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E-voting Security
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Hover (Hash-Only Verification), an end-to-end (E2E) verifiable voting system with distributed trust, uses 
only a collision-resistant hash function for verification. Such verification could make E2E elections more 
accessible to people without a strong cryptography background.

R ecall an old engineering adage: “Fast, good, 
cheap—pick any two.” It’s a testament to the trade-

offs inherent in any design project. Over the past 30 
years of research in cryptographically end-to-end (E2E) 
verifiable elections, the trade-offs have been primarily 
among cryptographic verifiability, distribution of trust, 
a usable voting interface, and conceptually simple veri-
fication. Cryptographers have tended to focus on the 
former two, whereas election officials and voters have 
championed the latter two. In our view, compromise is 
necessary to advance the cause of trustworthy elections.

To that end, we propose Hover (Hash-Only Verifica-
tion), a novel combination of several recent ideas in the 
field of trustworthy voting. At Hover’s core is the Scant-
egrity optical-scan system.1,2 We also borrow aspects 
from the Eperio system to facilitate verification of the 
noncryptographic parts in familiar software applica-
tions such as desktop spreadsheets.3 In addition, we 
use oblivious printing4 and related techniques5 to dis-
tribute trust among multiple election trustees without 
increasing the election audit’s technical requirements. 
We believe that Hover can help educate less technical 
audiences about the merits of cryptographically verifi-
able elections.

As a consolidation of research ideas, Hover doesn’t 
claim great technical innovation. Instead, it aims to 
strike a delicate balance of technologies to innovate 
at a social level. Although this pursuit is ongoing, we 
hope Hover can help bring cryptographers and the 
general public closer together regarding how to run 
trustworthy elections.

Voters vs. Cryptographers
Designing cryptographically E2E verifiable elections 
is both a technical and social challenge. On a technical 
level, cryptography can make elections verifiable in a way 
that fundamentally exceeds conventional approaches. It 
offers each voter a means to check that his or her ballot 
was counted correctly, without revealing it to anyone. 
Such elections’ trustworthiness is the product of state-
ments proven directly about the election results, not of 
individual voting machines or their software.

However, on a social level, many people (in what 
cryptographers call the “real world”) continue to wonder 
how a cryptographic proof can ever truly be convincing 
to average voters. Consider a recent German constitu-
tional court decision on election verification: “Each citi-
zen must be able to comprehend and verify the central 
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steps in the election’s reliably and without any special 
prior technical knowledge.”6 A recent legal analysis by 
Denise Demeril and her colleagues is dubious as to E2E 
verifiable systems’ future under such a ruling.7

Still, we believe cryptographic verification represents 
the future of elections. The 20098 and 2011 cryptograph-
ically verifiable elections in Takoma Park, Maryland, are 
a testament to progress in that regard. The challenge is 
to make the ideas behind E2E verifiable elections more 
conceptually accessible or risk marginalizing the tech-
nology. After all, if a proof is made in a forest—and no 
one is around to check it—is it complete and sound?

Popular Proofs
Researchers often approach E2E verification system 
design as a trade-off. At one end is unconditional integ-
rity. Under this model, election trustees can’t reliably 
produce a false (but valid-looking) proof, even with 
access to sufficient computational resources. However, 
someone with sufficient computational resources could 
exploit this proof to break ballot secrecy.

At the other end is everlasting privacy. Under this 
model, a proof can never be used to recover the associa-
tion between vote and voter. However, given access to suf-
ficient computational resources, election trustees could 
potentially publish a false (but valid-looking) proof. Tal 
Moran and Moni Naor note everlasting privacy’s appli-
cability to the voting problem: “While integrity that 
depends on computational assumptions only requires 
the assumptions to hold during the election, privacy that 
depends on computational assumptions requires them to 
hold forever.”9 Unfortunately, the cryptographic primi-
tives typically associated with information-theoretic pri-
vacy exceed the knowledge base of average voters.10

To create an E2E verifiable election that’s conceptu-
ally simple yet offers a degree of cryptographic security, 
we designed a popular proof—one that’s convincing (to 
some degree) on both a social and technical level. So, 
in designing E2E verifiable voting schemes, our modus 
operandi is as follows. Each citizen must be able to com-
prehend and verify the central steps in the election reli-
ably with minimal special prior technical knowledge. 
If special prior technical knowledge is an unavoidable 
consequence of a cryptographically verifiable election’s 
security requirements, it should be biased more toward 
the creation of a proof than its verification.

