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ABSTRACT

Recently, there has been a dramatic increase in the number
of location-based services, with services like Foursquare or
Yelp having hundreds of thousands of users. A user’s lo-
cation is a crucial factor for enabling these services. Many
services rely on users to correctly report their location. How-
ever, if there is an incentive, users might lie about their lo-
cation. A location proof architecture enables users to collect
proofs for being at a location and services to validate these
proofs. It is essential that this proof collection and valida-
tion does not violate user privacy. We introduce VeriPlace, a
location proof architecture with user privacy as a key design
component. In addition, VeriPlace can detect cheating users
who collect proofs for places where they are not located. We
also present an implementation and a performance evalua-
tion of VeriPlace and its integration with Yelp.
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1. INTRODUCTION

Location-based services have seen lots of interest recently,
both from companies and from academia. For instance,
Foursquare [10] provides a location-based social networking
platform through which users can “check in” at places that
they are visiting and learn their friends’ location. As of May
2010, Foursquare is averaging 700,000 checkins per day [1].
Yelp [30] allows users to post and read reviews about places.
Recently, Yelp enabled a “check in” feature on its iPhone
application so that readers can learn how often a reviewer
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visited the reviewed location. Other popular services are
Gowalla [14] and Google Latitude [13]. From an academic
point of view, researchers have studied location-based access
control [7], which grants people access to a resource based
on their geographical location (and maybe other factors).

Often, users can benefit from being at a given location.
For example, Foursquare has the user who checks in the
most often at a location become the mayor of the location.
In turn, the owner of the location (e.g., a bar) might pro-
vide a reward to this user (e.g., a free drink). If there is a
benefit for being at a location, people get an incentive for
claiming that they are at a location even though they are
not. For example, a Foursquare user might check in wrongly
as being at a pub to get a free drink. In location-based ac-
cess control, a doctor might pretend to be in the ward where
a celebrity patient is located to get access to the patient’s
records. Foursquare is using GPS (and other un-reported
measures) to verify a user’s manually entered location [2].
The problems with this approach are possible manipulations
of a smartphone’s GPS-based location reporting mechanism
(e.g., by jailbreaking the phone) and the limited coverage of
GPS indoors or between high-rise buildings.

Location proofs are an alternative approach to let location-
based services verify a user’s location. Formally, a location
proof is an electronic document that certifies someone’s pres-
ence at a certain location at some point in time. A location
proof architecture is a mechanism with which users obtain
location proofs and with which services validate proofs. A
crucial challenge is to ensure that users’ privacy does not get
violated while collecting and using location proofs. More-
over, we need to be able to detect users that try to fool the
architecture by acquiring location proofs for locations where
they are not located. Finally, the architecture must be ap-
plicable to a variety of location-based services and widely
deployable. We present VeriPlace, a location proof architec-
ture that comprehensively addresses these challenges, and
make the following contributions:

e the design of a location proof architecture that pre-
serves user privacy and that can detect cheating. Our
architecture harnesses appropriate cryptographic tech-
niques to achieve robust system security and user pri-
vacy protection. Furthermore, our architecture takes a
first step towards defences against wormhole attacks [15]
that do not rely on dedicated hardware;

e an implementation of the proposed architecture and
an experimental performance evaluation;

e an integration of our architecture with Yelp to demon-
strate the practicality of our architecture.



2. DESIGN CHALLENGES

In this section, we discuss several challenges that we take
into account in the design of VeriPlace.

2.1 Privacy

Privacy is of central importance to mobile users. Namely,
we must prevent issuers and verifiers of location proofs from
violating a user’s privacy.

Issuers of a location proof have knowledge of a user’s lo-
cation at the time the proof is issued to the user. If proof
issuers can also learn the user’s identity, they will be able to
track users by their location. Therefore, shielding user iden-
tity from proof issuers is essential. However, it is difficult
for proof issuers to vouch for a user’s location if they do not
know who they are vouching for in the first place.

