
Towards Application-Centric Implicit Authentication on
Smartphones

Hassan Khan, Urs Hengartner
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON Canada

{h37khan, urs.hengartner}@uwaterloo.ca

ABSTRACT
Implicit authentication schemes are a secondary authentica-
tion mechanism that provides authentication by employing
unique patterns of device use that are gathered from smart-
phone users without requiring deliberate actions. Contem-
porary implicit authentication schemes operate at the de-
vice level such that they neither discriminate between data
from different applications nor make any assumption about
the nature of the application that the user is currently us-
ing. In this paper, we challenge the device-centric approach
to implicit authentication on smartphones. We argue that
the conventional approach of misuse detection at the de-
vice level has inherent limitations for mobile platforms. To
this end, we analyze and empirically evaluate the device-
centric nature of implicit authentication schemes to show
their limitations in terms of detection accuracy, authentica-
tion overhead, and fine grained authentication control. To
mitigate these limitations and for effective and pragmatic
implicit authentication on the mobile platform, we propose
a novel application-centric implicit authentication approach.
We observe that for implicit authentication, an application
knows best on when to authenticate and how to authenti-
cate. Therefore, we delegate the implicit authentication task
to the application and let the application provider decide
when and how to authenticate a user in order to protect the
owner’s personal information. Our proposed application-
centric implicit authentication approach improves accuracy
and provides fine grained authentication control with low
authentication overhead. Future research in this domain
will benefit from our findings to provide pragmatic implicit
authentication solutions.

1. INTRODUCTION
Smartphones contain their owner’s personal data includ-

ing emails, texts, contacts, photos and stored passwords. In
addition, people use their smartphones for security-sensitive
tasks such as online banking. To protect smartphones from
misuse, PIN/pass-lock, draw-a-secret, face recognition, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM HotMobile’14, February 26–27, 2014, Santa Barbara, CA, USA.
Copyright 2014 ACM 978-1-4503-2742-8 ...$15.00.

fingerprint recognition based schemes are used as primary
authentication mechanisms. However, these authentication
mechanisms have usability issues due their all-or-nothing ac-
cess nature and 62% of smartphone owners do not configure
them on their devices [2, 7]. In addition to usability issues,
pass-lock and draw-a-secret schemes are subject to operating
system flaws and shoulder surfing attacks [5] and researchers
have demonstrated how facial and fingerprint recognition
schemes can be exploited [21, 22]. To mitigate these lim-
itations, researchers have proposed implicit authentication
schemes to complement or enhance existing explicit authen-
tication mechanisms [3, 4, 6, 7, 8, 16, 17].

Implicit authentication schemes provide authentication by
using distinctive, measurable patterns of device use that are
gathered from mobile device users without requiring deliber-
ate actions [16]. For example, a keystroke pattern based clas-
sifier learns to recognize the device owner’s keystroke pat-
terns and then monitors for anomalies in real-time keystroke
patterns to flag misuse. Contemporary implicit authenti-
cation schemes are device-centric in such a way that the
device’s OS monitors usage behavior to compute an au-
thentication score without discriminating between data from
different applications and without making any assumptions
about the nature of the application that the user is currently
using [5, 7, 16, 17]. While these implicit authentication
schemes work in principal, we challenge their device-centric
approach on smartphones. We argue that the traditional ap-
proach towards misuse detection at the device-level has in-
herent limitations for the mobile platform. To this end, we
analyze and empirically evaluate the device-centric nature
of implicit authentication schemes and show their limita-
tions in terms of: (i) detection accuracy; (ii) authentication
overhead on the device; and (iii) fine grained authentication
control. During our analysis we also trace these limitations
to their cause — the application-oblivious nature of device-
centric implicit authentication.