E2E with a Dash of Hash
Why base our E2E proof on a cryptographic hash func-
tion? We consider two perspectives:

■■ a nonexpert technical audience with a basic cryptog-
raphy background and a potential interest in election 
auditing and

■■ a general audience with no cryptography back-
ground but with an interest in learning about its 
underlying principles.

For the nonexpert technical audience, hashing is 
one of the most commonly encountered cryptographic 
primitives. Anyone who has downloaded open source 
software will likely have encountered a hash. In addi-
tion, hashing is one of the few primitives commonly 
found in the standard libraries of many programming 
languages. A file hash can even be computed directly 
from a Unix-based command line (for example, Linux 
and Mac OS), and numerous free websites and utili-
ties exist for users of other operating systems. By com-
parison, many cryptographic primitives favored in the 
literature (for example, homomorphic encryption and 
zero-knowledge proofs) don’t have widely available 
implementations, often requiring that they be imple-
mented from scratch.

To the general audience, hashing provides an intui-
tive parallel with physical fingerprints. Such a meta-
phor seems potentially useful, given prime-time crime 
dramas’ popularity. For example, such a show’s viewers 
might understand that police couldn’t easily identify 
a fingerprint that wasn’t already in their criminal data-
base (preimage resistance). They might also understand 
that finding two people with matching fingerprints is 
unlikely (collision resistance) and that finding another 
person whose fingerprints match their own would be 
even more unlikely (second preimage resistance).

Although this analysis is imperfect, we can reason-
ably expect to face fewer obstacles connecting a new 
concept to an existing, well-formed mental model. By 
comparison, many primitives favored in the literature 
aren’t nearly as strongly connected to an existing model. 
For example, semantically secure additively homo-
morphic public-key encryption would require convey-
ing three novel concepts instead of one: randomized 
encryption, adding “under the covers,” and asymmetric 
keys—none of which has a strong physical analogy.

A Special-Purpose Hash-Based Commitment
We employ a hash function (under specific assump-
tions) as a computationally hiding and computation-
ally binding commitment scheme. Cryptographic 
commitments are at the core of several trustworthy 
voting protocols, including Scantegrity and Eperio. 
Several commitment schemes exist in the literature, 
such as Torben Pedersen’s unconditionally hiding com-
mitment scheme.9 In this application, we’re interested 
in using hashing for its relative technical and concep-
tual simplicity.

Briefly, a cryptographic commitment scheme 
Comm(m, r) takes message m and randomness r and 
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produces commitment c. Open(c, m, r) takes c, m, and r 
and returns accept if and only if Comm(m, r) = c. A com-
mitment is binding if it’s hard to find any {m, mʹ, r, rʹ} 
where m ≠ mʹ such that Open(Comm(m, r), mʹ, rʹ) returns 
accept. A commitment is hiding if finding any {m, r} 
given c such that Open(c, m, r) returns accept is diffi-
cult. For a stronger hiding requirement, extracting partial 
information about m given c should also be difficult.

However, given m and a collision-resistant hash 
function H, H(m) isn’t a commitment to m in general. 
For one thing, hashing a message isn’t computation-
ally hiding when m isn’t chosen from a sufficiently large 
space. For example, committing to a single bit b  {0, 1}  
by posting c = H(b) is trivially opened by checking 
which of H(0) and H(1) produce c. However, under 
certain circumstances, such as when the message is a 
sufficiently large random factor, a hash could function as 
part of an application-specific commitment. Although 
a commitment function based on a collision-resistant 
hash function can generally be considered a “false solu-
tion,” we believe it might be suitable for our needs.