Location-based services act as verifiers of a location proof.
Users have to present a location proof to a service to access
the service. If the proof discloses more granular location
information than strictly necessary, the service can poten-
tially infer sensitive personal information about a user, in
particular, if the user’s location is sensitive (e.g., a hospi-
tal). Different services have different requirements on the
granularity of the required location. To make a single loca-
tion proof usable to any service, a naive solution is to include
the most granular location information in the proof. While
this solves the applicability problem, it violates a user’s pri-
vacy if a service does not require the most granular location
information. If a user knows what service she plans to use
a location proof for, she can ask proof issuers to include
location information of the desired granularity in the proof.
However, the problem becomes difficult when the user needs
a location proof for future use (see below).

2.2 Security

Mobile users may lie about their location to use services
that they are not qualified for. A challenge is to incorporate
a cheating detection mechanism into the location proof ar-
chitecture so as to (1) make cheating difficult for users, (2)
enable services to spot dishonest users who submit incor-
rect location information nonetheless, and (3) detect cheat-
ing without compromising user privacy (e.g., having a single
party monitor a user’s location proofs is undesirable).

Curbing user cheating is a challenging problem that lacks
practical solutions in previous work. For example, the only
guaranteed way to defeat wormhole attacks is to rely on ded-
icated hardware and distance-bounding [4], which makes it
difficult to widely deploy a location proof architecture based
on these techniques (see below). In a wormbhole attack [15],
a malicious party records network traffic in a region of the
wireless network and replays it in another region. Assume
Alice, who is in New York, wants to access a location-based
service that is available only to people in San Francisco. Also
assume that access points (APs) in Starbucks locations hand
out location proofs. To get access, Alice asks her friend Bob
in San Francisco to proxy communication between her and
an AP in a San Francisco Starbucks.

2.3 Flexibility

A location proof must satisfy the requirements of the ser-
vice that it is handed to. Embedding service-specific data
(e.g., the service’s public key [29]) in a location proof reduces
the applicability of the proof because users would have to
request a proof for each service that they want to interact
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with. The situation worsens as the number of services in-
creases. Therefore, a challenge is to produce general location
proofs that are acceptable by various services.

When a user requests a location proof, it is not always the
case that the user has a target service at hand to interact
with. Sometimes the user obtains proofs to save them for
future use. For example, these proactively gathered proofs
come in handy when the user later gets wrongly accused
by his/her spouse, the police, or a fellow citizen of having
been at a location. For example, Parking Mobility [21] pro-
vides an iPhone application that lets citizens take pictures
of illegally parked cars and have them ticketed. Whereas
such an application could often be useful, it also brings the
potential for misuse. Alternatively, a user might be at a
location without realizing that a proof for having been at
this location could be useful later when interacting with a
location-based service. For example, a user consumes spoilt
food at a restaurant and suffers from food poisoning. With
the help of the location proof proactively gathered while be-
ing at the restaurant, the user can later give more credibility
to her (negative) review of the restaurant submitted to Yelp.
In another example, a user might want to take advantage of
the “missed connections” feature of Craigslist and posts the
description of a person that she wants to see again. Here,
the user could ask the person for a location proof to keep
away unsolicited requests.

Without knowing what service a location proof will be
used for, it is difficult for the user to judge what granularity
of location information is appropriate. To make the proof
useful both now and in the future, we need to include the
most granular location information. However, this can vio-
late a user’s privacy, as discussed above.

2.4 Deployability

To be widely deployable, a location proof architecture
must purely utilise the most common features of existing
mobile devices or APs (assuming APs issue location proofs)
and not require dedicated hardware. Requiring dedicated
hardware is one of the factors that prevents previously pro-
posed architectures (e.g., [29]) from being widely deployed.
Although this requirement has benefits, such as defending
against wormhole attacks, it is also a hurdle for regular users
to use location proof technology.

The architecture must also be scalable as the number of
users increases. Mobile devices and some proof issuers, such
as APs, are weak compared to desktop computers in terms
of processing power. Therefore, a location proof architecture
should not require intensive computation on weak devices.