To mitigate these limitations and for effective and prag-
matic implicit authentication we propose a novel approach:
application-centric implicit authentication. We observe that
for implicit authentication, an application knows best on:
(i) when to authenticate a user; (ii) which behavior-based
classifier to authenticate with; and (iii) which features of
a classifier to use for authentication. In the application-
centric approach, the decisions of when to authenticate and
how to authenticate are delegated to the application and
the application provider defines the logic to make these de-
cisions. This enables the application provider to provide
fine grained authentication control (by authenticating only

when required) with high accuracy (by choosing a suitable
classifier with appropriate configurations). For example, an
application developer may choose a classifier based on touch-
screen input behavior for his browser application (instead of
a classifier based on keystroke patterns) and he may invoke
the classifier every time a user accesses a webpage that has
the owner’s credentials saved using the browser’s password
manager (instead of authenticating a user even when he is
reading news).

In this paper, we justify the need of a different design
for implicit authentication that is more appropriate for the
mobile platform. To this end, we first evaluate a classifier
based on touchscreen input behavior using the device-centric
approach to understand the limitations imposed by the con-
ventional design. We then discuss the goals and challenges
of designing an application-centric counterpart. Prelimi-
nary evaluations on four sample applications show that the
application-centric approach can exploit the knowledge of an
application’s nature to provide consistent and significant ac-
curacy improvements with less authentication overhead and
fine grained authentication control.

2. WHERE TO AUTHENTICATE?
The focus of the majority of the implicit authentication

literature is on identifying suitable behavior-based classifiers
for implicit authentication [4, 5, 6, 8] and only a few papers
discuss when to implicitly authenticate [2, 7, 19]. To the
best of our knowledge, the impact of where to authenticate
has not been investigated. In this section, we provide a com-
parison between two options on where to authenticate — at
the device level or at the application level. For the compar-
ison, we analyze how the outcome of where to authenticate
impacts the decisions of when and how to authenticate.

2.1 When to Authenticate?
A device-centric implicit authentication scheme may op-

erate continuously in the background or get triggered when
an application marked as sensitive is launched. However,
some applications may not require implicit authentication
for all usage scenarios. For example, consider a banking
application that enables a customer to query his account
or locate a nearby ATM. For this application, there is no
need to authenticate a user when he is trying to locate an
ATM. Similarly for a browser application, there is no need
to authenticate a user when he is reading news. Since a
device-centric approach is unaware of the task that the user
is performing within an application, it cannot provide au-
thentication control at the task level.

On the other hand, if an application can control when to
authenticate, the banking application only authenticates a
user when he is querying his account. Similarly, the browser
application can detect when a user is reading news and it
may decide not to authenticate him. But when the user
switches to his social network website with saved creden-
tials, implicit authentication may be performed. By delegat-
ing the decision of when to authenticate to the application,
we can perform task-aware implicit authentication, which
reduces unnecessary authentication overhead. Another ad-
vantage of task-aware authentication control is its inherent
support for multi-user scenarios. Smartphone owners share
a mean of 12% of their smartphone applications and these
applications are primarily entertainment applications such
as games or web browsers [2]. For these multi-user scenar-

ios, the non-owner is not supposed to access personal infor-
mation of the owner on the device. An application-centric
approach allows a non-owner to access content that does not
leak personal information and denies access to the content
that may leak personal information (e.g., access to a mail
portal with saved credentials).

2.2 How to Authenticate?
A device-centric approach may employ a specific behavior-

based classifier for implicit authentication. However, a clas-
sifier may not be suitable for a particular type of application.
For example, during a session in which a user accesses his so-
cial network website on the browser using saved credentials,
enough sample values may not be available for a classifier
based on keystroke patterns to compute an authentication
score. Similarly, a classifier based on touchscreen input be-
havior may not have enough sample values for a messenging
application (due to lack of swipes generated by the user).
To cater for these behavioral differences, a device-centric ap-
proach may employ multiple classifiers; however, this will re-
sult in significant overhead in terms of feature sampling. On
the other hand, an application-centric approach can lever-
age the knowledge of an application’s nature to choose the
appropriate behavior-based classifier.

