
18	 September/October 2012	 Copublished by the IEEE Computer and Reliability Societies � 1540-7993/12/$31.00 © 2012 IEEE

E-voting Security

Aleksander Essex | Children’s Hospital of Eastern Ontario Research Institute
Urs Hengartner | University of Waterloo, Canada

Hover (Hash-Only Verification), an end-to-end (E2E) verifiable voting system with distributed trust, uses
only a collision-resistant hash function for verification. Such verification could make E2E elections more
accessible to people without a strong cryptography background.

R ecall an old engineering adage: “Fast, good,
cheap—pick any two.” It’s a testament to the trade-

offs inherent in any design project. Over the past 30
years of research in cryptographically end-to-end (E2E)
verifiable elections, the trade-offs have been primarily
among cryptographic verifiability, distribution of trust,
a usable voting interface, and conceptually simple veri-
fication. Cryptographers have tended to focus on the
former two, whereas election officials and voters have
championed the latter two. In our view, compromise is
necessary to advance the cause of trustworthy elections.

To that end, we propose Hover (Hash-Only Verifica-
tion), a novel combination of several recent ideas in the
field of trustworthy voting. At Hover’s core is the Scant-
egrity optical-scan system.1,2 We also borrow aspects
from the Eperio system to facilitate verification of the
noncryptographic parts in familiar software applica-
tions such as desktop spreadsheets.3 In addition, we
use oblivious printing4 and related techniques5 to dis-
tribute trust among multiple election trustees without
increasing the election audit’s technical requirements.
We believe that Hover can help educate less technical
audiences about the merits of cryptographically verifi-
able elections.

As a consolidation of research ideas, Hover doesn’t
claim great technical innovation. Instead, it aims to
strike a delicate balance of technologies to innovate
at a social level. Although this pursuit is ongoing, we
hope Hover can help bring cryptographers and the
general public closer together regarding how to run
trustworthy elections.

Voters vs. Cryptographers
Designing cryptographically E2E verifiable elections
is both a technical and social challenge. On a technical
level, cryptography can make elections verifiable in a way
that fundamentally exceeds conventional approaches. It
offers each voter a means to check that his or her ballot
was counted correctly, without revealing it to anyone.
Such elections’ trustworthiness is the product of state-
ments proven directly about the election results, not of
individual voting machines or their software.

However, on a social level, many people (in what
cryptographers call the “real world”) continue to wonder
how a cryptographic proof can ever truly be convincing
to average voters. Consider a recent German constitu-
tional court decision on election verification: “Each citi-
zen must be able to comprehend and verify the central

Hover: Trustworthy Elections
with Hash-Only Verification

www.computer.org/security� 19

steps in the election’s reliably and without any special
prior technical knowledge.”6 A recent legal analysis by
Denise Demeril and her colleagues is dubious as to E2E
verifiable systems’ future under such a ruling.7

Still, we believe cryptographic verification represents
the future of elections. The 20098 and 2011 cryptograph-
ically verifiable elections in Takoma Park, Maryland, are
a testament to progress in that regard. The challenge is
to make the ideas behind E2E verifiable elections more
conceptually accessible or risk marginalizing the tech-
nology. After all, if a proof is made in a forest—and no
one is around to check it—is it complete and sound?

Popular Proofs
Researchers often approach E2E verification system
design as a trade-off. At one end is unconditional integ-
rity. Under this model, election trustees can’t reliably
produce a false (but valid-looking) proof, even with
access to sufficient computational resources. However,
someone with sufficient computational resources could
exploit this proof to break ballot secrecy.