3. BENEFITS OF VERIPLACE

There are two primary benefits associated with VeriPlace:
user privacy and cheating detection.

Protecting user privacy has been given paramount impor-
tance in our design. In particular, VeriPlace ensures that
user identity is concealed from proof issuers and grants users
fine-grained control over how much location information a
location proof discloses to a service.

Our architecture is also capable of detecting cheating to
a certain degree. Our cheating mechanism exploits the ob-
servation that a user cannot be at multiple locations at the
same time. If a user gathers location proofs for her real lo-
cation and also colludes with remote user(s) in a wormhole
attack to obtain location proofs for other location(s) and



if the time when these collusions happen is chronologically
close, our architecture will detect the anomaly and notify
the service when the dishonest user submits a location proof
obtained by cheating.

As the popularity of location-based services rises, people
will have to request location proofs increasingly often, and
the effectiveness of our cheating detection mechanism will in-
crease. Moreover, by guaranteeing people’s anonymity from
a proof issuer, VeriPlace gives users an incentive to gather
location proofs frequently and on a proactive basis, in case
a proof turns out to be useful later. Therefore, people’s
cheating attempts will more likely result in the acquisition
of proofs for conflicting locations, which VeriPlace can de-
tect. Therefore, VeriPlace can provide an effective solution
against wormhole attacks.

VeriPlace does fail to detect cheating if cheating commit-
ted by a user happened in chronologically diverging periods.
However, VeriPlace is not designed to offer perfect security,
but to provide more security than what is currently avail-
able to existing location-based services, which are often low-
value. The security mechanisms deployed by these services
(if any at all) are weak and easy to circumvent. For exam-
ple, by jailbreaking an iPhone, its GPS-based location re-
porting mechanism can be manipulated. Some services let a
user manually enter her location. Services relying on source
IP addresses for access control (e.g., a content-delivery ser-
vice) can easily be fooled with a proxy. In these scenar-
ios, VeriPlace provides additional security since VeriPlace is
more difficult and more expensive to circumvent. For exam-
ple, in a wormhole attack, an attacker must be physically
next to an AP to relay packets, instead of simply running
a proxy server. Nonetheless, for high-value location-based
services, operators should always adopt additional security
mechanisms, such as user authentication, and not rely only
on VeriPlace, which can still serve as a complementary mech-
anism. Similarly, VeriPlace cannot resist targeted, carefully
planned cheating, but it is a useful mechanism for gather-
ing additional evidence to defend against/support wrong-
ful/proper claims of having been at a location.

4. SYSTEM MODEL

VeriPlace targets services provided by third parties (such
as applications in Apple’s App store), not services offered
by cellphone providers (maybe in collaboration with third
parties). A cellphone provider has to know a user’s location
to route calls to the user, so trying to hide her location from
the provider (and any collaborators) makes little sense.

VeriPlace lets an access point (AP) issue an intermediate
location proof that certifies the user’s presence nearby the
AP. Later when the user wants to provide a service with a
location proof, she must first present her intermediate proof
to a TTPL (introduced next) to obtain a final proof.

VeriPlace requires three types of trusted entities that are
run by different parties to avoid collusion. To protect users’
privacy, each trusted entity knows either a user’s identity or
her location, but not both of them.

A TTPL (Trusted Third Party for managing Location in-
formation) is responsible for issuing final location proofs by
creating a new proof that includes all the information con-
tained in intermediate location proofs, with some informa-
tion transformed to another representation. In particular,
an intermediate proof contains the identity of an AP (i.e.,
IDap) and is digitally signed by the AP. A TTPL replaces

25

the AP identity in an intermediate proof with the location
of the AP (and takes some additional measures to protect
location privacy, as explained later) and the AP’s signature
with its own signature to generate a final proof. Further-
more, a TTPL makes its mapping from AP identities to
geographical locations publicly available. The disclosure of
AP-to-location mapping serves two purposes: (1) Services
can verify the accuracy of these mappings and decide which
TTPLs to trust. (2) The CDA (introduced later in this sec-
tion) can directly use a TTPL’s mappings in its cheating
detection procedure, thus dispensing with the overhead of
maintaining an AP-to-location database itself.