Given H : {0,1}* → {0,1}𝓵 (where 𝓵 is the length 
of the hash function’s output in bits) and an efficient 
description of permutation space Π, for |Π| ≥ 2𝓵, we 
define an application-specific commitment function as 
follows. Comm(π) takes permutation π R Π and pro-
duces c = H (π). Open(c, πʹ) takes c and an asserted 
permutation πʹ  Π and returns accept if and only if  
H (πʹ) = c.

For π, πʹ  Π, Comm is binding as long as an adver-
sary can’t find

■■ a collision—that is, H(π) = H(πʹ) for any π ≠ πʹ—or
■■ a second preimage—that is, given π, a πʹ ≠ π such that 

H(π) = H(πʹ).

We assume that finding valid collisions as part of the 
collision-resistant properties of H and finding valid sec-
ond preimages as part of the one-way properties of H 
are computationally infeasible. Comm is hiding as long 
as an adversary can’t exhaustively search the message 
space or invert the hash function—that is, given c, find-
ing a π  Π, such that H(π) = c, should be difficult. We 
assume π is chosen uniformly at random from Π and 
that |Π| is sufficiently large that exhaustively search-
ing the message space is computationally infeasible. 
We also assume that inverting H as part of the one-way 
properties of H is computationally infeasible.

An important question is whether collision resistance 
implies one-wayness. Mihir Bellare and Phillip Rogaway 
showed that an adversary with the ability to attack the 
one-wayness of H : D → R has a negligible advantage over 
an adversary with the ability to attack the collision resis-
tance of H when |R|/|D| is also negligible.11 For typical 

real-world elections, a collision-resistant hash function 
will imply one-wayness for our purposes.

In our application, the message we’re committing to 
(that is, the hash image) is a random permutation of a 
list of the mark state (that is, marked or unmarked) of 
each optical-scan oval on each cast ballot. In an elec-
tion involving c candidates and v voters, this list consists 
of cv elements, with (cv)! possible permutations. For 
example, for c = 2, v = 50, and a hash function with 𝓵 = 
256, we have |D| = 100!, |R| = 2256, and |R|/|D| ≈ 2–269, 
which is negligible. A function f is negligible if there is 
a positive integer k such that f(k) < 1/poly(k) for any 
positive polynomial poly().

Small Information Leakages
As Shai Halevi and Silvio Micali warned, despite H 
being collision resistant and one-way, there are no guar-
antees about the feasibility of computing partial infor-
mation about m given H(m).12 Their point was that 
to ensure the commitment is hiding, we must require 
additional properties of H. For this article, we exclude 
the threat of partial information leakage—for example, 
by modeling H as a random function. This somewhat 
contradicts our real-world setting, so it’s worth briefly 
outlining potential consequences when an adversary 
can extract a small number of bits from m given H(m).

Although we believe that the overall threat to voter 
privacy is low, proving this would be complex and would 
require specific assumptions about the leakage’s dis-
tribution for a given hash function. Still, aspects of our 
system offer an inherent degree of fault tolerance. For 
example, a leakage of g bits isn’t sufficient to determine 
any single pair {x, π(x)} as long as log2((cv)!)/cv > g. 
So, leaking a small number of bits (for example, one 
or two) would never be sufficient to compromise the 
secrecy of any ballot for most election sizes. Intersection 
attacks combining partial leakages across multiple proof 
instances remain possible. However, on the basis of pre-
vious (unpublished) Scantegrity analyses, we contend 
this threat is fairly minimal for small leakages.