At the other end is everlasting privacy. Under this
model, a proof can never be used to recover the associa-
tion between vote and voter. However, given access to suf-
ficient computational resources, election trustees could
potentially publish a false (but valid-looking) proof. Tal
Moran and Moni Naor note everlasting privacy’s appli-
cability to the voting problem: “While integrity that
depends on computational assumptions only requires
the assumptions to hold during the election, privacy that
depends on computational assumptions requires them to
hold forever.”9 Unfortunately, the cryptographic primi-
tives typically associated with information-theoretic pri-
vacy exceed the knowledge base of average voters.10

To create an E2E verifiable election that’s conceptu-
ally simple yet offers a degree of cryptographic security,
we designed a popular proof—one that’s convincing (to
some degree) on both a social and technical level. So,
in designing E2E verifiable voting schemes, our modus
operandi is as follows. Each citizen must be able to com-
prehend and verify the central steps in the election reli-
ably with minimal special prior technical knowledge.
If special prior technical knowledge is an unavoidable
consequence of a cryptographically verifiable election’s
security requirements, it should be biased more toward
the creation of a proof than its verification.

E2E with a Dash of Hash
Why base our E2E proof on a cryptographic hash func-
tion? We consider two perspectives:

■■ a nonexpert technical audience with a basic cryptog-
raphy background and a potential interest in election
auditing and

■■ a general audience with no cryptography back-
ground but with an interest in learning about its
underlying principles.

For the nonexpert technical audience, hashing is
one of the most commonly encountered cryptographic
primitives. Anyone who has downloaded open source
software will likely have encountered a hash. In addi-
tion, hashing is one of the few primitives commonly
found in the standard libraries of many programming
languages. A file hash can even be computed directly
from a Unix-based command line (for example, Linux
and Mac OS), and numerous free websites and utili-
ties exist for users of other operating systems. By com-
parison, many cryptographic primitives favored in the
literature (for example, homomorphic encryption and
zero-knowledge proofs) don’t have widely available
implementations, often requiring that they be imple-
mented from scratch.

To the general audience, hashing provides an intui-
tive parallel with physical fingerprints. Such a meta-
phor seems potentially useful, given prime-time crime
dramas’ popularity. For example, such a show’s viewers
might understand that police couldn’t easily identify
a fingerprint that wasn’t already in their criminal data-
base (preimage resistance). They might also understand
that finding two people with matching fingerprints is
unlikely (collision resistance) and that finding another
person whose fingerprints match their own would be
even more unlikely (second preimage resistance).

Although this analysis is imperfect, we can reason-
ably expect to face fewer obstacles connecting a new
concept to an existing, well-formed mental model. By
comparison, many primitives favored in the literature
aren’t nearly as strongly connected to an existing model.
For example, semantically secure additively homo-
morphic public-key encryption would require convey-
ing three novel concepts instead of one: randomized
encryption, adding “under the covers,” and asymmetric
keys—none of which has a strong physical analogy.

A Special-Purpose Hash-Based Commitment
We employ a hash function (under specific assump-
tions) as a computationally hiding and computation-
ally binding commitment scheme. Cryptographic
commitments are at the core of several trustworthy
voting protocols, including Scantegrity and Eperio.
Several commitment schemes exist in the literature,
such as Torben Pedersen’s unconditionally hiding com-
mitment scheme.9 In this application, we’re interested
in using hashing for its relative technical and concep-
tual simplicity.

Briefly, a cryptographic commitment scheme
Comm(m, r) takes message m and randomness r and

20	 IEEE Security & Privacy� September/October 2012

E-voting Security

produces commitment c. Open(c, m, r) takes c, m, and r
and returns accept if and only if Comm(m, r) = c. A com-
mitment is binding if it’s hard to find any {m, mʹ, r, rʹ}
where m ≠ mʹ such that Open(Comm(m, r), mʹ, rʹ) returns
accept. A commitment is hiding if finding any {m, r}
given c such that Open(c, m, r) returns accept is diffi-
cult. For a stronger hiding requirement, extracting partial
information about m given c should also be difficult.

