system.

Multi-user, multi-modal IA requires careful consideration as it is not
a simple extension of a binary classification problem into a multi-class
one. The challenges include: 1) Heterogeneous authenticators. Authentica-
tors based on different behavioral biometrics provide different coverage
(e.g., gait data is only available when a user is walking) and accuracy. A
critical problem is how to organize different authenticators and aggre-
gate their results to provide accurate identification and authentication
for multiple users. 2) Real-time detection of user switches. It is common
that the current user of an unlocked smart device changes to another
valid user without an explicit account switch (Matthews et al., 2016;
Al-Ameen et al., 2021). The system should recognize the valid user af-
ter a user switch in addition to rejecting attackers. 3) New users and
data. TA mechanisms may experience accuracy degradation over time
(Frank et al., 2012; Zheng et al., 2014; Chauhan et al., 2020). Existing
single-user IA systems (Bo et al., 2014; Khan et al., 2014a) only need
to update the device owner’s IA models. However, for a multi-user sys-
tem, we need to consider both new users and new data. Adding a new
user requires updating the existing models in the system to distinguish
the new user from existing users. When the system processes new in-
coming data, it should label it with the correct corresponding user. 4)
User data imbalance. Some users (e.g., device owners) are more likely
to have more training data compared to other valid users. When new
users are added to the system, their training data is much less than ex-
isting users’. As a result, the system may have low accuracy for users
with less training data. This user data imbalance also exacerbates the
performance differences among various authenticators.

We propose SHRIMPS,? a novel IA evaluation framework that can
model configurations where multiple modalities are used to provide
transparent and continuous identification and authentication in multi-
user systems. Our focus is on designing a general framework that helps
security developers and researchers combine existing and new IA mech-
anisms to evaluate the accuracy of multi-user identification and authen-
tication.

SHRIMPS is targeted at evaluating multi-user, multi-modal IA sys-
tems. Supporting multiple users and multiple modalities has already
been studied in the context of multi-user, multi-modal biometric authen-
tication systems (Ross and Jain, 2004; Oloyede and Hancke, 2016; Jing
et al., 2018; Toli and Preneel, 2015). However, these systems are usu-
ally based on explicit authentication, where users are asked to take
an explicit authentication action (e.g., putting their finger on a fin-
gerprint reader, or placing their face in front of a camera). Therefore,
some of the challenges faced by multi-user, multi-modal IA systems,
like real-time detection of user switches, usually do not occur in multi-
user, multi-modal biometric systems. However, other challenges, like
heterogeneous authenticators, are similar, and solutions proposed for
multi-user, multi-modal biometric systems may also apply to multi-user,
multi-modal IA systems. Evaluating this applicability is not the focus of
this paper. In our evaluation (see § 6), we configure different IA en-
vironments and use different state-of-the-art IA, modality fusion, and
model updating algorithms to demonstrate the versatility of SHRIMPS.
We acknowledge that our chosen algorithms may not necessarily be the
best ones. We support researchers interested in evaluating additional
algorithms by making the SHRIMPS framework available open source.

SHRIMPS is a simulation-based IA evaluation framework for evalu-
ating multi-user, multi-modal IA systems. Such systems should not only
be evaluated with SHRIMPS, but also with other tools, like user stud-
ies. However, user studies can be expensive, both in terms of time and
money. SHRIMPS can be used by security developers and researchers
for weeding out candidate configurations of multi-user, multi-modal IA
systems that are unlikely to result in good performance in practice and
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for determining more promising configurations. These configurations
can then be evaluated in user studies.

User studies can be performed in the lab or in the field. Field-based
user studies are usually adopted for evaluating usability under practical
settings. However, it is hard to capture unauthorized access and device
theft in a natural setting (Hintze et al., 2019). In general, it is challeng-
ing to conduct user studies for multi-user scenarios (e.g., controlling the
conditions for legitimate users and attackers). To trade off, trace-based
evaluation is a good option for conducting tasks using real-world public
datasets, which is the approach pursued by SHRIMPS.

By providing a framework, SHRIMPS allows IA researchers to fo-
cus on a particular research problem, like implementing a proposed IA
algorithm and comparing it to existing algorithms (hopefully) already
implemented in SHRIMPS, the proper hyperparameter tuning of an IA
algorithm, or the proper division of data into training and test sets.
SHRIMPS helps streamline this work. Other, often tedious tasks, like
parsing input data or dealing with imbalanced data, are automatically
taken care of by SHRIMPS.

Finally, another advantage of SHRIMPS is that it enables easier
reproducibility of research results by other researchers. For example,
researchers proposing a new IA algorithm can implement and configure
this algorithm in SHRIMPS and release the implementation and config-
uration. Since SHRIMPS is open source, anyone can use the released
information to reproduce the results and improve on them.

The contributions of our work include:

SHRIMPS is the first multi-user, multi-modal IA evaluation frame-
work for shared smart devices. The framework can detect unau-
thorized access from strangers and identify the current user from a
group of valid users.

The framework supports model updating with new data and users
to ensure high accuracy for multiple users across sessions. It can au-
tomatically segment and label the newly collected behavioral data
based on authentication results and user feedback.

SHRIMPS supports different existing score fusion strategies. In ad-
dition, considering the performance differences among different
modalities, we propose a Dempster-Shafer (D-S) theory (Sentz et
al., 2002) based score fusion strategy to combine the authentication
scores from multiple modalities for different users and incorporate
it into SHRIMPS.

SHRIMPS runs in a simulation environment. The environment sup-
ports easy and flexible construction of simulation tasks using public
datasets, which benefits other researchers for evaluating their IA
schemes in a multi-user setting.

We conduct extensive simulation tasks to show that SHRIMPS can
be used for evaluating different scenarios. For example, we show
that D-S theory based score fusion achieves both low false accep-
tance rate and low false rejection/identification rate. Besides, we
demonstrate multi-user multi-modal IA configurations that are able
to detect user switches and identify the new user with low detec-
tion latency. Our comprehensive evaluation shows that with the
help of SHRIMPS it is also possible to realize configurations that
handle new users well and automatically label new incoming data
for model updating.

We release our implementation of SHRIMPS in open-source for
other security researchers and developers.®

2. Related work

As our work investigates the design of multi-user, multi-modal im-
plicit authentication schemes, we discuss related works on these two
aspects. Besides, as SHRIMPS is designed for evaluating multi-user IA

3 https://github.com/cryspuwaterloo/jiayi_thesis_code/tree/main/shrimps/
idauth.
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systems, we also summarize the evaluation methods adopted by existing
studies.

2.1. Multi-user implicit authentication

Implicit authentication (IA) transparently authenticates a user’s
identity to improve the security and usability of user authentication.
IA leverages users’ distinct device usage or behavioral patterns to dis-
tinguish a user from others in a non-intrusive way. On the one hand, IA
provides an additional authentication factor to supplement explicit au-
thentication mechanisms. Many IA mechanisms can continuously verify
a user’s identity in the background during device usage. For example,
an attacker may launch a shoulder surfing attack to obtain the PIN code
to unlock a device. Behavioral biometrics based IA mechanisms can still
block the attacker from accessing the device by comparing the attack-
er’s touch patterns or keystroke dynamics to the device owner’s. On
the other hand, IA helps reduce unnecessary explicit authentication re-
quests for alleviating a user’s burden faced by user authentication.

Researchers have investigated various behavioral biometrics for IA,
including touch (Frank et al., 2012; Bo et al., 2014; Zheng et al., 2014),
gait (Derawi et al., 2010; Zou et al., 2020), keystroke (Lamiche et al.,
2019), etc. Although most of them regard the IA problem as a binary
or one-class classification problem (Gupta et al., 2019), a few studies
conducted preliminary explorations of multi-user scenarios recently.
Ehatisham-ul Haq et al. (2018) leveraged physical activity patterns
to identify the device owner and secondary users who have partial
access to the device. Zou et al. (2020) used Deep Neural Networks
(DNN) to conduct gait-based multi-user identification and authentica-
tion separately. However, in practice, the system is expected to detect
unauthorized access and track user switches in real-time. In comparison,
SHRIMPS handles both tasks simultaneously without training additional
models. ContAuth (Chauhan et al., 2020) adopted iCaRL (Rebuffi et
al., 2017) and EWC (Kirkpatrick et al., 2017) to address the incre-
mental learning problem for DNN-based single-modal IA mechanisms
to improve cross-session performance for multi-user scenarios. In com-
parison, SHRIMPS considers auto-labeling and further improves identi-
fication accuracy by incorporating multiple IA mechanisms. DriverAuth
(Gupta et al., 2019) is a multi-user and multi-modal authentication solu-
tion for ride-sharing platforms. However, DriverAuth performs implicit
authentication only at the beginning of a ride, while SHRIMPS targets
multi-user, multi-modal IA for general purposes and supports continu-
ous authentication.