A TTPU (Trusted Third Party for managing User infor-
mation) is in charge of storing encrypted location informa-
tion associated with users. More specifically, a TTPU stores
triples of the form (IDyser, T, E), where T represents the
time when user IDyser requested a proof and E represents
the encrypted identity of the AP that issued the proof. In
short, each record shows when and where (to be more pre-
cise, encrypted “where”) a particular user requested a loca-
tion proof. When verifying a final location proof submitted
by the user, a service submits IDyser and T to the TTPU,
which searches in its database for any records matching the
same IDygser and roughly the same T value (as specified by
the service). The TTPU extracts the corresponding E val-
ues and submits them to the CDA for cheating detection.

A CDA (Cheating Detection Authority) carries out cheat-
ing detection. After receiving encrypted AP information
from the TTPU, the CDA decrypts this information and
checks whether any two APs are far apart, which is a sign
of cheating (because the same user can not request location
proofs at two far-apart places simultaneously). The CDA
notifies the TTPU in case cheating is detected.

We assume that a user’s or an AP’s identity (i.e., IDyser
and IDap, respectively) is a public key that is certified by a
Certificate Authority, which can be identical to the TTPU.
Users and APs will not give away the corresponding private
key (e.g., users can be prevented from doing so by having
this release also result in the release of personal informa-
tion). Users store their public and private key on their per-
sonal mobile device (e.g., their smartphone). Note that a
device carrier is not always the actual owner of the device.
For example, a device may be stolen by a thief or lent to a
friend by the owner. Therefore, our use of users’ public keys
as their identities may not always be reliable. Saroiu and
Wolman [23] propose several alternatives to achieve stronger
identities, but none of them is foolproof. However, there are
strong incentives for people not to give away their phone and
to protect it, such as being reachable continuously and pro-
tecting personal information stored on the device. Also, as
mentioned before, VeriPlace is designed as a security mech-
anism for low-value location-based services to provide more
security than what is currently available to these services.

5. THREAT AND TRUST MODEL

We consider the following malicious parties in VeriPlace:

e Dishonest users. A dishonest user tries to obtain
location proofs that certify her presence at some place
at a particular time even if she was not there. Dis-
honest users may achieve this goal by colluding with
malicious intruders and defecting APs.

e Malicious intruders. A malicious intruder is not



interested in obtaining location proofs for her own use
but offers to collude with remote dishonest users to get
location proofs on their behalf in exchange for benefits
like money. For example, a dishonest user may save
the generated data when interacting with an AP and
give these data to a malicious intruder, who can use
these data in location proofs later on.

e Defecting APs. A malicious or misconfigured AP
may collude with dishonest users and issue them lo-
cation proofs with fake information. For example, a
malicious AP in New York, which is only authorised
to issue proofs representing places in New York, may
issue location proofs representing places in Chicago.

e Malicious services. A malicious service tries to use
location proofs obtained from its users to get unautho-
rised access to other services.

e Passive and active eavesdroppers. An eavesdrop-
per records and maybe modifies communication be-
tween users, proof issuers, and services.

Neither users nor APs are trusted by services, because
dishonest users lie about their location and defecting APs
collude with these users. A TTPL trusts some APs to issue
location proofs to users of the AP (and to no other users) and
not to become compromised. As a consequence of its trust,
the TTPL will be willing to convert intermediate proofs is-
sued by a trusted AP into final location proofs. It is up to
a TTPL to decide which APs to trust. We envision that
this decision is typically based on an organisational basis.
For example, a TTPL might trust all APs run by AT&T,
but not necessarily APs run by an individual. Note that an
intermediate location proof, as issued by an AP, simply says
that a user is nearby the AP, but the proof does not con-
tain any location information, so we do not have to defend
against APs inserting wrong location information.