However, given m and a collision-resistant hash
function H, H(m) isn’t a commitment to m in general.
For one thing, hashing a message isn’t computation-
ally hiding when m isn’t chosen from a sufficiently large
space. For example, committing to a single bit b  {0, 1}
by posting c = H(b) is trivially opened by checking
which of H(0) and H(1) produce c. However, under
certain circumstances, such as when the message is a
sufficiently large random factor, a hash could function as
part of an application-specific commitment. Although
a commitment function based on a collision-resistant
hash function can generally be considered a “false solu-
tion,” we believe it might be suitable for our needs.

Given H : {0,1}* → {0,1}𝓵 (where 𝓵 is the length
of the hash function’s output in bits) and an efficient
description of permutation space Π, for |Π| ≥ 2𝓵, we
define an application-specific commitment function as
follows. Comm(π) takes permutation π R Π and pro-
duces c = H (π). Open(c, πʹ) takes c and an asserted
permutation πʹ  Π and returns accept if and only if
H (πʹ) = c.

For π, πʹ  Π, Comm is binding as long as an adver-
sary can’t find

■■ a collision—that is, H(π) = H(πʹ) for any π ≠ πʹ—or
■■ a second preimage—that is, given π, a πʹ ≠ π such that

H(π) = H(πʹ).

We assume that finding valid collisions as part of the
collision-resistant properties of H and finding valid sec-
ond preimages as part of the one-way properties of H
are computationally infeasible. Comm is hiding as long
as an adversary can’t exhaustively search the message
space or invert the hash function—that is, given c, find-
ing a π  Π, such that H(π) = c, should be difficult. We
assume π is chosen uniformly at random from Π and
that |Π| is sufficiently large that exhaustively search-
ing the message space is computationally infeasible.
We also assume that inverting H as part of the one-way
properties of H is computationally infeasible.

An important question is whether collision resistance
implies one-wayness. Mihir Bellare and Phillip Rogaway
showed that an adversary with the ability to attack the
one-wayness of H : D → R has a negligible advantage over
an adversary with the ability to attack the collision resis-
tance of H when |R|/|D| is also negligible.11 For typical

real-world elections, a collision-resistant hash function
will imply one-wayness for our purposes.

In our application, the message we’re committing to
(that is, the hash image) is a random permutation of a
list of the mark state (that is, marked or unmarked) of
each optical-scan oval on each cast ballot. In an elec-
tion involving c candidates and v voters, this list consists
of cv elements, with (cv)! possible permutations. For
example, for c = 2, v = 50, and a hash function with 𝓵 =
256, we have |D| = 100!, |R| = 2256, and |R|/|D| ≈ 2–269,
which is negligible. A function f is negligible if there is
a positive integer k such that f(k) < 1/poly(k) for any
positive polynomial poly().

Small Information Leakages
As Shai Halevi and Silvio Micali warned, despite H
being collision resistant and one-way, there are no guar-
antees about the feasibility of computing partial infor-
mation about m given H(m).12 Their point was that
to ensure the commitment is hiding, we must require
additional properties of H. For this article, we exclude
the threat of partial information leakage—for example,
by modeling H as a random function. This somewhat
contradicts our real-world setting, so it’s worth briefly
outlining potential consequences when an adversary
can extract a small number of bits from m given H(m).

Although we believe that the overall threat to voter
privacy is low, proving this would be complex and would
require specific assumptions about the leakage’s dis-
tribution for a given hash function. Still, aspects of our
system offer an inherent degree of fault tolerance. For
example, a leakage of g bits isn’t sufficient to determine
any single pair {x, π(x)} as long as log2((cv)!)/cv > g.
So, leaking a small number of bits (for example, one
or two) would never be sufficient to compromise the
secrecy of any ballot for most election sizes. Intersection
attacks combining partial leakages across multiple proof
instances remain possible. However, on the basis of pre-
vious (unpublished) Scantegrity analyses, we contend
this threat is fairly minimal for small leakages.