2.2. Multi-modal authentication

Most existing work on multi-modal authentication, with the excep-
tion of DriverAuth (Gupta et al., 2019) (see above), has focused on
single-user scenarios. Combining multiple behavioral biometrics en-
ables IA to identify a user’s identity with high confidence and lowers
the chance of spoofing attacks. Abuhamad et al. (2020) classified the fu-
sion methods into three levels: feature-level (Vhaduri and Poellabauer,
2019; Lamiche et al., 2019; Gupta et al., 2019), algorithm/score-level
(Crawford et al., 2013; Hintze et al., 2019; Buriro et al., 2015; Saeva-
nee et al., 2015), and decision-level (Fridman et al., 2015). Crawford
et al. (2013) proposed a score-level weighted average fusion method
that gives more weight to more recent detection scores. Buriro et al.
(2015) calculated the weight based on the classifier performance for
their weighted average fusion method. Vhaduri and Poellabauer (2019)
designed a multi-modal solution for wearable devices with feature-level
fusion of step counts, heart rate, calorie burn and metabolic equivalent
of task. Smith-Creasey and Rajarajan (2019) adopted the Dempster-
Shafer theory based score fusion for single-user scenarios. Our work
extends the application of the D-S theory to cover multi-user scenarios.
Shrestha et al. (2019) proposed ZEMFA to extract gait features from
multiple devices to perform zero-effort authentication. CORMORANT
(Hintze et al., 2019) was designed to provide risk-aware continuous
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authentication for single-user cross-device scenarios. It proposed two
weighted score threshold fusion methods and a Kalman filter based
score fusion method to fuse the authentication score from different de-
vices. We compare the Kalman filter based fusion to our D-S theory
based method. The evaluation results show that our approach outper-
forms the Kalman filter based method in terms of low false identification
rate and false acceptance rate.

In summary, compared to existing studies, SHRIMPS provides the
architecture and workflow of a multi-user IA system with considering
user switches in mid-session, model updating with new data and users,
and score fusion from multiple modalities. These challenges were not
fully covered in existing systems and solutions.

2.3. Evaluating IA systems

Since IA is usually regarded as a classification problem, many exist-
ing IA studies (Frank et al., 2012; Bo et al., 2014; Abuhamad et al.,
2020; Zou et al., 2020; Ehatisham-ul Haq et al., 2018; Khan et al.,
2014b) evaluated their proposed schemes by determining common met-
rics, such as AUC, EER, FAR, or FRR, in an offline setting. Sugrim et al.
(2019) found that such an evaluation is inadequate to show how the sys-
tem performs outside ideal conditions. Eberz et al. (2017) used the Gini
Coefficient to quantify the systematic errors and we adopt it to measure
the error distribution change among different methods. Although re-
searchers have evaluated their authentication systems with lab or field
studies (Riva et al., 2012; Hayashi et al., 2013), it is inefficient to collect
sufficient data for unauthorized access. To trade off, generating traces
from public datasets for real-world scenarios has been used to evalu-
ate a (single-user) IA system (Hintze et al., 2019). Besides, since an [A
system needs to update its model from time to time, it is important to
observe its performance over time (Chauhan et al., 2020). SHRIMPS fills
the gap in evaluating multi-user IA systems by providing an evaluation
framework that operates on real-world data. It enables IA researchers
to build a multi-user IA system and compose trace-based tasks.

2.4. Multi-user, multi-modal biometric systems

Whereas research on multi-user, multi-modal IA systems is relatively
recent, research on multi-user, multi-modal biometric authentication
systems has been well established (Ross and Jain, 2004; Oloyede and
Hancke, 2016; Jing et al., 2018; Toli and Preneel, 2015). Some of
the problems studied in this existing research, like fusing modalities
(Oloyede and Hancke, 2016; Jing et al., 2018; Ross and Jain, 2003;
Dinca and Hancke, 2017; Ryu et al., 2021) or model (i.e., template)
updating (Rattani et al., 2009; Pisani et al., 2019), also occur in multi-
user, multi-modal IA systems. Therefore, solutions proposed for these
systems may also be applicable to multi-user, multi-modal IA systems.
Whereas studying this applicability is outside of the scope of this pa-
per, the SHRIMPS framework can be a useful tool for undertaking such
a study.

3. Problem and modeling

In this section, we formulate the multi-user, multi-modal IA problem
and provide the threat model.

3.1. Authentication model

3.1.1. Definitions and assumptions

In a multi-user IA system, two or more users are allowed to access
a device. We define a user who is registered and has full or partial ac-
cess to the device as a legitimate user. We define a session as the period
of user-device interaction that starts from when the device is unlocked
with explicit authentication, such as a PIN, to when the device is locked.
The IA system continuously identifies the current user and verifies their
identity throughout a session. As a consequence of failed authentication,
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the system locks the device and asks for explicit authentication. Inspired
by recent device/account sharing studies (Matthews et al., 2016; Al-
Ameen et al., 2021; Marques et al., 2019), we consider multiple users
sharing the same smart device, and therefore, participating in the same
session alternatingly, where there may be more than one legitimate user
during a session. We assume that there is only one user interacting with
the device at any moment. For example, a shared tablet is running a
kiosk app for medical staff to look up and process patients’ data. A
session starts when a medical worker turns on the tablet, and any legit-
imate medical worker can access the device afterwards. A session ends
when the tablet is turned off or detects unauthorized access. It requires
continuously and implicitly (re-)identifying the new user from all other
legitimate users in real-time during a session.

3.1.2. Problem formulation

The multi-user IA problem is a multi-class classification problem.
We denote the legitimate user set as Ut = {ug,u,,...,u,_; }, where n is
the number of legitimate users, user u, is the primary user (i.e., owner)
of the device, and users u;,i > 0 are secondary users. We define a null
user or attacker as a user who is not registered and has no access to the
device, which is denoted as u_,. The whole user space for a multi-user
authentication system is defined as ' =U* U {u_,}.

For accurate identification and authentication, the system adopts
multiple IA mechanisms (i.e., authenticators). The basic workflow of
each authenticator is to extract features from sensor measurements and
perform multi-class classification. An authenticator can be described
as a function s = M(f), where s = {s_;,s,5;,...,5,_;} represents the
normalized scores of all instances in U7, and f is the feature vec-
tor. Then, each authenticator obtains a series of feature vectors with
timestamps { (¢, fo).(t;, f1), ..., (t, fi)} and generates a series of score
vectors {(t, Sq),(t;,8}), ..., (I, S;)} accordingly, where k is the number
of the classification times performed within a given period. The system
then identifies the user and decides whether to lock the device. Thus,
the multi-user, multi-modal IA problem is about combining different
authenticators to obtain who is the most likely user.

3.2. Threat model

For multi-user IA, possible attackers include strangers and legitimate
users. A stranger attacker is physically close to the device and attempts
to access sensitive resources, which is a lunchtime attack (Kaczmarek et
al., 2018). A legitimate user attacker may intentionally or accidentally
access the previous legitimate user’s resources. For both cases, the au-
thentication system should reject their access and de-authenticate the
current user. We assume attackers do not have or know the victim’s
credentials (e.g., password, PIN) for explicit authentication. We also
assume the device and its operating system are trusted, and attack-
ers cannot install malicious apps or tamper with the system services
(e.g., modifying sensor inputs). Since our work focuses on a general
multi-user IA framework, mimicry attacks (Khan et al., 2018) that tar-
get specific behavioral biometrics are out of the scope of our paper.
Nevertheless, we test the system under the scenario where the accuracy
of one authenticator is significantly lower than other authenticators (see
§6.2.3).

4. Multi-user IA

SHRIMPS first addresses the multi-user IA problem in § 3.1.2 from
the following three aspects: 1) a general extension strategy to extend
existing binary or one-class IA algorithms into multi-user, 2) a score
fusion method to combine multiple modalities, and 3) new incoming
data and user enrollment for model updating.