Basics and Election Setup
For simplicity, we describe the election correctness proof 
as being generated by a single trusted authority. A trusted 
authority can’t create a false (but accepting) proof, but, 
as in Scantegrity, it does receive sufficient information to 
link individual voters to their voting intentions. Recent 
advances in secure document printing can be used to 
distribute trust among multiple authorities.4

A single election trustee T initializes an election by 
establishing a public append-only bulletin board BB. T 
defines Π, which consists of all possible permutations 
of cv elements. T posts c, v, an efficient description 
of Π, a description of H, a canonical list of candidate 
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names N, and an alphabet of c valid or possible confir-
mation codes D to BB. Proving the association between 
codes and candidates printed on the ballot is correctly 
reflected on the bulletin board requires this informa-
tion to be made public. Some ballots are randomly 
selected for this “print audit.” These ballots can’t be 
voted on, so in practice, v is several times larger than 
the actual number of registered voters. T generates v 
ballots, each containing c unique tuples {s, d, n} associ-
ated with a specific optical-scan oval on the ballot. This 
tuple consists of a ballot-specific serial number s  {1, 
…, v}, a code letter d  D assigned randomly without 
replacement, and the associated candidate name n  N. 
The association between a given code d and candidate 
name n is independent and random across ballots. All 
v ballot tuples form a master ballot table B = {Bs, Bd, 
Bn}. B is given to a trusted printer who prints each of 
the v ballots.

For i = 1 … p proof instances, T chooses two random 
permutations i, i R Π and computes shuffled candidate 
list B Bn i i ni

�ρ σ ( )= . T posts Bs, Bd, each of the p shuf-
fled candidate lists Bni , and commitments to the associ-
ated random permutations, H(i) and H(i), to BB.

A voter marks the optical-scan oval appearing beside 
the chosen candidate’s name.  The voter creates a receipt 
r s d{ , ˆ}=  by writing down the serial number s appear-
ing on the ballot and the code letter d̂  appearing beside 
the marked oval. Figure 1 depicts a ballot, its receipt, 
and the associated bulletin board entry.

Because receipt creation is unsupervised, disputes 
might arise between a voter and T over which code was 
marked. In its basic form, Hover uses the in-person dis-
pute resolution from the original Scantegrity proposal.13 
This approach uses a noncryptographic cut-and-choose 
proof, which fits with our design goals but doesn’t scale 
well and is cumbersome to administer. Scantegrity II  
uses invisible ink to offer an informational dispute- 
resolution procedure based on knowledge of a secret 
confirmation code. This procedure is conceptually more 
complicated and wouldn’t be suitable for a distributed-
trust setting. We recently expanded it to a distributed-
trust setting,5 but this comes at the conceptual cost of a 
zero-knowledge proof. Designing a dispute-resolution 
procedure that is scalable, uses an economy of cryptog-
raphy, and yet is secure in a distributed-trust setting is a 
matter for future research.

Linkage Lists
Whereas Scantegrity publishes separate commitments 
to each pair {x, π(x)}, Hover commits to the full speci-
fication of random permutations i and i. Commit-
ting to an entire permutation not only lets us use a 
simpler commitment scheme but also results in sub-
stantially fewer cryptographic operations overall: 2p 

commitments for Scantegrity and 2pcv commitments 
for Hover.

An important part of a trustworthy election is the 
voter’s ability to receive assurance that the bulletin board 
tables faithfully represent the code-candidate association 
appearing on the paper ballot. In a Scantegrity election, 
a voter (or some other designated third-party auditor) 
might challenge T to prove the correct printing of any 
ballot. For each element in Bs and Bd associated with 
serial number ŝ  of the challenged ballot, T discloses 
each associated element in each of the p candidate lists 
Bci  by opening the commitments to the associated I/O 

pairs in i and i (2pc openings in total). Ballot ŝ  is then 
considered spoiled and can’t be voted on; a poll worker 
marks the paper ballot accordingly, and a flag is placed 
beside the associated entries in the bulletin board.

Because Hover commits to permutations as a whole, 
it can’t reveal individual I/O pairs directly. To address 
this, we use Eperio’s linkage list construction.3 Instead 
of proving code-candidate links by directly opening the 
affected commitments, T merely asserts the links in a 
linkage list LL. These assertions’ correctness can later be 
confirmed (with high probability) as part of the post-
election audit. Although we feel this approach provides 
much simpler verification through full-permutation 
commitments, a major drawback is that printing faults 
are discovered only after the election.