Basics and Election Setup
For simplicity, we describe the election correctness proof
as being generated by a single trusted authority. A trusted
authority can’t create a false (but accepting) proof, but,
as in Scantegrity, it does receive sufficient information to
link individual voters to their voting intentions. Recent
advances in secure document printing can be used to
distribute trust among multiple authorities.4

A single election trustee T initializes an election by
establishing a public append-only bulletin board BB. T
defines Π, which consists of all possible permutations
of cv elements. T posts c, v, an efficient description
of Π, a description of H, a canonical list of candidate

www.computer.org/security� 21

names N, and an alphabet of c valid or possible confir-
mation codes D to BB. Proving the association between
codes and candidates printed on the ballot is correctly
reflected on the bulletin board requires this informa-
tion to be made public. Some ballots are randomly
selected for this “print audit.” These ballots can’t be
voted on, so in practice, v is several times larger than
the actual number of registered voters. T generates v
ballots, each containing c unique tuples {s, d, n} associ-
ated with a specific optical-scan oval on the ballot. This
tuple consists of a ballot-specific serial number s  {1,
…, v}, a code letter d  D assigned randomly without
replacement, and the associated candidate name n  N.
The association between a given code d and candidate
name n is independent and random across ballots. All
v ballot tuples form a master ballot table B = {Bs, Bd,
Bn}. B is given to a trusted printer who prints each of
the v ballots.

For i = 1 … p proof instances, T chooses two random
permutations i, i R Π and computes shuffled candidate
list B Bn i i ni

�ρ σ ()= . T posts Bs, Bd, each of the p shuf-
fled candidate lists Bni , and commitments to the associ-
ated random permutations, H(i) and H(i), to BB.

A voter marks the optical-scan oval appearing beside
the chosen candidate’s name. The voter creates a receipt
r s d{ , ˆ}= by writing down the serial number s appear-
ing on the ballot and the code letter d̂ appearing beside
the marked oval. Figure 1 depicts a ballot, its receipt,
and the associated bulletin board entry.

Because receipt creation is unsupervised, disputes
might arise between a voter and T over which code was
marked. In its basic form, Hover uses the in-person dis-
pute resolution from the original Scantegrity proposal.13
This approach uses a noncryptographic cut-and-choose
proof, which fits with our design goals but doesn’t scale
well and is cumbersome to administer. Scantegrity II
uses invisible ink to offer an informational dispute-
resolution procedure based on knowledge of a secret
confirmation code. This procedure is conceptually more
complicated and wouldn’t be suitable for a distributed-
trust setting. We recently expanded it to a distributed-
trust setting,5 but this comes at the conceptual cost of a
zero-knowledge proof. Designing a dispute-resolution
procedure that is scalable, uses an economy of cryptog-
raphy, and yet is secure in a distributed-trust setting is a
matter for future research.

Linkage Lists
Whereas Scantegrity publishes separate commitments
to each pair {x, π(x)}, Hover commits to the full speci-
fication of random permutations i and i. Commit-
ting to an entire permutation not only lets us use a
simpler commitment scheme but also results in sub-
stantially fewer cryptographic operations overall: 2p

commitments for Scantegrity and 2pcv commitments
for Hover.

An important part of a trustworthy election is the
voter’s ability to receive assurance that the bulletin board
tables faithfully represent the code-candidate association
appearing on the paper ballot. In a Scantegrity election,
a voter (or some other designated third-party auditor)
might challenge T to prove the correct printing of any
ballot. For each element in Bs and Bd associated with
serial number ŝ of the challenged ballot, T discloses
each associated element in each of the p candidate lists
Bci by opening the commitments to the associated I/O

pairs in i and i (2pc openings in total). Ballot ŝ is then
considered spoiled and can’t be voted on; a poll worker
marks the paper ballot accordingly, and a flag is placed
beside the associated entries in the bulletin board.

Because Hover commits to permutations as a whole,
it can’t reveal individual I/O pairs directly. To address
this, we use Eperio’s linkage list construction.3 Instead
of proving code-candidate links by directly opening the
affected commitments, T merely asserts the links in a
linkage list LL. These assertions’ correctness can later be
confirmed (with high probability) as part of the post-
election audit. Although we feel this approach provides
much simpler verification through full-permutation
commitments, a major drawback is that printing faults
are discovered only after the election.