4.1. Multi-user identification

A multi-user IA model is an n + 1-class classifier for a system with n
legitimate users u; with 0 <i < n, where negative instances (i.e., im-
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posters) are denoted u_; (see § 3.1.2). Thus, we need an imposter
training set to provide negative training data. In SHRIMPS, the imposter
training set is sampled from multiple randomusers, which are different
from the legitimate users and the users pretending to be imposters later
during model testing, to represent a “general” user’s behavioral biomet-
rics.

Besides, the machine learning technique adopted by a multi-user IA
system should support multi-class classification. If a multi-class IA clas-
sification algorithm is available, SHRIMPS can directly take advantage
of it. For binary classification algorithms, SHRIMPS adopts the generic
“one-vs-the-rest” strategy to extend their models into multi-class clas-
sifiers: 1) For each class u;, we construct a training set with labeling
u; as positive class and all other classes as negative class. 2) We train
n sub-classifiers for all n classes using the training sets constructed in
step 1. 3) For authentication, the authenticator calculates the normal-
ized scores of the positive classes from all sub-classifiers and constructs
a score vector as the output. SHRIMPS also supports one-class classifi-
cation algorithms, which it extends for multi-class classification in the
same way as binary classification algorithms. Recent IA research com-
paring one-class to binary classifiers (Giovanini et al., 2022; Ozlem Incel
et al., 2021; Wang et al., 2023; Ray-Dowling et al., 2022; Georgiev et
al., 2022b; Vhaduri et al., 2021; Cheung and Vhaduri, 2020) has con-
sistently shown that binary classifiers perform better. Binary classifiers
have the disadvantage that they require negative training data, which
one-class classifiers do not.

Multi-user scenarios also result in the user data imbalance problem,
where we have different amounts of training data for different users.
For example, a multi-user system may collect more training data for the
owner compared to the other users since the owner usually spends more
time doing various activities with the device. Thus, we need to balance
the training data by resampling techniques, including downsampling
the data for the majority classes and oversampling the minority classes
(e.g., SMOTE (Chawla et al., 2002)). But the resampling techniques can-
not fully address the accuracy degradation problem (Fernandez et al.,
2018). We still need to consider the accuracy imbalance among differ-
ent users for decision making. We elaborate on this challenge as a part
of the score fusion strategy in § 4.2.

To achieve multi-user identification, SHRIMPS handles the gener-
ation of balanced training data from a user’s historical data and the
imposter training set, and provides a generic wrapper to extend exist-
ing IA mechanisms into multi-class classification (see § 5.1.1).

4.2. Multi-modal score fusion

We fuse the results of multiple authenticators at score-level to pro-
vide accurate identification for multiple users since it allows each
modality to work separately. SHRIMPS is designed to support various
score fusion methods to aggregate the results from multiple modalities
to make decisions. However, the scores produced by different modali-
ties may have different implications such as the likelihood of each user,
the similarity to a user’s behavioral profile, etc. Also, it is necessary
to take the uncertainty of each modality into account. Thus, calculat-
ing the average score is not sufficient. In SHRIMPS, we also adopt the
Dempster-Shafer theory (Sentz et al., 2002) for score fusion since it
is proposed to combine evidence (i.e., scores) from different sources
(i.e., modalities) with uncertainty, which is usually applied for sensor
fusion problems (Wu et al., 2002). Smith-Creasey and Rajarajan (2019)
adopted a D-S theory based score fusion method for multi-modal IA
schemes in the single-user scenario. In our study, we explore the multi-
user D-S theory based score fusion method by decomposing the problem
into n+ 1 binary cases.

For u; € U, there are two mutually exclusive states: positive S,
and negative S;. The frame of discernment Q; is defined as Q; =
{S;,S;}. All subsets in the power set 2% = {4, {S,},{S;},Q;} are as-
signed a basic belief mass within [0, 1], denoted by m, where m(f) =0,
Y 4 m(A) = 1. For an authenticator M that outputs a score vec-
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tor s = {s_y,0,5,..-,8,_1}, we define its uncertainty on each class
(i.e., user) as v = {v_;,vy,0y,...,v,_; }. For each class, we construct the
masses attributed for all hypotheses in 2% as:

m(@) = 0.m((S;}) = (1 - v))s;.
m({5;) = (1= 0)(1 = 5,). (@) = v.

To combine the masses of hypothesis A = { P.} from two authenticators
M, and M, (the belief functions are denoted by m, and m,, respec-
tively), we use Dempster’s rule of combination to calculate its joint mass
as

2 Brc=zp My(B)mg(C)
1= pc—gmy(B)m,(C)’

The combined belief Bel({.S;}) = ZAlAg(S,-} m(A) = m({S;}) is the fused
score for u; from multiple authenticators.

We determine the uncertainty v of each authenticator by their model
accuracy based on the following observations: 1) An authenticator may
have a better accuracy detecting certain classes compared to others. 2)
Different authenticators may have different accuracy for the same class.
Intuitively, a higher accuracy on a certain user u; should contribute
to a lower uncertainty v;. In our work, the system leaves 10% of the
collected data out of the training data for each authenticator to con-
struct their validation sets. Then, it evaluates all IA models with their
corresponding validation sets at each model training or updating. The
accuracy metrics include the per-user area under the receiver operating
characteristic curve (AUROC) and equal error rate (EER), the threshold
for the equal false acceptance rate and false rejection rate of each user.
We adopt two uncertainty functions based on either AUROC or EER.
Given the authenticator M and the target user u;, the uncertainty is:

m(A) =m,(A) & m,(A) =

vAYC = min(0, 1 - AUROC, ). @)
oBER = max(1,2 = EER, ). )

Assume there are k authenticators M = {M,, M|,...,M,_,}, and the
average score vector of all authenticators is denoted as {5, §;,...,5,_;}-
We use the D-S theory to merge the average score vectors of all au-
thenticators. For each class, we obtain the fused score for each user
8 =my({S; N ®m (SN ... ®&m_,({S;)),i € {~1,0,1,...,u—1}. Finally,

we choose the most likely user by res=  argmax §; as the current
ie{-1,0,1,....u—1}
user.

In addition to score fusion based on Dempster-Shafer theory,
SHRIMPS also supports other fusion methods, such as average and
weighted average. This demonstrates that SHRIMPS supports both
simple and complex fusion strategies. Due to its open-source nature,
SHRIMPS can also be used for evaluating other score fusion methods
proposed in earlier work, including fusion methods proposed for multi-
modal biometric authentication (Oloyede and Hancke, 2016; Jing et al.,
2018; Ross and Jain, 2003; Dinca and Hancke, 2017; Ryu et al., 2021).
Such an analysis is outside of the scope of this paper.

4.3. New incoming data and users

In practice, IA models are not constant: 1) When a new user is
added to the system (i.e., user enrollment), IA models need to be up-
dated to identify the new user as a new class. The new user needs to
complete tasks or use the device for a period of time so that the sys-
tem can collect and label behavioral data for initial model training. In
a deployed system, user enrollment would be initiated by an admin-
istrator. In SHRIMPS, user enrollment is indicated in the storyboard
underlying the evaluated IA scheme (see § 5.2.2). 2) IA mechanisms
require model updating with new incoming data to mitigate accuracy
degradation over time. During normal device usage, the system is also
collecting biometric data while authenticating and identifying the user.
Unlike user enrollment, the system does not always know the ground
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truth of the current user’s identity. Thus, we need to address the follow-
ing problems:

4.3.1. Auto labeling

The common labeling strategy of single-user IA systems (Khan et
al., 2014a; Crawford et al., 2013) is to label all incoming data as the
owner’s if no attack is detected. However, for multi-user systems, a
piece of behavioral data may involve several users given possible user
switches. Thus, the system needs to split the data into segments, where
each segment contains only one user’s usage data. Then, it finds out
the corresponding user for each segment. Although external signals
(e.g., screen-on/off) may imply user switches and indicate the start
and end moments of a segment, they are insufficient to cover all user
switches in a shared session. A multi-user IA system can continuously
identify the current user and provide coarse-grained segmentation—
knowing who is using the device during which segment. However, the
time taken to collect sufficient data for decision-making is not negligible
(evaluated in § 6). If a user switch is detected based on identification re-
sults without the help of external signals, the system discards the data
collected during a time period (e.g., maximum detection latency) be-
fore the detected user switch since its ownership is uncertain. For the
remaining data, the system labels the pre-switch part as the former user
and the post-switch part as the latter user.