Figure 1. (a) A marked ballot and receipt. (b) A bulletin board showing receipt 
and candidate information including serial numbers Bs, confirmation codes 
Bd, and the mark state of the associated optical-scan ovals Md. A secret shuffle 
dissociates a list of candidate names Bn and the associated mark states Mn 
from the corresponding entries in Bs, Bd, and Md. The shuffle is expressed as the 
composition of two independent random permutations  and —one may 
later be challenged by the public to be revealed as part of a cut-and-choose 
proof of correctness. Additional independent shufflings can increase soundness.
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An important question is whether our hash-based 
commitment securely composes by using a linkage list. 
Through the linkage list, we’re intentionally disclosing 
partial information about i and i. This by itself isn’t 
an issue: the number of unaudited ballots is always at 
least as large as the total number of voters. This means 
that the effective permutation space Πef  Π will still 
be large despite partial disclosures owing to the print 
audit. However, a real-world cryptographic hash func-
tion might leak additional bits owing to this partial 
disclosure. Of course, if H is a random function, adver-
saries can’t use information revealed by the print audit 
to compute unknown bits.

Election Challenges and Audit
After the election, T uses the data collected by the opti-
cal scanners to create a mark state list Md of cast ballots. 
Md(i) ← 1 if and only if the confirmation code Bd(i) on 
ballot Bs(i) was recorded as having been marked; Md(i) 
← 0 if it was unmarked. Md(i) ← ∅ if the ballot was 
spoiled or print audited. T posts Md to BB. Finally, for 
each proof instance i = 1 … p, T creates shuffled marks 
tables Mi = i(Md) and M Mc i ii

ρ ( )=  and posts these 
lists to BB. A shuffled candidate name list Bni  and the 
associated marks list Mni  are sufficient to compute 
an election tally. Anyone can check that each of the p 
instances produces the same election result.

Challenges. For each proof instance i = 1 … p, the 
public will collectively issue a challenge to T to reveal 
either i or i. T responds by opening the associated 
commitments. There are several ways to produce chal-
lenge bits; the essential property is that T mustn’t be 
able to predict the outcome with an advantage over a 
random guess.

One potentially suitable source of entropy for small-
scale elections is the upcoming random beacon being 
implemented by the US National Institute of Standards 
and Technology (NIST).14 The NIST beacon will draw 
on hardware-based entropy sources, offering the public 
digitally signed random bit strings in a persistent online 
database. Although the NIST beacon generally will be 
agnostic about what its outputs are being used for, it still 
represents a trusted component in this context, which 
might not be suitable for larger elections.

An alternative is randomness extracted from finan-
cial data—a method we used in the 2009 Takoma Park 
election. Jeremy Clark and Urs Hengartner analyzed 
this method and offered suggestions for securely com-
bining the outputs of multiple independent sources.15

Audit. Voters can use their receipt r s d{ , ˆ}=  to check 
that, for each row s  Bs, all the associated mark states 
in Md are unmarked, except for the one associated with 

their recorded confirmation code d̂  in Bd. Anyone can 
check that the mark states were correctly propagated 
between the receipt and candidate tables by checking 
against the opened permutations—that is, by checking 
that Mi = i(Md) or M Mn i ii

ρ ( )= .
Auditors first verify the printing of challenged 

ballots by checking that the code-candidate associa-
tions indicated in the linkage list match those indi-
cated on the corresponding paper ballot. Then, they 
check partial permutations in the linkage list against 
the opened permutations.

Verification in a Spreadsheet
A common roadblock for many real-world implemen-
tations of cryptographic election verification is the 
software’s relative complexity. Unlike conventional 
software, which can effectively function as a black box, 
election verification software must be developed in a 
functionally and conceptually transparent way. Consis-
tent with our design goals, the election protocol should 
allow the verification software to be written with an 
economy of LOC. Owing to the nature of highly spe-
cialized cryptographic components necessary in many 
crypto voting protocols, the option to use existing soft-
ware often doesn’t exist.