Figure 1. (a) A marked ballot and receipt. (b) A bulletin board showing receipt
and candidate information including serial numbers Bs, confirmation codes
Bd, and the mark state of the associated optical-scan ovals Md. A secret shuffle
dissociates a list of candidate names Bn and the associated mark states Mn
from the corresponding entries in Bs, Bd, and Md. The shuffle is expressed as the
composition of two independent random permutations  and —one may
later be challenged by the public to be revealed as part of a cut-and-choose
proof of correctness. Additional independent shufflings can increase soundness.

Bs

001

001

002

002

...

Bd

A

B

A

B

...

σ

Md

•

...

ρ

M

•

...

Mn

•

...

Bn

Bob

Bob

Alice

Bob

Alice

...

B

A

Alice

Bob

#002(a)

(b)

22	 IEEE Security & Privacy� September/October 2012

E-voting Security

An important question is whether our hash-based
commitment securely composes by using a linkage list.
Through the linkage list, we’re intentionally disclosing
partial information about i and i. This by itself isn’t
an issue: the number of unaudited ballots is always at
least as large as the total number of voters. This means
that the effective permutation space Πef  Π will still
be large despite partial disclosures owing to the print
audit. However, a real-world cryptographic hash func-
tion might leak additional bits owing to this partial
disclosure. Of course, if H is a random function, adver-
saries can’t use information revealed by the print audit
to compute unknown bits.

Election Challenges and Audit
After the election, T uses the data collected by the opti-
cal scanners to create a mark state list Md of cast ballots.
Md(i) ← 1 if and only if the confirmation code Bd(i) on
ballot Bs(i) was recorded as having been marked; Md(i)
← 0 if it was unmarked. Md(i) ← ∅ if the ballot was
spoiled or print audited. T posts Md to BB. Finally, for
each proof instance i = 1 … p, T creates shuffled marks
tables Mi = i(Md) and M Mc i ii

ρ ()= and posts these
lists to BB. A shuffled candidate name list Bni and the
associated marks list Mni are sufficient to compute
an election tally. Anyone can check that each of the p
instances produces the same election result.

Challenges. For each proof instance i = 1 … p, the
public will collectively issue a challenge to T to reveal
either i or i. T responds by opening the associated
commitments. There are several ways to produce chal-
lenge bits; the essential property is that T mustn’t be
able to predict the outcome with an advantage over a
random guess.

One potentially suitable source of entropy for small-
scale elections is the upcoming random beacon being
implemented by the US National Institute of Standards
and Technology (NIST).14 The NIST beacon will draw
on hardware-based entropy sources, offering the public
digitally signed random bit strings in a persistent online
database. Although the NIST beacon generally will be
agnostic about what its outputs are being used for, it still
represents a trusted component in this context, which
might not be suitable for larger elections.

An alternative is randomness extracted from finan-
cial data—a method we used in the 2009 Takoma Park
election. Jeremy Clark and Urs Hengartner analyzed
this method and offered suggestions for securely com-
bining the outputs of multiple independent sources.15

Audit. Voters can use their receipt r s d{ , ˆ}= to check
that, for each row s  Bs, all the associated mark states
in Md are unmarked, except for the one associated with

their recorded confirmation code d̂ in Bd. Anyone can
check that the mark states were correctly propagated
between the receipt and candidate tables by checking
against the opened permutations—that is, by checking
that Mi = i(Md) or M Mn i ii

ρ ()= .
Auditors first verify the printing of challenged

ballots by checking that the code-candidate associa-
tions indicated in the linkage list match those indi-
cated on the corresponding paper ballot. Then, they
check partial permutations in the linkage list against
the opened permutations.