4.3.2. Model updating

User enrollment and new incoming data correspond to class incre-
mental learning and data incremental learning, respectively. There are
three types of model updating strategies. 1) Full retraining is applicable
for all IA mechanisms. Models are retrained with all new and historical
data. However, it occupies the most space; 2) Partial fitting is applicable
for implementing data incremental learning to specific machine learn-
ing techniques, such as SGD-based techniques (Moctezuma et al., 2019)
and Naive Bayes classifiers. They can update a trained model with new
data without keeping the historical data. 3) Incremental learning tech-
niques are applicable for DNN-based IA mechanisms (Zou et al., 2020;
Shin et al., 2017). ContAuth uses EWC (Kirkpatrick et al., 2017) and
iCaRL (Rebuffi et al., 2017) to update a model without storing all his-
torical data. In SHRIMPS, we determine the suitable model updating
strategy based on the IA mechanisms: we apply iCaRL for DNN-based
IA mechanisms (since Chauhan et al. (2020) show that it is superior to
EWS); for other IA mechanisms, we adopt full retraining for class/data
incremental learning or partial fitting for data incremental learning.

SHRIMPS simplifies the comparison of existing model updating
strategies for adaptive IA systems (Chauhan et al., 2020; Shen et al.,
2023; Giovanini et al., 2022). Moreover, we observe that various tem-
plate update methods have been developed for adaptive biometric sys-
tems (Rattani et al., 2009; Pisani et al., 2019). As in the case of existing
fusion algorithms for biometric systems, SRIMPS makes it possible to
study whether existing template update algorithms can also be used for
adaptive IA systems. Such an analysis is outside of the scope of this
paper.

SHRIMPS handles user enrollment and new incoming user in two
steps: automatically segmenting and labeling the collected data, and
updating IA models for all authenticators with appropriate strategies.
Besides, it listens to the user’s feedback to correct falsely labeled data.
We describe the detailed workflow in § 5.1.2.

5. The SHRIMPS evaluation framework

In this section, we propose a multi-user, multi-modal IA evaluation
framework, SHRIMPS, which consists of a multi-user IA system and an
evaluation environment.
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Fig. 1. Architecture of the SHRIMPS framework.

5.1. Multi-user IA system

We abstract the main components and behaviors of a multi-user IA
system for shared smart devices, including user management, model
training and updating, sensor data processing, and authentication.

5.1.1. Architecture

Fig. 1 shows the architecture of a multi-user IA system, which com-
prises of four modules: the scheduler, the authenticators, the aggrega-
tor, and the storage.

Scheduler receives sensor events and external signals, and coordinates
authenticators and the storage module. The scheduler receives and
caches the incoming sensor events in the sensor buffer. The authentica-
tor controller is responsible for activating authenticators and invoking
authentication or model training. Whenever there is sufficient sensor
data, the authenticator controller activates that authenticator and dis-
patches the required sensor data. The scheduler also maintains a set of
event listeners to receive and process external signals for auto label-
ing, model updating, and error handling (see § 5.1.2). External signals,
such as screen-off, imply the end of a session or a possible user switch,
resulting in clearing cached data, data segmentation and resetting the
authentication status of the system. Besides, user feedback that occurs
after an erroneous rejection or user switch decision is an important sig-
nal for error handling. In response, the scheduler fixes wrong labels of
the cached data and sets the authentication status as authenticated.

Authenticators are responsible for providing the essential functions,
including feature extraction, model training, and classification. Re-
searchers can provide their own IA mechanisms by specifying these
essential functions. If a provided IA mechanism is based on binary or
one-class classification, SHRIMPS applies the multi-user extension intro-
duced in § 4.1. For each authenticator, the feature extraction function
takes raw sensor data as input and produces feature vectors as output.
The authentication function feeds the feature vectors to the trained IA
models to calculate the authentication scores. The model training func-
tion takes two sets of labeled feature vectors as input for training and
testing, respectively. Internally, the model training function can further
sample a subset of the training dataset for validation, which is usually
used for tuning the hyperparameters of IA models. The testing dataset
is used to pre-evaluate the accuracy of an authenticator. An authentica-
tor needs to store the pre-evaluation results for the certainty calculation
of multi-modal fusion.

The training set generation function is responsible for generating
training and testing data for the authenticator. The function loads the
history feature data of each user in the training storage and samples
negative training data from the imposter training set. All the fetched
data is used to construct a labeled dataset. It is optional to apply resam-
pling techniques to produce a balanced dataset (i.e., all classes have the

same data size). The processed data is divided into two parts in a con-
figurable ratio for training and testing, respectively, which is provided
for the model training function.

Aggregator collects and fuses authentication scores. Since scores from
various authenticators arrive at the aggregator asynchronously, our
strategy is to let the aggregator cache the recent score vectors within
a specified time interval and fuse the scores based on the steps in § 4.2
(note: the multi-user also supports other score fusion methods such as
average and weighted average). The cache is cleared at the session end
or a user switch through final decisions or external signals. In addi-
tion, we adopt a (m, n)-sliding window: If at least m out of n results are
the same, the aggregator adopts that result as the final decision; other-
wise, it waits for more scores to make decisions. There are three types
of decisions: accepting the user as the identified one, rejecting the user,
and detecting a user change from one to another. Accordingly, there
are three types of false decisions: 1) false acceptance (FA): the system
falsely accepts an attacker, 2) false rejection (FR): the system falsely re-
jects a valid user, and 3) false identification (FI): the system identifies a
valid user as another. We explore error handling in the next subsection.

5.1.2. Multi-user IA system workflow
We present the workflow of a multi-user IA system performing the
following operations:

User Enrollment & Removal. SHRIMPS support user enrollment and
removal events as external signals. For user enrollment, the system does
not conduct authentication and only collects behavioral data for the
new user. A piece of labeled behavioral data is directly added into
the training storage. Model training is triggered as follows: authentica-
tors fetch the training data from the storage, generate training datasets,
and train their models. The models and their pre-evaluation reports are
stored in the storage. User removal requires indicating the target user.
SHRIMPS supports the following two options for removing a user: 1)
If the system stores users’ historic behavioral data, authenticators fully
retrain IA models with all data except for the removed user. 2) If an
IA model consists of several per-user classifiers, the system can remove
that user’s classifier. Their behavioral data is also removed from the
training storage and excluded from any future model updating.

Authentication. The authentication system continuously collects sen-
sor data in the scheduler. Once the authenticator controller detects
sufficient data for a certain modality, it calls the corresponding authen-
ticator with the cached sensor data. The authenticators extract features,
load the saved model from the storage, and then conduct classification
to obtain score vectors. Score vectors from different authenticators are
sent to the aggregator for score fusing. Finally, the system determines
whether to accept or reject the current user based on the fused score.

Model updating. SHRIMPS takes both external signals and identifi-
cation results to segment and label the data automatically and dy-
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Fig. 2. Evaluation framework.

namically. Whenever the scheduler receives an external signal or the
aggregator detects a user switch, SHRIMPS labels the collected data
as a segment with the previously identified user and stores them in
the training storage. It can automatically correct the misclassified data
points of individual authenticators based on the overall decisions. For
example, if a single data point is u_, (i.e., attacker) and the overall deci-
sion is acceptance, the system will fix the label of this single data point.
If the device mistakenly locks the user out, it can correct the detection
as well as the labels for cached features based on the user’s feedback
(see error handling below). Once sufficient new data is collected, the
authenticators update the models for the existing users based on their
data incremental learning strategy (see § 4.3).

Error Processing. Error processing of an IA system takes the following
measures based on the error types: 1) False acceptance may temporar-
ily expose the device to an attacker. Since the system is continuously
authenticating the user, it will stop the attacker whenever a rejection
decision is made. 2) False rejection leads to explicit authentication. If
SHRIMPS receives a legitimate user’s feedback (i.e., the user has passed
EA), it can correct the labels of the collected features and update the IA
models. 3) False identification is not as obvious as the other two errors.
Immediate user feedback is not guaranteed if there is no mandatory EA
to verify a user’s identity. Nevertheless, we can handle false identifi-
cation using the following strategy: if the system detects frequent user
switches within a short time (e.g., the user has changed more than two
times in five consecutive decisions), it will issue a rejection decision and
a request for identity confirmation. Once the system receives the user’s
feedback, it will correct the labels accordingly.