Borrowing from Eperio’s design goals,3 we believe a 
verifier should be able to audit a cryptographic election 
using existing software as much as possible or, from the 
other perspective, be required to use as few LOC as pos-
sible. With Eperio, we presented a small audit tool writ-
ten in 50 lines of Python.

As an alternative—one requiring no new LOC—
we presented an example in which an election could 
be manually audited using a desktop spreadsheet. 
Although a manual audit would be tedious for large-
scale elections, the widespread use of spreadsheets 
presents an interesting opportunity for explaining the 
election audit in familiar terms. In this way, the audit can 
be communicated as a series of basic spreadsheet opera-
tions, such as copying and pasting columns of data and 
simple commands such as sort and find.

To facilitate spreadsheet verification, T encodes each 
ballot and mark list (Bs, Bd, and so on) as a comma- 
separated values (CSV) file. The random permutations 
i and i are expressed as lists of shuffled integers 1 … 
cv, also encoded as CSV files. Hashes of permutation 
files are posted as commitments.

T responds to the postelection challenges by posting 
the relevant permutation files. The verifier first checks 
that the asserted file is valid; that is, it’s in the correct 
encoding and the file contains only a valid shuffle of the 
integers 1 … cv. The verifier then executes a command-
line file-hashing utility and compares the result to the 
posted commitment. For example, if H is SHA-256, the 
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verifier could run the sha256sum file-hashing utility. 
Optionally, these tasks can be automated using a simple 
shell script. Once satisfied that the commitments are 
correct, the verifier opens the file in a spreadsheet—for 
example, OpenOffice Calc.

The audit steps are followed mostly as we described 
earlier. To perform a permutation—for instance, to 
check whether Mi = i(Md)—the verifier copies the list 
of shuffled integers from the i worksheet and pastes 
them into the Md sheet. The verifier then sorts the sheet 
using the shuffled integers as the key. The verifier pastes 
Md (now shuffled) into the Mi worksheet and tests the 
lists for equality. The linkage lists are checked similarly. 
Several built-in spreadsheet commands exist for effi-
ciently performing such comparisons, and the audit can 
be automated by a macro.

Distributing Trust
So far, we’ve described T as a single trusted entity—that 
is, one who knows the associations between receipts 
and ballots (between voters and cleartext votes). Scant-
egrity extensively uses trusted entities and hardware: 
the optical scanners, ballot printers, and even poll 
workers gain access to receipt-and-vote combinations. 
However, because of the physical nature of the paper 
optical-scan ballot, distributing trust in this setting has 
proven challenging.

To overcome the issue of an untrusted ballot printer, 
we use oblivious printing.4 Using a secure multiparty 
protocol and the invisible-ink printing techniques 
developed for Scantegrity, we propose a means by 
which several parties can generate a shared secret and 
print it in human- or machine-readable form without 
learning the result. Briefly, the secret is a combination 
of visual crypto shares successively overprinted in invis-
ible ink. The recipient of an obliviously printed docu-
ment can use a special pen to activate the ink, thereby 
revealing the message. This offers us a starting point for 
distributing trust in a voting setting.

Let T be replaced by a collection of t trustees T1 … 
Tt. First, the trustees run an oblivious-printing protocol 
to randomly generate and obliviously print the confir-
mation codes on each of the v ballots. This protocol’s 
output includes the obviously printed ballots and a vec-
tor of encryptions of each code-candidate association for 
each ballot. These encryptions are made using a semanti-
cally secure public-key encryption scheme for which the 
decryption key is distributed among the trustees.