Verification in a Spreadsheet
A common roadblock for many real-world implemen-
tations of cryptographic election verification is the
software’s relative complexity. Unlike conventional
software, which can effectively function as a black box,
election verification software must be developed in a
functionally and conceptually transparent way. Consis-
tent with our design goals, the election protocol should
allow the verification software to be written with an
economy of LOC. Owing to the nature of highly spe-
cialized cryptographic components necessary in many
crypto voting protocols, the option to use existing soft-
ware often doesn’t exist.

Borrowing from Eperio’s design goals,3 we believe a
verifier should be able to audit a cryptographic election
using existing software as much as possible or, from the
other perspective, be required to use as few LOC as pos-
sible. With Eperio, we presented a small audit tool writ-
ten in 50 lines of Python.

As an alternative—one requiring no new LOC—
we presented an example in which an election could
be manually audited using a desktop spreadsheet.
Although a manual audit would be tedious for large-
scale elections, the widespread use of spreadsheets
presents an interesting opportunity for explaining the
election audit in familiar terms. In this way, the audit can
be communicated as a series of basic spreadsheet opera-
tions, such as copying and pasting columns of data and
simple commands such as sort and find.

To facilitate spreadsheet verification, T encodes each
ballot and mark list (Bs, Bd, and so on) as a comma-
separated values (CSV) file. The random permutations
i and i are expressed as lists of shuffled integers 1 …
cv, also encoded as CSV files. Hashes of permutation
files are posted as commitments.

T responds to the postelection challenges by posting
the relevant permutation files. The verifier first checks
that the asserted file is valid; that is, it’s in the correct
encoding and the file contains only a valid shuffle of the
integers 1 … cv. The verifier then executes a command-
line file-hashing utility and compares the result to the
posted commitment. For example, if H is SHA-256, the

www.computer.org/security� 23

verifier could run the sha256sum file-hashing utility.
Optionally, these tasks can be automated using a simple
shell script. Once satisfied that the commitments are
correct, the verifier opens the file in a spreadsheet—for
example, OpenOffice Calc.

The audit steps are followed mostly as we described
earlier. To perform a permutation—for instance, to
check whether Mi = i(Md)—the verifier copies the list
of shuffled integers from the i worksheet and pastes
them into the Md sheet. The verifier then sorts the sheet
using the shuffled integers as the key. The verifier pastes
Md (now shuffled) into the Mi worksheet and tests the
lists for equality. The linkage lists are checked similarly.
Several built-in spreadsheet commands exist for effi-
ciently performing such comparisons, and the audit can
be automated by a macro.

Distributing Trust
So far, we’ve described T as a single trusted entity—that
is, one who knows the associations between receipts
and ballots (between voters and cleartext votes). Scant-
egrity extensively uses trusted entities and hardware:
the optical scanners, ballot printers, and even poll
workers gain access to receipt-and-vote combinations.
However, because of the physical nature of the paper
optical-scan ballot, distributing trust in this setting has
proven challenging.

To overcome the issue of an untrusted ballot printer,
we use oblivious printing.4 Using a secure multiparty
protocol and the invisible-ink printing techniques
developed for Scantegrity, we propose a means by
which several parties can generate a shared secret and
print it in human- or machine-readable form without
learning the result. Briefly, the secret is a combination
of visual crypto shares successively overprinted in invis-
ible ink. The recipient of an obliviously printed docu-
ment can use a special pen to activate the ink, thereby
revealing the message. This offers us a starting point for
distributing trust in a voting setting.

Let T be replaced by a collection of t trustees T1 …
Tt. First, the trustees run an oblivious-printing protocol
to randomly generate and obliviously print the confir-
mation codes on each of the v ballots. This protocol’s
output includes the obviously printed ballots and a vec-
tor of encryptions of each code-candidate association for
each ballot. These encryptions are made using a semanti-
cally secure public-key encryption scheme for which the
decryption key is distributed among the trustees.