5.2. Evaluation framework

5.2.1. Motivation

Evaluating a multi-user IA system requires testing under various con-
ditions. It involves measuring accuracy with different user numbers and
training data sizes, and detection latency for identifying a user after
a user switch. As an IA system updates its models with new incom-
ing data and users, it is also necessary to track the overtime accuracy
change considering the impact of auto labeling. Moreover, a false deci-
sion may have different implications for continuous authentication: For
example, a user is more sensitive to false rejections since they interrupt
device usage, while an individual false acceptance is tolerable as long
as the system rejects an attacker within a reasonable time. A real-world
user study is usually adopted for evaluating usability under practical
settings. However, it is hard to capture unauthorized access and device
theft (Hintze et al., 2019). Specifically, it is challenging to conduct user

studies for multi-user scenarios (e.g., controlling the conditions for le-
gitimate users and attackers). To trade off, trace-based evaluation is a
good option for conducting tasks using real-world public datasets.

SHRIMPS enables researchers to stitch together data from public
datasets and easily compose evaluation tasks based on specific require-
ments without falling into two common evaluation pitfalls (Georgiev
et al.,, 2022a): 1) Non-contiguous training data selection, and 2) at-
tacker data in training. It supports external signals, enrollment and
user feedback (i.e., reactions to decisions). Besides, we introduce both
decision-level and session-level metrics to compare different strategies
and understand the practical performance of the system.

5.2.2. Evaluation process

As shown in Fig. 2, the evaluation process is divided into three
stages. We introduce the components of the evaluation framework and
their functions at each stage:

Setup. Researchers determine the data source. A data provider manages
the connection to a public dataset, parses raw sensor data, and pro-
vides an interface for data retrieval. Internally, a user’s data is stored
in blocks, where each block contains sensor data of a user collected
over a continuous period of time. It ensures contiguous data selection
in chronological order, and no data in the training data blocks will ap-
pear in the evaluation tasks. The actor generator fetches a complete
list of users via a data provider and randomly selects a specified num-
ber of actors from the list. There are three actor types: legitimate users,
trainers, and attackers. As defined in § 3.1, legitimate users should be
enrolled in and identified by the IA system. Trainers provide negative
training data to construct an imposter training set. Attackers attempt
to access the device and should be blocked by the system. SHRIMPS
ensures the attackers’ data will not be used in the model training of
legitimate users.

Initialization. The initialization stage determines the initial system sta-
tus. An enrollment script is required to determine which legitimate
users have enrolled and how much training data has been collected for
each user. The enrollment data generator parses the enrollment script
and fetches training data via the data provider. Then, SHRIMPS instan-
tiates the multi-user IA system, and adds the specified legitimated users
and their training data for the initial model training. Multiple instances
that adopt different schemes can co-exist in the same environment so
that we can compare different schemes with the same conditions and
inputs.

Evaluation. We introduce a storyboard to help researchers quickly de-
sign evaluation tasks. A storyboard lists one or a series of data blocks
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with specifying the actor, the selection criteria (e.g., activity, location),
and the duration. It provides the ground truth of data segmentation.
To describe a session with the participation of multiple users, one can
concatenate multiple data blocks of different actors. External signals,
such as “screen off” and “screen on”, can be added in between two
data blocks to mark the start and end of a session. Besides, SHRIMPS
supports adding user enrollment events during an evaluation task. We
show simplified storyboards in § 6.

According to the storyboard, SHRIMPS can fetch the matched sen-
sor data and automatically generate a timeline comprised of a series of
events in chronological order. The timeline automatically adjusts the
sensor event timestamps of each block to ensure that the new times-
tamps of every two consecutive blocks are coherent. Assume that a new
block with m events, sess = {(t,,datay), (t;,data), ..., (t,_;,data,,_;)}, is
appended to a timeline, where the last event timestamp of the timeline
is T. The new timestamps are adjusted as follows: #; =1, =1, + T + At,i =
0,1,...,m — 1, where At is the customized interval between two seg-
ments. The presenter is responsible for processing the timeline and
communicating with the instances: While passing each event to the in-
stances, it also receives and answers their decisions. If a false decision is
made, the presenter records it and produces a user’s feedback for correc-
tion. After traversing the entire timeline, SHRIMPS saves all scores and
decisions. The result analytics module generates the metrics by compar-
ing each decision with the ground truth provided by the timeline.

Measures & Metrics. Multi-user IA systems are evaluated at two levels:
decision-level and session-level. At decision-level, we use three basic
metrics: false acceptance rate (FAR) is the proportion of the acceptance
decisions among all decisions made on an attacker, and false rejection
rate (FRR) and false identification rate (FIR) are calculated as the pro-
portion of FRs or FIs among all decisions made on a legitimate user,
respectively. Eberz et al. (2017) propose the Gini coefficient (GC) to an-
alyze the error rate distribution among users and quantify systematic
errors. A high Gini coefficient means that errors are concentrated in a
small group of users. SHRIMPS uses GC to supplement decision-level
FAR, FRR, and FIR for analyzing error distribution. Session-level met-
rics aim to help understand the practical impact of false decisions on
the whole session. We define session-level errors based on the follow-
ing criteria: 1) False acceptance: the system fails to reject an attacker
within a specific time period (i.e., valid attack window). 2) False rejec-
tion: the system makes at least one decision to reject a valid user during
the whole session. 3) False identification: the system makes at least one
false identification during the whole session. For user switches where
the user changes from one to another without any external signals, we
allow the system to take a specific delay (i.e., uninformed switch win-
dow) before making the correct decision. During this period, any false
identification is ignored since it does not block the user.

Accordingly, we define session-level FAR, FRR, and FIR by dividing
the corresponding error number by the total session number. In addi-
tion, we record the moment 7, of the first correct decision to measure
the detection latency, which is calculated by subtracting the starting
timestamp of the session 7, from 7,.

5.3. Evaluation workflow

IA researchers can use SHRIMPS to design and evaluate multi-
user IA schemes according to the following steps: The first step is to
build the multi-user IA system, including adding authenticators, spec-
ifying the score fusion strategy, and adjusting the auto labeling and
model updating behaviors. Researchers can choose to add their own
IA mechanisms/score fusion strategies or use the built-in ones pro-
vided by SHRIMPS. The second step is to connect to a data source
and generate actors. Researchers need to provide the source dataset
and its data provider. SHRIMPS includes example data providers for
the HMOG dataset (Sitova et al., 2015), the BB-MAS dataset (Belman
et al., 2019), the IDNet dataset (Gadaleta and Rossi, 2018), and the
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Touchalytics dataset (Frank et al., 2012). Actor generation requires a
random seed and the numbers of each actor type. The third step is to
design an enrollment script and a storyboard. Then, SHRIMPS can run
the evaluation task and output the raw results accordingly. Based on
the external signals in the storyboard, the result analyzer can segment
the evaluation results into sessions and produce the per-session results
automatically.

6. Sample use cases

In this section, we present two sample use cases that use SHRIMPS
to design trace-based tasks and evaluate multi-user IA schemes.

6.1. Common setup

IA mechanisms. Both use cases use the same set of behavioral bio-
metrics for their multi-user IA schemes. For demonstration, we choose
touch-based and gait-based IA mechanisms and use SHRIMPS to adapt
state-of-the-art algorithms to multi-user identification: 1) touch-based
IA uses 28 touch-related features based on the feature extraction algo-
rithm of Touchalytics (Frank et al., 2012), and SHRIMPS enables the
multi-class classification following the extension strategy in § 4.1. 2)
gait-based IA adopts a CNN+LSTM-based gait identification algorithm
(Zou et al., 2020), which already supports multi-user identification. For
the gait authenticator, the sampling rate of motion sensors is set to
50 Hz. The authenticator extracts gaits from a 1024-sample segment
and is set to perform authentication every 512 samples (=10.24 s).
Thus, every two consecutive segments have 50% overlap.

SHRIMPS handles training data generation for each authenticator.
We adopt the same data balancing settings: using SMOTE to oversample
minority classes and ensuring that all classes (including the negative
class) have the same training size. Note that SHRIMPS also supports
researchers to compare different balancing methods and parameters to
find the best settings.