Another limitation of the device-centric approach due to
its application-oblivious nature is the loss of valuable infor-
mation that may be useful for classification. If the classifier
has additional knowledge about a task that the user is cur-
rently performing, it may use that for robust classification.
For example, in Section 4 we show that a user’s touch be-
havior is slightly different when he is finding POI in maps as
compared to browsing. Consequently, in the banking appli-
cation, if the classifier is aware of the task being performed
by the user (finding nearest ATM or querying his account), it
may use this additional information to improve its accuracy
by tuning its features (we demonstrate this in Section 5).

2.3 Discussion
The comparison of application- and device-centric app-

roaches shows that due to the application-aware nature of
the former, fine grained authentication control is acquired
and implicit authentication is performed only when required.
This fine grained authentication control also reduces authen-
tication overhead. The application-centric approach can use
its knowledge about an application to determine the appro-
priate classifier for that application. Finally, the application-
centric approach can leverage its knowledge about an appli-
cation’s nature to improve the accuracy of the classifier by
tuning its features.

3. CLASSIFIER SELECTION AND DATA
COLLECTION

In the last section, we discussed different authentication
scenarios from device- and application-centric perspectives.
Before proceeding to the empirical evaluations of these ap-
proaches, we discuss behavior-based classifier selection and
data collection.

3.1 Classifier Selection
Various behavior-based approaches have been proposed

for misuse detection on smartphones, which use location pat-
terns [9], call and text patterns [8], keystroke patterns [14],

proximity to known devices [7], gait patterns [12], voice
pattern [18], micro-movement patterns due to a user’s ac-
tions [6], and touchscreen input behavior [4, 5]. We select a
classifier based on touchscreen input behavior [4] for empir-
ical evaluation, which relies on finger movement patterns of
a user for implicit authentication.

The classifier based on touchscreen input behavior uses
data that are generated as a result of a user’s normal inter-
action with the phone unlike approaches based on location
and proximity patterns, which use data from power-hungry
GPS and bluetooth sensors, respectively. Furthermore, for
the classifier based on touchscreen input behavior, it is more
likely that recent sample values are available as a result of
user actions unlike gait, call/text, and voice pattern based
approaches. Finally, the classifier based on touchscreen in-
put behavior has more data samples available for the ma-
jority of applications as compared to an approach based on
keystroke patterns [5].

3.2 Data Collection
Our goal for data collection was to collect a dataset that

captured natural behavior of the participants when they
used applications. We did not want the participants to
perform predefined tasks. We also wanted to study their
touchscreen input behavior across a diverse set of applica-
tions. To satisfy these data collection goals, we instrumented
four diverse Android applications for data collection includ-
ing a browser application, a maps/navigation application,
a launcher application and a comic viewer application. We
uploaded these applications to Google Play. To advertise
for participants, we used our university-wide mailing list for
participants who would be interested in a study on “User In-
teraction with Smartphone Applications”. Participants were
expected to install and use these applications for ten weeks
and they were paid 5$ per week. We did not ask the partic-
ipants to explicitly perform any tasks and participants were
expected to use these applications as per their needs. Fi-
nally, in order to avoid any bias, we did not mention the
real purpose (implicit authentication) of the study until the
post-debriefing session. This allowed us to capture partici-
pants’ in the wild touchscreen input behavior.

For data collection, every time a participant interacted
with the touchscreen on one of the applications, we recorded:
time stamp in milli-seconds, x and y co-ordinates of the
touch point, finger pressure on the screen, area covered by
the finger on the screen, values from the accelerometer sen-
sor, finger orientation, the screen’s orientation, and the phone’s
orientation (azimuth, roll and pitch). These values were
temporarily stored on the participant’s device and then trans-
mitted to a server. Before data transmission, we established
ground truth (only the participant used the applications) by
asking participants to label the intervals for which they were
absolutely certain that the device was in their possession.