For each proof instance i = 1 … p, each of the j = 1 … 
t trustees separately generates and posts commitments 
to two random permutations ρ σi

j
i
j, . Next, the trust-

ees compute Bni  using a reencryption mixnet, taking 
the encrypted candidate names as input and decrypting 
the shuffled result. The overall permutation on Bni  is 

thus ρ ρ σ σi
t

i
t

i i� � � �− 1 2 1... . The trustees similarly apply 
these permutations when populating the marks lists after 
the election. During the audit challenge, each trustee Tj 
opens the commitment to the requested permutation, 
either σ i

t  or ρi
j . The audit proceeds as we described 

earlier, except that the verifiers check a composition 
of the trustees’ permutations—that is, checking either 
M Mi i

t
i d=σ σ� �... ( )1  or M Mn i

t
i ii

= ρ ρ� �... ( )1 .
This approach lets Hover run with a distributed set 

of trustees and without a trusted printer. However, this 
approach doesn’t offer fully distributed trust. The con-
firmation code associated with the chosen candidate is 
still revealed to the optical scanner (and potentially the 
poll workers) when a voter casts a ballot. We recently 
addressed this issue by defining two independent serial 
numbers: one for the ballot and one for the receipt.5 
We discussed the additional procedures necessary such 
that no single entity in the election, including the voter, 
ever sees both serial numbers. Finally, although the veri-
fier must verify the openings of t times as many com-
mitments, at a conceptual level, the audit procedure is 
essentially the same as in the single-party case.

Regarding oblivious printing, two additional secu-
rity requirements are necessary to prevent misbehav-
ing printers from being able to link voters with votes.5 
The first requirement is a cut-and-choose-based proof 
made among the printers that each party followed the 
protocol honestly.4 This audit would begin before the 
election and, assuming we want to avoid reliance on a 
physical chain of custody, continue during the election 
to ensure the ballot papers’ provenance. The second 
requirement is that the printers must be prevented from 
examining marked ballots after the election. 

I n terms of cryptographic verifiability, Hover provides 
computationally sound election audits similar to 

those proposed in Scantegrity and Eperio. With regard 
to distribution of trust, oblivious printing lets voters 
cast an optical-scan paper ballot and construct a receipt 
without anyone else finding out for whom they voted.

In terms of a usable voting interface and conceptu-
ally simple verification, it’s harder to ascertain how Hover 
fares without doing a usability study. A user study per-
formed in Takoma Park suggested that voters and elec-
tion officials found Scantegrity II ballots reasonably 
intuitive.8 However, it’s unclear how the changes intro-
duced by oblivious printing would alter these percep-
tions; this is a question for future research. We propose a 
hash-based commitment, which we argue simplifies elec-
tion verification at both conceptual and procedural levels.

Ultimately, we hope Hover will be a stepping stone 
toward the general public’s greater acceptance and aware-
ness of cryptographic election verification’s merits. 



24	 IEEE Security & Privacy� September/October 2012

E-voting Security

References
1.	 D. Chaum et al., “Scantegrity II: End-to-End Verifiability 

for Optical Scan Election Systems Using Invisible Ink Con-
firmation Codes,” Proc. 2008 Conf. Electronic Voting Tech-
nology (EVT 08), Usenix Assoc., 2008, article 14; http://
static.usenix.org/events/evt08/tech/full_papers/ 
chaum/chaum.pdf.

2.	 D. Chaum et al., “Scantegrity II: End-to-End Verifiability 
by Voters of Optical Scan Elections through Confirma-
tion Codes,” IEEE Trans. Information Forensics and Secu-
rity, vol. 4, no. 4, 2009, pp. 611–627.

3.	 A. Essex et al., “Eperio: Mitigating Technical Complexity in 
Cryptographic Election Verification,” Proc. 2010 Int’l Conf. 
Electronic Voting Technology/Workshop Trustworthy Elec-
tions (EVT/WOTE 10), Usenix Assoc., 2010; www.usenix.
org/event/evtwote10/tech/full_papers/Essex.pdf.

4.	 A. Essex and U. Hengartner, “Oblivious Printing of Secret 
Messages in a Multi-party Setting,” to be published in 
Proc. 16th Conf. Financial Cryptography and Data Secu-
rity (FC 12), 2012; http://fc12.ifca.ai/pre-proceedings/
paper_58.pdf.