Data source. In the evaluation, we use the following public datasets:

1. HMOG (Sitova et al., 2015): accelerometer data, gyroscope data,
and touch events from 100 users performing reading, writing, and
map navigation tasks. Each task lasts about 5-15 minutes. Our use
cases focus on the reading and walking tasks since gait and touch
data are available simultaneously for them.

2. BB-MAS (Belman et al., 2019): accelerometer data, gyroscope
data, and touch events from 117 users. Each user completed a 25-
minute typing task and a 10-minute walking task. Note: users did
not perform any touch events while walking.

3. IDNet (Gadaleta and Rossi, 2018): accelerometer data and gyro-
scope data from 50 users performing 5-minute gait tasks.

4. Touchalytics (Frank et al., 2012): touch events from 41 users.
Each user completed 3-4 web browsing tasks and 2-3 game tasks.
Different from BB-MAS, the touch events are mainly vertical and
horizontal swipes.

For all datasets, we select ten users as trainers to provide behavioral
data for the negative class. SHRIMPS excludes these users from the legit-
imate user and attacker selections, ensuring no overlap between trainers
and attackers to avoid the attacker-data-in-training pitfall. The eval-
uation datasets should include multiple users, sufficient cross-session
sensor data for each user, and multiple modalities. Since only the HMOG
dataset meets all requirements, our sample use cases use only it for most
of the evaluations.

Compared to HMOG, BB-MAS does not provide cross-session gait
data (i.e., only one 10-minute task for a user), while Touchalytics only
provides touch data and IDNet only provides gait data. To address the
lack of multi-modal public datasets, a compromise solution adopted by
existing studies (Hintze et al., 2019; Gupta et al., 2019, 2022; Lopes
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Silva et al., 2019) is to fuse multiple datasets for different modali-
ties that are independent of each other and rely on different sensors
(e.g., touch and gait). Therefore, we fuse the IDNet dataset and the
BB-MAS (or Touchalytics) datasets as follows: 1) We map the 14 users
who provided three or more tasks from IDNet to 14 users randomly se-
lected from BB-MAS (or Touchalytics). 2) We randomly select ten other
users from both datasets to provide data for the negative class. 3) For
data fusion, we use each IDNet motion data block as a basis and ex-
tract the BB-MAS (or Touchalytics) touch events in the same duration.
4) We adjust the timestamps of the touch events to align them to those
of the motion data. We acknowledge the limitation that merged user
behavioral data may not be realistic. However, the fused dataset is only
used to test the accuracy gain of different fusing methods for the multi-
modal scenario where an authenticator is failing. It also demonstrates
that SHRIMPS supports various public datasets.

6.2. Use case 1: fusion method comparison

A multi-user IA system is expected to identify each legitimate user
and reject imposters under different settings. SHRIMPS enables IA re-
searchers to compare different IA schemes and choose the best one
in terms of accuracy and detection latency. Specifically, a multi-user
system should detect user switches, which are common in household
sharing (Matthews et al., 2016; Al-Ameen et al., 2021). Also, an attacker
may grab the device from the owner, causing a sudden user change.

In this use case, we address the following questions:

1. How does adopting multiple modalities benefit multi-user IA
compared to single modality solutions?

2. What score fusion method provides the highest overall ac-
curacy considering false acceptance rate and false rejection
rate?

3. Is it necessary to set the maximum user size for a multi-user
IA system?

4. How fast and accurately can a multi-user IA system capture
an uninformed user switch during a shared session?

We first explain what fusion methods we add to SHRIMPS. Then we
describe the evaluation tasks that we execute in the framework.

6.2.1. Fusion methods

We tested different score fusion methods and compared them to sin-
gle modalities to examine how they balance FAR, FRR, and FIR. The
two baseline methods include single-modal gait-based IA and single-
modal touch-based IA. The most widely used score fusion method is
average-based fusion. Moreover, weighted average methods also take
the authenticator’s performance into consideration. To compare D-S
theory based methods to the average-based methods, we apply the per-
user AUCs and EERs as the weights for the average-based methods.

CORMORANT (Hintze et al., 2019) proposed a Kalman filter based
score fusion method that is resistant to the noise of detection. We extend
it into a multi-user fusion method by applying Kalman filter to multi-
user scores for each user with the following settings: 1) Measurement
uncertainty R is determined by the per-user EER, 2) Process uncertainty
0 =0.25: a large O makes the estimated score emphasize on new scores
(Hintze et al., 2019) (the selection of Q is explained in Appendix A). In
summary, we compared the following methods:

» Touch. Applying the touch authenticator only.
+ Gait. Applying the gait authenticator only.
» Mean. Calculating the average score of all authenticators.
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+ Mean-AUC. Calculating the weighted average score using AUC as
the factor.

+ Mean-EER. Calculating the weighted average score using 1-EER as
the factor.

+ Kalman. Applying Kalman Filter based score fusion.

+ DS-AUC. Applying multi-user D-S theory based score fusion with
the AUC-based uncertainty function (Eq. (1))

» DS-EER. Applying multi-user D-S theory based score fusion with the
EER-based uncertainty function (Eq. (2))

6.2.2. Evaluation tasks

We design two groups of evaluation tasks to address the above
questions. Given the limited data amount we use two fused datasets,
IDNet+BB-MAS and IDNet+Touchalytics, only for the first group and
adopt different settings for this dataset than for the HMOG dataset.

Group 1 (Accuracy evaluation) tests if the system can reject an at-
tacker in a lunchtime attack and verify the identity of a legitimate user.
The accuracy evaluation adopts a balanced static setting: there are equal
numbers of legitimate users n, and attackers n, in each setup; each le-
gitimate user has a fixed number of data blocks for initial enrollment
and contributes to one fixed-length block for testing; therefore, there are
n,+n, blocks for each setup; we set an external signal between blocks to
reset the authentication status. For HMOG, we used six enrollment data
blocks for each user and set the testing block length as three minutes;
we tried four different actor sizes, n, =n, =3,5,7,10 and tested 50 dif-
ferent actor combinations for each actor size. For IDNet+BB-MAS and
IDNet+Touchalytics, we used two enrollment data blocks for each user
and set the testing block length as two minutes; we tested n, =n, =3
for 25 different actor combinations. In addition, given the length of the
IDNet motion data blocks is much shorter than HMOG, we also reduce
the segment size and the detection interval of the gait authenticator to
512 and 256 samples, respectively.

Group 2 (User switch evaluation) tests how each method detects
user switches from a legitimate user to another legitimate user or an
attacker in real-time. There is no external signal that informs the sys-
tem of user switches. We assume that there are three legitimate users
and three attackers in the task, where each legitimate user has six data
blocks for initial enrollment. We composed three device sharing events
and three attack events in the following storyboard: 1) u,’s block, u,’s
block, [external signall; 2) u,’s block, u,’s block, [external signall; 3)
u,’s block, u,’s block, [external signall; 4) u,’s block, a,’s block, [exter-
nal signal]; 5) u;’s block, a,’s block, [external signall; 6) u,’s block, a,’s
block, [external signall. a;, are three different attackers (i.e., u_;).
Each event (i.e., session) consists of two blocks from two different ac-
tors without any external signal in between to describe an uninformed
user switch. The external signals in the storyboard only mark the end
of each session.

6.2.3. Result analysis
We provide the result analysis as follows:

Group 1. Fig. 3a shows the results of the first group of evaluation tasks
on HMOG, which includes the decision-level accuracy distributions of
all eight methods at n, = n, = 3. The D-S theory based methods have the
lowest FAR, FRR, and FIR, which means they can effectively reject at-
tackers with less chance to falsely reject a legitimate user. Table 1 shows
the GC of each error type (the error distribution curves are presented in
Appendix C). High GCs on D-S theory based solutions imply that most
errors were contributed by fewer users after applying the D-S theory
based solution. The performance of score fusion methods is bounded
by the fused modalities — The error rate concentrated on the users for
whom both modalities have low accuracy. Session-level comparisons
are in Fig. 3b. We find that the impact of FRs and FIs is magnified at
session-level. Specifically, the touch-based method has a significantly
high FIR. Among all methods, D-S theory based methods achieve the
lowest overall false detection rate: FRR (0.13) and FIR (0.03), which
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Fig. 3. Accuracy evaluation on HMOG. For each setting, the number of legitimate users (n,) and attackers (n,) are equal. (For interpretation of the colors in the

figure(s), the reader is referred to the web version of this article.)