Our applications were downloaded and used by 61 partic-
ipants. Out of 61 participants, 14 participants did not pro-
vide enough data across all four applications and 15 partici-
pants stopped submitting data before completing five weeks
of the study. For empirical evaluations, we only consider
data from the 32 participants who successfully completed the
study. In total, we logged about 2.48 million touch points
comprising over 53,000 swipes in ten weeks. The details of
swipes, their distribution across applications and their dis-
tribution across user sessions is provided in Table 1.

Application
Num. of

touchpoints
Num. of
Swipes

Sessions

Launcher 642442 19740 4417
Browser 1164011 20139 826
Maps 236878 4664 365
Comics 445538 8928 272

Total 2488869 53471 5880

Table 1: Statistics of Collected Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Intra-user Inter-user Intra-user Inter-user Intra-user Inter-user

End x-coordinate Interstroke time Mid-stroke pressure

K
L

-D
iv

e
rg

e
n

c
e

 S
c

o
re

Features

Launcher

Browser

Maps

Comics

Figure 1: KL-Divergence score of features across 4
applications used in this study

4. EVALUATION OF DEVICE-CENTRIC
APPROACH

We now evaluate Frank et al.’s touch behavior-based clas-
sifier [4] on our dataset. We apply the classifier in a device-
centric manner such that the classifier neither discriminates
between data from different applications nor it makes any
assumptions about the nature of the application. We em-
ployed the 31 features proposed by Frank et al. [4] (also
listed in Table 2) using an SVM-based classifier and we set
the classifier’s parameters to the values recommended in the
original paper.

We evaluate the device-centric classifier using five-fold
cross-validation and average the results across all the users.
For evaluation metrics, similar to [4, 7], we use the false-
acceptance rate (FAR), and the false rejection rate (FRR).
FAR is the fraction of times the classifier incorrectly classi-
fies a swipe of the non-owner as a swipe of the owner and
FRR is the fraction of times a classifier incorrectly classifies
a swipe of the owner as a swipe of the non-owner. The ac-
curacy evaluation of Frank et al.’s approach on our dataset
provides a FAR of 0.17 (with FRR of 0.08). The results on
our dataset show significantly higher FAR as compared to
the FAR of 0.07 (with FRR of 0.07) reported by Frank et
al. for 35 users on their dataset [4].

We hypothesize that the variance in application nature
and usage behavior is responsible for this accuracy degrada-
tion. Since Frank et al. only used two applications (an appli-
cation to read Wikipedia articles and a spot-the-difference
game) in a lab setup and participants performed prede-
fined tasks, their experimental setup did not capture this
behavior. In order to evaluate our hypothesis, we use the
Kullback-Leibler (KL) information divergence measure [23].
A brief description of the KL-divergence measure is provided
below. For two Probability Mass Functions (PMFs) p and
q of a discrete random variable X, KL-divergence quantifies

1. Start x-coordinate 2. Start y-coordinate 3. End x-coordinate 4. End y-coordinate 5. Avg. direction 6. Avg. velocity
7. Stroke duration 8. Mid-stroke area 9. Mid-stroke pressure 10. Direction of end-to-end line 11. Direct end-to-end
distance 12. Length of trajectory 13. 20%-perc. pairwise velocity 14. 50%-perc. pairwise velocity 15. 80%-perc. pairwise
velocity 16. Median velocity at last 3 points 17. 20%-perc. pairwise acceleration 18. 50%-perc. pairwise acceleration 19.
80%-perc. pairwise acceleration 20. Ratio of end-to-end distance and length of trajectory 21. Largest deviation from
end-to-end line 22. 20%-perc. deviation from end-to-end line 23. 50%-perc. deviation from end-to-end line 24. 80%-perc.
deviation from end-to-end line 25. Mean resultant length 26. Median acceleration at first 5 points 27. Inter-stroke time
28. Phone orientation 29. Mid-stroke finger orientation 30. Up/down/left/right flag 31. Change of finger orientation