5.	 A. Essex, C. Henrich, and U. Hengartner, “Single Layer 
Optical-Scan Voting with Fully Distributed Trust,” Proc. 
3rd Int’l Conf. E-voting and Identity (VoteID 11), LNCS 
7187, Springer, 2011.

6.	 Verfahren über die Wahlprüfungsbeschwerden, Judgment of 
3 Mar. 2009, 2 BvC 3/07 and 2 BvC 4/07, Federal Con-
stitutional Court of Germany (Bundesverfassungsgeri-
cht), 2009.

7.	 D. Demeril et al., “Feasibility Analysis of Prêt à Voter for 
German Federal Elections,” Proc. 3rd Int’l Conf. E-voting 
and Identity (VoteID 11), LNCS 7187, Springer, 2011.

8.	 R.T. Carback et al., “Scantegrity II Municipal Election 
at Takoma Park: The First E2E Binding Governmental 

Election with Ballot Privacy,” Proc. 19th Usenix Conf. 
Security, Usenix Assoc., 2010; http://static.usenix.org/
events/sec10/tech/full_papers/Carback.pdf.

9.	 T. Moran and M. Naor, “Split-Ballot Voting: Everlasting 
Privacy with Distributed Trust,” Proc. 14th ACM Conf. 
Computer and Communications Security (CCS 07), ACM, 
2007, pp. 246–255.

10.	 T.P. Pedersen, “Non-interactive and Information- 
Theoretic Secure Verifiable Secret Sharing,” Advances in 
Cryptology—CRYPTO 91, LNCS 576, Springer, 1991, 
pp. 129–140.

11.	 M. Bellare and P. Rogaway, “Introduction to Modern Cryp-
tography,” CSE 207 Course Notes, Dept. Computer Science 
and Eng., Univ. of California, San Diego, 2005, p. 207.

12.	 S. Halevi and S. Micali, “Practical and Provably-Secure 
Commitment Schemes from Collision-Free Hashing,” 
Advances in Cryptology—CRYPTO 96, LNCS 1109, 
Springer, 1996, pp. 201–215.

13.	 D. Chaum et al., “Scantegrity: End-to-End Voter Verifi-
able Optical-Scan Voting,” IEEE Security & Privacy, vol. 6, 
no. 3, 2008, pp. 40–46.

14.	 M.J. Fischer, M. Iorga, and R. Peralta, A Public Random-
ness Service, tech. report, US Nat’l Inst. Standards and 
Technology, 2011.

15.	 J. Clark and U. Hengartner, “On the Use of Financial Data 
as a Random Beacon,” Proc. 2010 Int’l Conf. Electronic Vot-
ing Technology/Workshop Trustworthy Elections (EVT/
WOTE 10), Usenix Assoc., 2010; www.usenix.org/
event/evtwote10/tech/full_papers/Clark.pdf.

Aleksander Essex is a postdoctoral fellow at the Chil-
dren’s Hospital of Eastern Ontario Research Insti-
tute’s Electronic Health Information Laboratory. His 
research interests include information security and 
cryptography, secure multiparty computation, and 
trustworthy voting and cryptographic election verifi-
cation. He holds a postdoctoral fellowship from the 
Natural Sciences and Engineering Research Council 
of Canada and has a PhD in computer science from 
the University of Waterloo. He’s a student member of 
IEEE. Contact him at aessex@ehealthinformation.ca.

Urs Hengartner is an associate professor in the David R.  
Cheriton School of Computer Science at the Uni-
versity of Waterloo, Canada. His research interests 
include information privacy; computer and network 
security; and security and privacy in emerging com-
puting environments such as location-based services, 
geosocial networking, and e-voting. Hengartner has a 
PhD in computer science from Carnegie Mellon Uni-
versity. Contact him at uhengart@cs.uwaterloo.ca.

Selected CS articles and columns are also available for free 
at http://ComputingNow.computer.org.

Learn about computing history 
and the people who shaped it.

COMPUTING 
THEN

http://computingnow.
computer.org/ct