Table 1
Gini Coefficient of FAR, FRR, and FRR at n, =n, =3.
touch  gait mean mean-EER  mean-AUC  kalman DS-EER  DS-AUC
GC-FAR 0.70 0.70 0.70 0.66 0.69 0.74 0.78 0.81
GC-FRR 0.89 0.86 0.86 0.89 0.87 0.93 0.93 0.92
GC-FIR 0.91 0.94 0.95 0.95 0.95 0.94 0.98 0.98

means about 84% of the legitimate users’ blocks are error-free. Al-
though Kalman filter based fusion also achieves a low FRR (0.12), its
FIR is significantly higher (0.10). We measure the latency as shown in
Fig. 3c. Detection latency is determined by the adopted IA mechanisms:
the touch authenticator relies on a user’s interaction with the screen,
and the gait authenticator using the default settings (Zou et al., 2020)
performs authentication at a low frequency. Both take much time to col-
lect sufficient data for making decisions. Since all multi-modal methods
are implemented in SHRIMPS with the same configuration, there is no
significant latency difference. Compared to single modalities, they im-
prove the latency because they receive results from both modalities to
make decisions earlier.
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Fig. 4 shows the results on IDNet+BBMAS. This evaluation task com-
pares the accuracy gain of different fusion methods when one modality
performs significantly worse than the other. Due to the task setup, dif-
ferent swipe types (i.e., vertical swipes on the left and right parts of a
screen and horizontal swipes on the bottom) are not evenly distributed
in the time series. Consequently, patterns for some swipe types are not
well learned by the touch based IA, which leads to poor accuracy. From
Fig. 4a, we can see that the FAR of the touch authenticator was very
high. However, the D-S theory based solutions still significantly re-
duced the FAR (the session-level FARs of DS-AUC and DS-EER are 0.07)
compared to the other approaches. Besides, they can also improve the
FIR. We can draw the same conclusion from the session-level results
in Fig. 4b. For detection latency, we see the same trend for IDNet+BB-
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Fig. 5. User switch evaluation results.

MAS as for HMOG. However, due to the shorter detection interval and
earlier touch events, the overall latency for IDNet+BB-MAS is much
shorter than for HMOG. In IDNet+Touchalytics, the touch-based IA
had a higher overall accuracy. Except for lower FAR and FRR of the
touch-based IA and all fusion methods, we observed a similar trend
to IDNet+BBMAS and HMOG, and therefore, we put the results in Ap-
pendix B.
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Based on the above results, we can answer questions 1 and 2: 1)
Multi-modal methods achieve significantly better accuracy and balanc-
ing FAR, FRR, and FIR than single modalities, and 2) Among the tested
fusion methods, D-S theory based methods have the lowest false detec-
tion rate.

When the legitimate user size is increased to 5, 7, and 10, we observe
an increase in false decisions for all methods in Figs. 3d, 3e, and 3f. In
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particular, the FAR rises significantly, which implies that the ability to
detect attackers is weakened when classifying more classes. Neverthe-
less, DS-AUC can still well balance FAR and FRR/FIR, (FAR: 0.19, FRR:
0.26, FIR: 0.05, when u, is 10). From the result, we can answer the third
question: it is necessary to control the user size of a system to ensure
high overall accuracy. IA researchers need to specify a threshold for
accuracy and test different user sizes to determine the system capacity.

Group 2. Fig. 5a shows the results of the second group of tasks: the
decision-level results for both pre-switch blocks and post-switch blocks
are similar to the accuracy evaluation results. For attack events, DS-EER
has the lowest FAR. However, for sharing activities, we can observe
an increase in FIR and FRR for the post-switch blocks for all meth-
ods at session-level because of the detection latency — although the
current user has changed to a different legitimate user, the authentica-
tion system still has no sufficient confidence in identifying this user. In
Fig. 5b, DS-AUC and mean-EER still have better FRRs (0.19, 0.16) and
FIRs (0.04, 0.04) compared to the other methods. However, the FAR
of mean-EER (0.23) is much higher than that of DS-AUC (0.12). The
high FIR (0.16) of Kalman filter based fusion shows that it is not a good
option for handling user switches because its noise resistance makes it
slow in response to sudden score changes. The detection latency results
in Fig. 5c are similar to the first group of tasks. DS-AUC can provide
low and stable detection latency (mean=237.7 s, std=10.8).

The results have shown that D-S theory based fusion methods can
capture user switches during shared sessions with balancing FAR, FRR,
and FIR compared to the other methods, which answers the fourth
question. In addition, the results also imply the importance of exter-
nal signals. If a signal, such as Android’s Screen Pinning signal (Google
Inc., 2023), may imply a user switch event, the system can then deter-
mine the end of a user’s device use and reset the authentication status.
Then, a user-switch task can be simplified as an accuracy evaluation
task, where external signals assist in data segmentation to improve ac-
curacy (see the second use case).

In summary, with the help of SHRIMPS, we were able to answer our
questions for the first use case. We summarize the answers below.

1. Multi-modal methods achieve significantly better accuracy
and balancing FAR, FRR and FIR than single modalities.

2. Among the tested fusion methods, D-S theory based methods
have the lowest false detection rate.

3. It is necessary to control the user size of a system to ensure
high overall accuracy.

4. D-S theory based fusion methods can provide low and stable
detection latency for user switches.

6.3. Use case 2: multi-user model updating

Compared to the balanced and static settings adopted in the first
use case, the second use case considers more factors: First, given that
the owner usually spends more time with the device and contributes
more training data than a secondary user, we test how the system han-
dles imbalanced user data. Second, as new incoming data is used for
model updating and new users are added into the system, the detection
accuracy of the system may change over time. Third, user feedback to-
wards false decisions may influence the identification and auto labeling
processes. In addition, a user’s lifting and putting down the device and
other events may indicate the starting and the end of device usage and
can be used to segment the data, which are considered as external sig-
nals to the multi-user IA system. The evaluation tasks should address
the following questions:
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1. What is the accuracy difference of the system identifying the
owner and the secondary users?

2. How does new incoming data affect the accuracy of the sys-
tem identifying different users?

3. How does external signals and user feedback benefit data
segmenting and labeling in term of the overall accuracy?

6.3.1. Comparison strategies

From the first use case, we conclude that the D-S theory based meth-
ods can accurately detect attackers and identify legitimate users. Thus,
we adopt DS-EER for score fusion. To address the above questions,
we compare three strategies: 1) baseline: the system only supports user
enrollment and does not learn from historical data (i.e., no model re-
training after each part); 2) uninformed: the system makes decisions and
performs auto labeling based on identification results and user feed-
back, and ignores external signals; 3) informed: the system additionally
uses external signals for detecting a user switch and auto labeling.

6.3.2. Evaluation tasks

For setup, there are three legitimate users: the owner u, and the sec-
ondary user u; have already enrolled, and a new user u, will enroll in
the system during the task. For initial enrollment, u, has three blocks,
and u; only has one. The block length is randomly sampled, ranging
from two to five minutes based on the high variance reported by Har-
bach et al. (2014). To show the accuracy change over time, we split the
task into three parts at each model re-training and design the following
storyboard:

1. (2 blocks): uy’s block, [external signall, u,’s block, [external signall,
model retraining;

2. (3 blocks): u,’s enrollment, [external signall, u,’s block, [external
signal], u,’s block, [external signall, u,’s block, [external signal],
model retraining;

3. (3 blocks): u,’s block, [external signall, u,’s block, [external signal],
u,’s block, [external signal].

External signals are only used in the informed strategy, while user
feedback is used in both the informed and the uninformed strategies:
External signals indicate device handoff where a legitimate user passes
the device to another. User feedback indicates the current user has suc-
cessfully passed the explicit authentication, which means the IA system
made a false rejection. As a result, the evaluation framework will no-
tify the system of the false decision. Model retraining is not applied to
the baseline strategy. For each part, we measure the accuracy over all
the blocks within. We repeat the task with 150 different actor combina-
tions.

6.3.3. Result analysis

Table 2 shows the per-user results for each part. In Part 1, we can
observe that the system had a lower false detection rate at identifying
the owner than a secondary user when there is not much training data.
This difference becomes smaller when more training data is available
for secondary users due to the data balancing strategy, which answers
the first question.