Table 2: Touchscreen Input Behavioral Features Proposed by Frank et al. [4]

the difference between two PMFs as:

D(p‖q) =
∑
i∈Λ

ln

(
p(i)

q(i)

)
p(i), (1)

where Λ is the image of X and p(i) and q(i) respectively
represent the probability of feature value i in p and q. To
deal with the case when D(p‖q) = ∞, if p(i) 6= 0, q(i) = 0;
we perform standard Laplace correction. We calculate the
inter-user and the intra-user KL-divergence score across all
the 31 features in Table 2 for every application. The inter-
user KL-divergence score is calculated between two parti-
tions of a user’s data and the intra-user KL-divergence score
is calculated between a user’s data and data samples from
the rest of the users. If a feature is a good discriminating
feature, it should have low intra-user KL-divergence score
and high inter-user KL-divergence score.

Due to space constraints, we only show KL-divergence
scores for three representative features in Figure 1 and omit
other qualitatively similar results. Our results show that the
majority of the features have low intra- and high inter-user
KL-divergence score for a subset of applications only. For
example, in Figure 1, end x-coordinate is a good discrimi-
nating feature for the launcher application, but for the maps
application it has a relatively high intra-user KL-divergence
score. Looking at the raw data, we can see that this is due to
the nature of the maps application. In the maps application,
users’ start and end points are more random since they are
locating some POI on the map unlike the launcher applica-
tion, where a user generally swipes at a specific location on
the screen. Similarly, the browser application fails to pro-
vide a high inter-user KL-divergence score for inter-stroke
time feature. We suspect that this is due to the dependence
of inter-stroke time on the content that a user is browsing
(reading an article might result in lower inter-stroke times
as compared to skimming it). While the majority of the fea-
tures are not good discriminating features for all the applica-
tions, mid-stroke pressure and mid-stroke area covered were
the only features that had consistently low intra-user and
high inter-user KL-divergence scores. Since only two fea-
tures cannot provide a good separation boundary between
different users’ behavior (due to more chances of collisions),
for efficient classification all the good discriminating features
for an application should be used.

Our analysis of the device-centric approach shows its fail-
ure to capture the variance in applications’ nature. A simple
solution to this limitation would be to create a separate be-
havioral model of each application at the device level. This
would allow the device-centric approach to compare the run-
time behavior of an application with its behavioral model
to get a more accurate authentication score. While this ap-
proach would fix the accuracy degradation to some extent, it

neither provides fine grained authentication control nor mit-
igates the limitations due to the device-centric approach’s
obliviousness of an application’s nature.

5. APPLICATION-CENTRIC IMPLICIT
AUTHENTICATION

For effective and pragmatic implicit authentication, we
propose application-centric implicit authentication in which
an application decides when and how to authenticate a user.
While designing an application, an application developer
first identifies activities that may lead to potential misuse.
For example, for the browser application, the application
developer may consider access to all websites that ask for a
user’s credentials as potential sources of data leakage. Af-
ter identifying the activities, the application developer only
implicitly authenticates a user when these activities are per-
formed. The application developer also decides how to au-
thenticate by choosing a suitable classifier for his application
(as per the application’s nature). For example, looking at
the user’s interaction with his browser application, an ap-
plication developer may choose a classifier based on touch
input behavior (since more swipe data is readily available
than keystrokes data). Finally, the application developer
tunes the features of the classifier as per his application’s
nature. We note that these activities increase the applica-
tion developer’s development overhead; however, this over-
head can be mitigated by providing a library to the appli-
cation developer that provides a generic implementation of
behavior-based classifiers that can be extended and reused.