We assume that the three kinds of TTPs are run by dif-
ferent organisations and that users trust the TTPs used by
them not to collude with each other. Otherwise, users’ pri-
vacy could get violated. In addition, we have the following
TTP-specific trust assumptions:

A TTPL is trusted by services to replace AP identity in in-
termediate location proofs with correct location information
when producing final proofs. Services also trust TTPLs to
encrypt the correct AP identity from an intermediate loca-
tion proof in the final location proof. Users trust a TTPL not
to collude with services. Otherwise TTPLs and services can
collectively track users’ location. Several TTPLs can exist,
each of which could be trusted by different services or users.
For example, companies that provide a location information
infrastructure, such as SimpleGeo [26], or that maintain APs
distributed over a large geographical area, such as AT&T,
could become TTPLs. When a user wants to convert an
intermediate location proof into a final location proof, she
should consult a service first to get a list of TTPLs trusted
by that service and then choose a TTPL that she also trusts.

A TTPU is trusted by services to assist in cheating detec-
tion in the way specified by our protocol. Services also trust
a TTPU not to collude with users to make their cheating un-
detected. Users trust a TTPU not to collude with services
or APs, otherwise their location privacy could get violated.
Ideally, to get the best cheating detection results, each user
uses exactly one TTPU (though different users could use
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different TTPUs). Recall that a TTPU keeps track of a
user’s location proofs (without learning the user’s location).
If the user used multiple TTPUs, none of them would have
a complete picture of the user’s location proofs. Therefore,
a service should specify which TTPUs that it trusts (e.g.,
Facebook could be such a TTPU). If a service specifies that
it trusts only one TTPU, the service gives a strong incen-
tive to its users to use only this TTPU since location proofs
issued in collaboration with other TTPUs would be useless.
Of course, a user can always get multiple proofs for being at
a given location, where each proof is acquired with the help
of a different TTPU. (This would be similar to check in at
a location with both Foursquare and Gowalla.)

A CDA is trusted by services to conduct cheating detec-
tion and to report results honestly, as specified by our pro-
tocol. Similar to TTPUs, there can be multiple CDAs, but
a service should indicate to its users which CDAs that it
trusts. Note that it is possible for a single location proof to
cover multiple CDAs by including multiple ciphertexts (one
per CDA, each containing the user’s encrypted location) in
the location proof. Services have the most interest in the
existence of CDAs, so they should provide resources neces-
sary for funding organisations that run CDAs. Since the
functionality performed by a CDA is straightforward (de-
crypting ciphertexts and computing geographical distances),
these organisations do not need to be complex. In the ex-
treme, such an organisation simply consists of a secure co-
processor, such as the IBM 4765 [16], that is directly run
by a TTPU. The co-processor’s security properties guaran-
tee that nobody, including the TTPU, is able to observe the
co-processor’s operations, not even with physical attacks.

6. LOCATION PROOF ARCHITECTURE

We use St (m) to represent a signature for message m
generated with T’s private key, and Enc (K, data) to rep-
resent data encrypted with K’s public key. The encryption
scheme we will use here is probabilistic, that is, encrypt-
ing the same plaintext several times yields a different ci-
phertext each time. (Good cryptographic libraries, such as
OpenSSL [20], provide this kind of encryption by default.)
hash() denotes a cryptographic hash function, and || stands
for concatenation. All nonces used by our protocols are of
a fixed size. Finally, all communication is secured against
passive and active eavesdroppers with the help of TLS/SSL.

6.1 Obtaining an Intermediate Location Proof

Before a user can request a final location proof from a
TTPL, she must request an intermediate proof from an AP.
The protocol to obtain an intermediate location proof is in
figure 1. A user can proactively gather intermediate proofs
or wait till she wants to access a particular location-based
service. Users should change their device’s MAC address
to avoid becoming linkable to the AP. It might be possible
to identify a device at the physical or link layer (e.g., [5]).
However, these techniques are evaluated only with specific
technologies, and countermeasures could be developed.