For each proof instance i = 1 … p, each of the j = 1 …
t trustees separately generates and posts commitments
to two random permutations ρ σi

j
i
j, . Next, the trust-

ees compute Bni using a reencryption mixnet, taking
the encrypted candidate names as input and decrypting
the shuffled result. The overall permutation on Bni is

thus ρ ρ σ σi
t

i
t

i i� � � �− 1 2 1... . The trustees similarly apply
these permutations when populating the marks lists after
the election. During the audit challenge, each trustee Tj
opens the commitment to the requested permutation,
either σ i

t or ρi
j . The audit proceeds as we described

earlier, except that the verifiers check a composition
of the trustees’ permutations—that is, checking either
M Mi i

t
i d=σ σ� �... ()1 or M Mn i

t
i ii

= ρ ρ� �... ()1 .
This approach lets Hover run with a distributed set

of trustees and without a trusted printer. However, this
approach doesn’t offer fully distributed trust. The con-
firmation code associated with the chosen candidate is
still revealed to the optical scanner (and potentially the
poll workers) when a voter casts a ballot. We recently
addressed this issue by defining two independent serial
numbers: one for the ballot and one for the receipt.5
We discussed the additional procedures necessary such
that no single entity in the election, including the voter,
ever sees both serial numbers. Finally, although the veri-
fier must verify the openings of t times as many com-
mitments, at a conceptual level, the audit procedure is
essentially the same as in the single-party case.

Regarding oblivious printing, two additional secu-
rity requirements are necessary to prevent misbehav-
ing printers from being able to link voters with votes.5
The first requirement is a cut-and-choose-based proof
made among the printers that each party followed the
protocol honestly.4 This audit would begin before the
election and, assuming we want to avoid reliance on a
physical chain of custody, continue during the election
to ensure the ballot papers’ provenance. The second
requirement is that the printers must be prevented from
examining marked ballots after the election.

I n terms of cryptographic verifiability, Hover provides
computationally sound election audits similar to

those proposed in Scantegrity and Eperio. With regard
to distribution of trust, oblivious printing lets voters
cast an optical-scan paper ballot and construct a receipt
without anyone else finding out for whom they voted.

In terms of a usable voting interface and conceptu-
ally simple verification, it’s harder to ascertain how Hover
fares without doing a usability study. A user study per-
formed in Takoma Park suggested that voters and elec-
tion officials found Scantegrity II ballots reasonably
intuitive.8 However, it’s unclear how the changes intro-
duced by oblivious printing would alter these percep-
tions; this is a question for future research. We propose a
hash-based commitment, which we argue simplifies elec-
tion verification at both conceptual and procedural levels.

Ultimately, we hope Hover will be a stepping stone
toward the general public’s greater acceptance and aware-
ness of cryptographic election verification’s merits.

24	 IEEE Security & Privacy� September/October 2012

E-voting Security

References
1.	 D. Chaum et al., “Scantegrity II: End-to-End Verifiability

for Optical Scan Election Systems Using Invisible Ink Con-
firmation Codes,” Proc. 2008 Conf. Electronic Voting Tech-
nology (EVT 08), Usenix Assoc., 2008, article 14; http://
static.usenix.org/events/evt08/tech/full_papers/
chaum/chaum.pdf.

2.	 D. Chaum et al., “Scantegrity II: End-to-End Verifiability
by Voters of Optical Scan Elections through Confirma-
tion Codes,” IEEE Trans. Information Forensics and Secu-
rity, vol. 4, no. 4, 2009, pp. 611–627.

3.	 A. Essex et al., “Eperio: Mitigating Technical Complexity in
Cryptographic Election Verification,” Proc. 2010 Int’l Conf.
Electronic Voting Technology/Workshop Trustworthy Elec-
tions (EVT/WOTE 10), Usenix Assoc., 2010; www.usenix.
org/event/evtwote10/tech/full_papers/Essex.pdf.

4.	 A. Essex and U. Hengartner, “Oblivious Printing of Secret
Messages in a Multi-party Setting,” to be published in
Proc. 16th Conf. Financial Cryptography and Data Secu-
rity (FC 12), 2012; http://fc12.ifca.ai/pre-proceedings/
paper_58.pdf.