We now evaluate the sample applications on our dataset
in an application-centric approach. To simplify our evalua-
tions, we assume that these applications require implicit au-
thentication for all activities and a classifier based on touch-
screen input behavior is the right choice for them. We now
show how we tuned the features for these applications and
we then present accuracy results.

5.1 Feature Tuning
For feature tuning, an application developer collects sam-

ple data from some test users. He then determines the fea-
tures that are good discriminating features for his applica-
tion and trims the rest of the feature from the classifier.
The application developer can optionally add new features
for robust classification. We now summarize our experience
of these feature tuning aspects for our sample applications.

Feature deletion: For each application, we deleted those
features that had high intra-user KL-divergence score and
low inter-user KL-divergence score. This trimming left 27,
25, 22, and 23 features for the launcher, browser, maps and
comics applications, respectively. Feature trimming ensures

Dev-centric Approach App-centric Approach Feature Tuned App-centric
Application FAR FRR FAR FRR FAR FRR
Launcher 15.96% 6.27% 11.16% 4.13% 7.28% 3.29%
Browser 18.88% 7.95% 12.43% 5.68% 6.31% 3.59%
Maps 16.21% 11.46% 13.38% 7.36% 5.28% 4.02%
Comics 16.70% 7.05% 7.75% 5.79% 6.64% 3.98%

Table 3: Accuracy Evaluation of Device- and Application-centric Approaches

that the accuracy of a classifier will not suffer due to irrele-
vant features.

Feature addition: We plotted swipes from users interac-
tion with each application to determine application-specific
features. For example, by looking at the users’ swipes for
the browser and launcher applications, we found out that
the distance between two consecutive swipes was a good
discriminating feature since users had unique swipe cluster
patterns. Similarly, we observed that the orientation of a
phone along its x-axis (pitch) also affected a user’s input
behavior and we used it as a feature for all the applications.

5.2 Accuracy Evaluation
For the accuracy evaluation of the application-centric ar-

chitecture, we tune the application features as discussed in
the last section. We then invoke the classifier based on
touchscreen input behavior on each application’s data and
perform five-fold cross-validation on the training data. To
quantify the impact of application-specific training and clas-
sification, and feature tuning separately, we report accuracy
results for application-centric approach with and without
feature tuning. The accuracy results of our evaluation on ap-
plications using device- and application-centric approaches
are provided in Table 3.

The results show that by using an application-centric ap-
proach we are able to reduce FAR by 5%, 6%, 3% and 9%
for the launcher, browser, maps and comics applications,
respectively. These accuracy gains are observed since a sep-
arate behavioral model is created for every application and
the variation in application nature does not effect the be-
havioral model. Another 4%, 6%, 8% and 1% reduction in
FAR is recorded when we tune features according to the ap-
plication nature. In addition to reduction in FAR, a signifi-
cant and consistent reduction in FRR is also observed when
the application-centric approach is used. These results show
that by using an application-centric approach, we achieved
accuracy improvements in addition to low authentication
overhead and fine grained authentication control.

6. LIMITATIONS & COUNTERMEASURES
Some of the limitations of the application-centric approach

and possible countermeasures are provided below:

1. The application-centric approach increases development
overhead of the application developer. However, this
overhead can be mitigated by providing a library as
discussed in Section 5.

2. While the application-centric approach requires the
same number of test samples for classification when
compared to the device-centric approach, the former
also requires a separate training model for every ap-
plication. However, the application-centric approach
requires significantly less training samples than the

device-centric counterpart. On our dataset, to achieve
≥85% accuracy, the application-centric approach only
requires 50 training samples whereas the device-centric
approach requires at least 275 samples. We also aim to
investigate the possibility that there might be classes of
applications with broadly similar properties where the
training model could be shared within these classes.