Briefly, in steps 1-4, the user retrieves a token from the
TTPU that will be required for acquiring a location proof
from the AP. The token is bound to the user and includes
the (encrypted) identity of the AP. In steps 5-6, the user
presents the token to the AP, which issues a location proof
bound to the token and therefore to the user.
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Figure 1: Request an intermediate location proof

1. The user sends IDyger and €1 || Suser (€1) to the TTPU,
where e; = Enc (keycpa, IDap) is IDap encrypted
with the CDA’s public key and IDap is the identity of
the AP from which the user requests an intermediate
location proof. Our use of a probabilistic encryption
scheme makes it impossible for the TTPU to brute
force IDap by encrypting each possible IDyp. In sec-
tion 6.4, we show how a dishonest user who encrypts
a wrong value for IDap will be detected.

2. The TTPU verifies the user’s signature and sends the
user a random nonce nrrpy to ensure freshness of the
token to be issued.

3. The user sends Tuser || Suser (RTTPU || Muser) to the
TTPU, where nyser is a random nonce generated by
the user that ensures that the content signed by the
user is not controlled entirely by the TTPU.

4. The TTPU verifies the user’s signature and stores
(IDusers Trrpu, e1) in its database, where Trrpu is
the time when the TTPU receives the request from
the user. It sends the following token to the user:

Tokentrpy = Tk || Streu (Tk)

where Tk = hash (Suser (nTTPU H nuser) || nuser) H TrrpU H

hash (Suser (1) || Tuser) || €1 || mrrpu. Note that the
token includes hashes of the user’s signatures, not the
actual signatures, since a signature might reveal its
creator’s identity. A hash acts as a commitment by
the user to her signature. Including random nyser in
the hash, which is unknown to the AP, ensures that
the AP cannot learn anything from the commitment,
so the user will remain anonymous to the AP.

5. The user sends TokentTpu to the AP.
6. The AP returns an intermediate location proof:

Pr || Sap (Pr)

where Pr = Tokentrpu || Tap || IDap and Tap is the
time when the AP receives the request.
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6.2 Obtaining a Final Location Proof

Figures 2(a) and 2(b) show the protocols to obtain a final
location proof. A user can delay this conversion till she
actually needs to interact with a location-based service (at
the risk of limited availability if the TTPL happens to be
unaccessible at this moment in time), or she can proactively
convert (some of her) intermediate proofs into final proofs (in
particular, when she knows that she will require a particular
final proof).

1. The user sends the intermediate location proof ob-
tained from an AP and the desired location granularity
g to the TTPL, where g =1,...,5.

2. The TTPL retrieves IDap from the proof. If it trusts
this AP and if the proof signature is valid, the TTPL
examines whether the proof contains a TTPU token.
If it does not, the request is rejected. Otherwise, the
TTPL replaces IDap with Ly, which is actual loca-
tion information of granularity level g. Moreover, the
TTPL includes IDap encrypted with the CDA’s pub-
lic key in the proof for cheating detection. Finally, the
TTPL sends to the user a final location proof:

P’I“/ || STTPL (P’I“/)

where Pr’ = Tokentrpu || Tap || €2 || Lg and es =
Enc (keyCDA, IDAP).

The above protocol applies to the case where the user has a
desired service and hence location granularity in mind. But
as we discussed in section 2, the user is unlikely to know
what granularity to ask for when she requests a proof in a
proactive manner. The strategy to deal with this case is to
include in the proof encrypted location information of every
granularity level and allow the user to selectively reveal lo-
cation information of the desired granularity. In particular,
in the first step, the user now sends the wildcard location
granularity ¢ = % to the TTPL. In the second step, the
TTPL generates a root key keyy, which is used to symmet-
rically encrypt the most granular location information, or
Ls = E (keyy , location of granularity level 5). For gran-
ularity levels g = 4,...,1, the TTPL computes

hash (keyg+1)

E (keyg, location of granularity level g).

key, =

L, =

In this case, the final location proof looks as follows:
Pr’ || SoreL (Pr')

where PT‘/ = TokenTTpU || TAP || €2 H key1 H L1 || || L5
and ez = Enc (keycpa, IDap). key; is also sent to the user.
Direct communication with the TTPL would reveal infor-
mation about users, such as their IP address, so users should
use tools such as Tor [28] for protecting their anonymity.