After u,’s enrollment at the start of Part 2, the system updated all
IA models. By the end of Part 2, the system experienced significant
accuracy degradation in identifying u, compared to Part 1. However,
due to score fusion and data balancing, the accuracy of identifying the
new user is close to identifying u;. At the end of Part 2, the system
retained all models with new data collected in Part 2. In Part 3, the
false decision rate dropped. Compared to the baseline, the FRR and
FIR of the informed strategy were lower for all users. The results have
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Table 2
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Per-part results for use case 2. Three legitimate users: u,: primary user; u,: secondary user;
u,: new legitimate user. False decision rate (FR) is the sum of FRR and FIR.

user Part 1 Part 2 Part 3
FRR FIR FR FRR FIR FR FRR FIR FR
g 0.25 0 0.25 0.43 0.05 0.48 0.48 0.03 0.51
Baseline u; 0.47 0 0.47 0.5 0.05 0.55 0.53 0.02 0.55
u, - - 0.43 0.03 0.46 0.53 0.02 0.55
g 0.21 0.01 0.22 0.38 0.11 0.49 0.37 0.10 0.47
Uninformed u; 0.43 0 0.43 0.37 0.03 0.40 0.43 0.07 0.50
u, - - 0.38 0.03 0.41 0.29 0.04 0.33
g 0.23 0.01 0.24 0.43 0.04 0.47 0.33 0.03 0.36
Informed u; 0.38 0.01 0.39 0.27 0.02 0.29 0.26 0 0.26
u, - - - 0.27 0.02 0.29 0.25 0.01 0.26

addressed the second question: model updating can help improve cross-
session accuracy significantly.

To answer the third question, we compare the uninformed and in-
formed strategies across all parts. The results have shown that external
signals can further improve accuracy because 1) they enabled the sys-
tem to reset the authentication status at a user switch to avoid false
identification, and 2) they provided precise data segmentation, which
makes the system correctly label more behavioral features. Despite the
benefits of improving accuracy, IA researchers also need to consider the
usability of the system. For example, frequently asking for a user’s feed-
back makes the system hard to use. With SHRIMPS, IA researchers can
observe the frequency of the external signals and optimize the workflow
by modifying the auto labeling and model updating mechanisms.

In summary, with the help of SHRIMPS, we were able to answer our
questions for the second use case. We summarize the answers below.

1. The system had a lower false detection rate at identifying
the owner than a secondary user when there is not much
training data. This difference becomes smaller when more
training data is available for secondary users due to the data
balancing strategy.

Model updating can help improve the cross-session accuracy
significantly.

External signals can further improve accuracy because 1)
they enabled the system to reset the authentication status at
a user switch to avoid false identification, and 2) they pro-
vided precise data segmentation, which makes the system
correctly label more behavioral features.

7. Discussion

Limitations. We list the following limitations of SHRIMPS or sample
use cases: 1) The design of simulation tasks is restricted by the dataset.
For example, for HMOG, we limit the length of use case 2 to three
parts to satisfy the cross-session requirement, which leads to high error
rate for all strategies. 2) Although SHRIMPS supports simulated user
feedback, there is still a gap between simulation and user studies in
usability evaluation. Nevertheless, SHRIMPS can be used for tuning and
evaluating a multi-user IA system before user studies. 3) Since SHRIMPS
is a simulation framework, it is not for implementing and developing a
deployable multi-user IA system on smart devices. However, it can be
easily connected with the real systems for parameter tuning.
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Applications. We present two use cases to exemplify how SHRIMPS
helps IA researchers and developers design and evaluate multi-user IA
schemes. We note that SHRIMPS can be applied in diverse scenarios.
For example, it is feasible to use the simulation environment to gen-
erate a long simulation task consisting of random sensor data blocks
and random external signals to test the robustness of a multi-user IA
scheme. Besides, IA researchers can explore how much training data is
required for different user types (e.g., owner and secondary users) to
help balance the per-user accuracy by modifying the training set gener-
ation module.

Multi-user concurrent usage. In our paper, we assume only one user
operating the device at the same time. Matthews et al. (2016) listed
broadcasting as a type of device sharing, where multiple people are co-
using a single device simultaneously. Recognizing all present legitimate
users can be regarded as a multi-label classification problem. However,
if the system is always assuming the device is under concurrent usage
and performing multi-label classification, its accuracy is very likely to
suffer given the problem complexity. Thus, we need a certain external
signal indicating the concurrent usage context and then trigger multi-
label classification.

Contextual information. According to the user switch simulation
tasks, an IA system may falsely reject a legitimate user if it is un-
informed. However, if it knows the context of user switch through
external signals, the problem can be simplified as a general identifi-
cation task. Existing studies (Hintze et al., 2019; Miettinen et al., 2014)
also use contextual information to adapt IA systems for better accuracy
or less battery consumption. A future avenue is to embed contextual
information into SHRIMPS and establish connections between context
and authenticators.

8. Conclusion

We proposed SHRIMPS, the first simulation framework for design-
ing and evaluating multi-user, multi-modal IA schemes. SHRIMPS is
targeted at IA researchers and developers and allows them to easily
compose and evaluate different continuous identification and authen-
tication strategies. We also proposed a Dempster-Shafer based score
fusion strategy to combine multiple modalities. Finally, we presented
and evaluated two use cases that use SHRIMPS to design a multi-user
IA scheme with touch-based and gait-based IA mechanisms and ad-
dressed practical design questions. The evaluation results of the use
cases showed the (in)effectiveness of different IA strategies and config-
uration settings.
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Appendix A. Q selection for Kalman filter

In the first use, we adopt the Kalman Filter settings from COR-
MORANT (Hintze et al., 2019). The Kalman filter assumes there is
Gaussian noise in the state transition, which is modeled with a noise
covariance matrix Q. CORMORANT highlighted the significant impact
of the value selection of Q: A large Q has a smaller confidence in the
system model and a larger confidence in the observations, which is de-
sired by the score fusion purpose. To ensure the Kalman filter based
score fusion method is optimized, we tested several Q values and com-
pared their accuracy values using the same settings of the first use case,
where n, =n, =3. Fig. A.6 shows the decision-level metrics of different
Q’s. In general, a large Q results in a better FAR. An extremely small
0 =0.001 leads to high FAR and FIR. However, FRR and FIR do not de-
crease with larger Q. To balance the three metrics, we choose Q = 0.25
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in our experiments, which has the lowest average FRR (0.05) plus FIR
(0.06) with a relatively low FAR (0.18).

Appendix B. Results for IDNet+Touchalytics

In IDNet+Touchalytics, the decision-level FAR and FRR of the touch-
based IA are significantly lower than IDNet+BB-MAS (see Fig. B.7). At
the session level, the FAR and FRR+FIR of the touch-based IA are more
balanced. After applying the score-level fusion, we can see lower FAR,
while D-S theory based methods can achieve the lowest session-level
FAR (DS-AUC: 0.07). However, due to the gait-based IA, all fusion meth-
ods have a higher FRR than the touch-based IA. However, DS-AUC can
still achieve the lowest FRR+FIR among all methods.

Appendix C. Gini coefficient for use case 1

The Gini Coefficient (GC) is calculated between the area between
the Lorenz Curve and the Line of Equality. For evaluating IA systems,
Lorenz Curve plots percentiles of the users on the x-axis according to
error rate and plots cumulative error rate on the y-axis (Eberz et al.,
2017). A point (x,y) on the curve indicates the normalized total er-
ror rate y contributed by the bottom x users. The Line of Equality is
a straight diagonal line with a slope of 1, which represents that all
users contribute to the same error rates. In Fig. C.8, we present the
Lorenz Curve and the GC of all eight methods in the first group of
evaluation tasks for the first use case. If we compare the D-S theory
based fusion methods to other methods, we can observe fewer users
contribute to more errors from the figure. For FAR, it means that
the system may mis-classify a few “very successful” attackers as le-
gitimate users. However, it is also possible that the system rejects an
attacker at a certain time during continuous authentication. Thus, we
also measure session-level metrics and detection latency to capture such
situations. For FRR and FIR, the Lorenz Curve does not change as sig-
nificantly as FAR, which means the error distribution remain similar
among different methods. We can infer that score fusion strategies are
effective in reducing random errors. To further improve the accuracy
and reduce systematic error, a possible avenue is to incorporate new
modalities.
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