3. The application-centric approach can only result in ac-
curacy gains if the underlying classifier employs fea-
tures that have some correlation with the application
(such as touchscreen input pattern [4, 5], keystroke
pattern [14], and micro-movement patterns [6] based
classifiers). However, if the classifier’s features have
no correlation with an application’s nature, accuracy
improvement will not be observed and the accuracy
of the application-centric approach will be identical to
the accuracy of the device-centric approach.

4. An adversary may write a malicious application to col-
lect the feature values of a victim in order to learn his
behavior. The adversary can then gain physical access
to the victim’s device to launch mimicry attacks [24].
The application-centric approach is as vulnerable to
such attacks as the device-centric approach.

7. RELATED WORK
The explicit authentication schemes on smartphones (pass-

locks, draw-a-secret) have usability issues due to their all-
or-nothing access nature [2, 7] and these schemes can be
defeated by exploiting OS flaws and shoulder surfing at-
tacks [5]. More recent facial and fingerprint recognition ap-
proaches are subject to similar usability issues (due to their
all-or-nothing access nature) and have been exploited [22,
21]. These explicit authentication schemes are tangentially
related to our work since they are primary defense mecha-
nisms and we only suggest implicit authentication as a sec-
ond line of defense.

For implicit authentication on smartphones, various
behavior-based classifiers have been proposed that employ
a user’s location patterns [9, 10, 11], call/text patterns [8],
keystroke patterns [14], proximity to known devices [7], gait
patterns [12], and touchscreen input behavior [3, 4, 5]. Fur-
thermore, some approaches have proposed to combine
behavior-based classifiers and contextual information from
multiple sources [7, 8, 15] to implicitly authenticate a user.
We differ from these prior research efforts since our empha-
sis is more on where to authenticate than how to authen-
ticate. Furthermore, the authors in [16, 17] have proposed
implicit authentication frameworks. However, the focus of
their work is on designing an efficient framework for prob-
ing and storing behavioral features for continuous implicit
authentication at the device level. We fundamentally differ
from these approaches due to our application-centric nature.

Finally, there are some approaches that have a common
goal with ours in terms of providing an optimal trade-off
between usability and security. For example, Hayashi et
al. [2] discuss the inefficiency of the all-or-nothing access
model and suggest that a user should be authenticated only
when a sensitive application is launched. They also discuss
shared access scenarios and propose an activity lock that
can be used by a device owner to share specific screens in
an application or a group account to share a specific set of
applications between multi-user environments. In a related
work, Hayashi et al. [19] use multiple implicit factors to de-
termine how to explicitly authenticate a user. For example,
if a user is at a well known location (such as home), quick
and easy explicit authentication is used. A similar scheme
has been proposed by Gupta et al. [20] for context profiling
to determine authentication control. However, our work is
different from these approaches since in addition to selec-
tively invoking an authentication module based on the type
of an application, we aim to delegate implicit authentication
tasks to an application and not to the device.

8. CONCLUSION & FUTURE WORK
We have proposed a novel application-centric approach for

providing implicit authentication support on smartphones.
We recommend that the decisions of when to authenticate,
which behavior-based classifiers to authenticate with and
feature tuning of the classifier should be delegated to the
application. While this delegation increases development
overhead on the application provider (which can be miti-
gated using a library) it reduces authentication overhead and
provides fine grained authentication control. Empirical eval-
uations of the proposed application-centric approach show
that it provides significant accuracy improvements as com-
pared to the device-centric counterpart. Application-centric
implicit authentication is part of our on-going research work
and in addition to verification of our claims on other implicit
authentication schemes, we are developing a library that will
enable application developers to effortlessly provide implicit
authentication support in their applications.

9. ACKNOWLEDGEMENTS
We thank Mario Frank, for his helpful comments, and for

providing the sourcecode of the Touchalytics classifier [4].
We also thank Google and NSERC for their support.

10. REFERENCES
[1] N. Ben-Asher, N. Kirschnick, H. Sieger, J. Meyer, A.

Ben-Oved, and S. Moller, “On the need for different
security methods on mobile phones”, MobileHCI, 2011.