6.3 Verifying a Final Location Proof

The protocol to verify a final location proof is sketched in
figure 3. The user submits nTTPU, Nuser; Suser (RTTPU || Nuser),
Suser (€1); IDyser, and Pr’ || Strer (Pr’) to the location-
based service that she wants to access. The service needs
to verify whether the user is in the possession of the pri-
vate key corresponding to IDyser, for example, by setting
up a SSL/TLS connection with client authentication. The
service verifies the location proof as follows:
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Figure 2: Request a final location proof

1. The service first verifies that the two signatures sub-
mitted by the user were issued by the user and corre-
spond to the signatures committed to in Tokenprpu.

2. If so, the service verifies whether Tap (extracted from
Pr') and Trrpu (extracted from TokenrTpy) repre-
sent approximately the same time.

3. If so, the service sends IDyser, TrrPU, €1 and ez to the
TTPU for cheating detection and notifies the TTPU
which TTPL issued the final location proof.

4. With Trrpu and IDyser, the TTPU is able to pull out
all the records of the user with approximate Trrpu
value (as specified by the service) from its database.
The TTPU then extracts from all these records the
encrypted identities of APs that issued location proofs
to the user around time Trrpy and sends the cipher-
texts to the CDA. Moreover, the TTPU also sends e;
and ez to the CDA and informs the CDA which TTPL
issued the final location proof.

5. The CDA decrypts all the ciphertexts to reveal AP
identities. If any decrypted ciphertext does not reveal
a valid AP identity, the CDA reports cheating. If all
the ciphertexts are decrypted to valid AP identities,
the CDA compares whether IDap, = IDap,, where
IDap, is decrypted from e; and IDap, is decrypted
from es. If these two decrypted AP identities are not
identical, the CDA informs that there is cheating. Oth-
erwise, using the TTPL’s AP-to-location database, the
CDA examines whether any two IDap’s are far apart
(as specified by the service), which indicates cheating,
and informs the TTPU, which in turn tells the service.

If all the steps above are passed successfully and no cheat-
ing is detected, the service accepts the proof. If the proof is
not proactively gathered, the service can use Ly in the proof
directly. However, if the user requested the proof proac-
tively, the user needs to decide about a desired granularity
g and send the service the appropriate decryption key key
for decrypting L. For instance, if the user intends to reveal
location information of granularity level 3, she should com-
pute key, = hash (hash (key;)) and send key, to the service.
On receiving the decryption key, the service must make sure
the user submitted a proper key as follows: for i =g¢g,...,1,
key, = hash (key, ;). If the computed key, matches the
key, in the location proof, the service can be certain the
decryption key submitted by the user is valid.

6.4 Security Analysis
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VeriPlace defeats collusion between dishonest users and
defecting APs. Assuming the information in the TTPU to-
ken is correct, if users and APs collude to produce intermedi-
ate location proofs with fake information, it will be detected
during the verification phase, because the information that
an AP places in an intermediate proof can be verified by
comparing the corresponding fields in the TTPU token. For
example, an incorrect Tap or IDap will be detected in step
2 and 5 of the verification phase, respectively.

However, the TTPU token may contain incorrect informa-
tion, since a dishonest user may cheat by submitting a wrong
IDAp when registering with the TTPU. For example, a dis-
honest user may submit Enc (keycpa, IDap, ) to the TTPU
to obtain a TTPU token, while she is actually attempting
to request a location proof from another AP with identity
IDap,. No matter whether she further colludes with AP,
her cheating will not succeed. Assume AP2 behaves honestly
and places its real identity IDap, in the intermediate proof.
In this case, the dishonest user has no way of preventing the
TTPL from copying the correct IDap, included by AP to
the final location proof, which allows the service to detect
the cheating in step 5 of the verification phase. If AP; is
defecting and colludes with the user and puts the incorrect
identity IDap, in the intermediate proof, it is not able to
sign the proof with AP;’s private key, and the TTPL will
refuse to create a final proof.