5.	 A. Essex, C. Henrich, and U. Hengartner, “Single Layer
Optical-Scan Voting with Fully Distributed Trust,” Proc.
3rd Int’l Conf. E-voting and Identity (VoteID 11), LNCS
7187, Springer, 2011.

6.	 Verfahren über die Wahlprüfungsbeschwerden, Judgment of
3 Mar. 2009, 2 BvC 3/07 and 2 BvC 4/07, Federal Con-
stitutional Court of Germany (Bundesverfassungsgeri-
cht), 2009.

7.	 D. Demeril et al., “Feasibility Analysis of Prêt à Voter for
German Federal Elections,” Proc. 3rd Int’l Conf. E-voting
and Identity (VoteID 11), LNCS 7187, Springer, 2011.

8.	 R.T. Carback et al., “Scantegrity II Municipal Election
at Takoma Park: The First E2E Binding Governmental

Election with Ballot Privacy,” Proc. 19th Usenix Conf.
Security, Usenix Assoc., 2010; http://static.usenix.org/
events/sec10/tech/full_papers/Carback.pdf.

9.	 T. Moran and M. Naor, “Split-Ballot Voting: Everlasting
Privacy with Distributed Trust,” Proc. 14th ACM Conf.
Computer and Communications Security (CCS 07), ACM,
2007, pp. 246–255.

10.	 T.P. Pedersen, “Non-interactive and Information-
Theoretic Secure Verifiable Secret Sharing,” Advances in
Cryptology—CRYPTO 91, LNCS 576, Springer, 1991,
pp. 129–140.

11.	 M. Bellare and P. Rogaway, “Introduction to Modern Cryp-
tography,” CSE 207 Course Notes, Dept. Computer Science
and Eng., Univ. of California, San Diego, 2005, p. 207.

12.	 S. Halevi and S. Micali, “Practical and Provably-Secure
Commitment Schemes from Collision-Free Hashing,”
Advances in Cryptology—CRYPTO 96, LNCS 1109,
Springer, 1996, pp. 201–215.

13.	 D. Chaum et al., “Scantegrity: End-to-End Voter Verifi-
able Optical-Scan Voting,” IEEE Security & Privacy, vol. 6,
no. 3, 2008, pp. 40–46.

14.	 M.J. Fischer, M. Iorga, and R. Peralta, A Public Random-
ness Service, tech. report, US Nat’l Inst. Standards and
Technology, 2011.

15.	 J. Clark and U. Hengartner, “On the Use of Financial Data
as a Random Beacon,” Proc. 2010 Int’l Conf. Electronic Vot-
ing Technology/Workshop Trustworthy Elections (EVT/
WOTE 10), Usenix Assoc., 2010; www.usenix.org/
event/evtwote10/tech/full_papers/Clark.pdf.

Aleksander Essex is a postdoctoral fellow at the Chil-
dren’s Hospital of Eastern Ontario Research Insti-
tute’s Electronic Health Information Laboratory. His
research interests include information security and
cryptography, secure multiparty computation, and
trustworthy voting and cryptographic election verifi-
cation. He holds a postdoctoral fellowship from the
Natural Sciences and Engineering Research Council
of Canada and has a PhD in computer science from
the University of Waterloo. He’s a student member of
IEEE. Contact him at aessex@ehealthinformation.ca.

Urs Hengartner is an associate professor in the David R.
Cheriton School of Computer Science at the Uni-
versity of Waterloo, Canada. His research interests
include information privacy; computer and network
security; and security and privacy in emerging com-
puting environments such as location-based services,
geosocial networking, and e-voting. Hengartner has a
PhD in computer science from Carnegie Mellon Uni-
versity. Contact him at uhengart@cs.uwaterloo.ca.

Selected CS articles and columns are also available for free
at http://ComputingNow.computer.org.

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