[2] E. Hayashi, O. Riva, K. Strauss, A. J. Brush, and S.
Schechter, “Goldilocks and the two mobile devices:
going beyond all-or-nothing access to a device’s
applications”, SOUPS, 2012.

[3] A. D. Luca, A. Hang, F. Brudy, C. Lindner, and H.
Hussmann, “Touch me once and I know it’s you!:
implicit authentication based on touch screen patterns”,
CHI, 2012.

[4] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D.
Song, “Touchalytics: on the applicability of touchscreen
input as a behavioral biometric for continuous
authentication”, IEEE Transaction on Information
Forensics and Security, 8(1), 2013.

[5] L. Li, X. Zhao, and G. Xue, “Unobservable
re-authentication for smartphones”, NDSS, 2013

[6] C. Bo, L. Zhang, X. Li, Q. Huang, and Y. Wang,
“SilentSense: silent user identification via touch and
movement behavioral biometrics”, MobiCom, 2013.

[7] O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos,
“Progressive authentication: deciding when to
authenticate on mobile phones”, USENIX Security
Symposium, 2012.

[8] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit
authentication through learning user behavior”, Int.
Conf. on Information Security, 2011.

[9] M. L. Damiani and C. Silvestri, “Towards location-
aware access control”, International Workshop on
Security and Privacy in GIS and LBS, 2008.

[10] J. Seifert, A. D. Luca, B. Conradi, and H. Hussmann,
“TreasurePhone: context-sensitive user data protection
on mobile phones”, Pervasive, 2010.

[11] A. Studer, and A. Perrig, “Mobile user location-
specific encryption (MULE): using your office as your
password”, WiSec, 2010.

[12] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. M.
Makela, and H. Ailisto, “Identifying users of portable
devices from gait pattern with accelerometers”,
ICASSP, 2005.

[13] A. Kalamandeen, A. Scannell, E. D. Lara, A. Sheth,
and A. LaMarca, “Ensemble: cooperative proximity-
based authentication”, MobiSys, 2010.

[14] N. L. Clarke, and S. M. Furnell, “Authenticating
mobile phone users using keystroke analysis”, Springer
Int. Journal of Information Security, 6(1), 2007.

[15] A. Shabtai, U. Kanonov, and Y. Elovici, “Intrusion
detection for mobile devices using the knowledge-based,
temporal abstraction method,” Journal of System
Software, 83(8), 2010.

[16] H. Crawford, K. Renaud, T. Storer. “A framework for
continuous, transparent mobile device authentication”,
Elsevier Computers & Security, 39(2), 2013.

[17] N. Clarke, S. Karatzouni, and S. Furnell, “Flexible and
transparent user authentication for mobile devices”,
Springer Emerging Challenges Sec., Priv., Trust, 2009.

[18] R.H. Woo, A. Park, and T. J. Hazen. “The MIT
mobile device speaker verification corpus: data
collection and preliminary experiments”, Speaker and
Language Recognition Workshop, 2006.

[19] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley.
“Casa: context-aware scalable authentication”, SOUPS,
2013.

[20] A. Gupta, M. Miettinen, N. Asokan, and M. Nagy,
“Intuitive security policy configuration in mobile
devices using context profiling”, PASSAT, 2012.

[21] Apple iPhone fingerprint reader confirmed as easy to
hack, http://zdnet.com/apple-iphone-fingerprint
-reader-confirmed-as-easy-to-hack-7000021065/

[22] Android Jelly Bean Face Unlock hacked,
http://androidauthority.com/android-jelly-bean-

face-unlock-blink-hacking-105556/

[23] S. Kullback, and R. A. Leibler, “On information and
sufficiency”, Annals of Mathematical Statistics 22, 1951.

[24] A. Serwadda and V. V. Phoha, “When kids’ toys
breach mobile phone security”, CCS, 2013.