A malicious intruder cannot acquire a TTPU token and
then give it to a dishonest user since each token contains a
commitment to a signature, where this signature was cre-
ated by the entity to whom the token was issued (the ma-
licious intruder in our case). Due to the security properties
of a cryptographic hash function, it is not possible for the
dishonest user to create a signature that is covered by the
same commitment. Similarly, since tokens are included in
location proofs, a malicious service cannot re-use a location
proof issued to somebody else for its own purposes.

A dishonest user might cheat by acquiring a TTPU token
that lists a given AP while not actually being close to the AP
and by getting a location proof from the AP only once she is
nearby the AP. However, a token lists the time when the user
is expected to send a proof request to an AP, and a location
proof lists its issuing time. For a service to validate a proof,
these two timestamps have to be close. Replay attacks take
place when a dishonest user reuses the same TTPU token
for requesting more than one location proof. If she reuses
the same token with the same AP within the time-frame
allowed by a service, this will not be detected, but it is not
a problem. If she reuses the token with a different AP, the
encrypted AP identity contained in the token will not be
correct, which will be detected, as mentioned above.
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Figure 3: Verification of a location proof

Services and the TTPU should be prevented from know-
ing IDap (i.e. the identity of the AP that issued location
proofs to the user), since knowledge of IDap will allow them
to deduce the user’s accurate location by investigating the
AP’s geographical location. Instead, both the service and
the TTPU are given the encrypted IDap when the user re-
quests a token or presents a final location proof, respectively.
Services and the TTPU may use a brute-force attack to try
to learn IDap: they encrypt identities of all the APs in the
world using the CDA’s public key and compare ciphertexts
However, our use of probabilistic encryption defends against
this attack.

Communication secured with TLS/SSL protects against
passive and active eavesdroppers.

7. IMPLEMENTATION

In this section, we elaborate on our wireless testbed and
the implementation of the three trusted third parties. In our
implementation, we choose RSA with a key length of 2048
bits and AES with a key length of 256 bits for all public-key
and symmetric-key encryption, respectively. We use SHA-
256 for all hashing operations.

To deploy VeriPlace, we adopt an existing Wi-Fi research
testbed [3]. A total of 38 AP nodes, all connected to a central
controller, are deployed on the second and third floors of the
computer science building at our university. The testbed
consists of two major components: 1) Wi-Fi APs, which
consist of a VIA EPIA EN12000EG mainboard with a 1.2
GHz C7 nanoBGA2 processor. 2) A central controller, which
is a desktop computer with a dual core 2.66 GHz processor
and a Gigabit connection with the APs. The controller runs
Ubuntu 7.04 with the 2.6.20-15 Linux kernel.

In our testbed, we have the controller issue location proofs
on behalf of APs. In an organisation, APs are often man-
aged by a central party, and it makes sense to also have
this party issue location proofs. Since this entity is used for
security-critical tasks (e.g., access control to the organisa-
tion’s Wi-F1i), the organisation has lots of interest in protect-
ing it against compromise. A user who wants to request a
location proof from the central controller must first associate
with one of the APs. After the association (and authentica-
tion) is complete, the AP sends an association message to the
central controller. The user can then ask the controller for
a location proof, and the AP will route protocol messages
to and from the controller through its Ethernet interface.
After the controller constructs a location proof, it signs the
proof on behalf of the AP that the user is associated with.

The TTPL and TTPU are implemented as Web servers,
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so that users can use their web browser to interact with
them. For easier integration with location-based services
and client applications accessing these services, we also im-
plemented SOAP server versions of these two services. Both
services also manage a MySQL database to store user infor-
mation and AP’s location and public keys, respectively. We
implemented the CDA as a SOAP server and use TLS/SSL
to secure communication.

All three trusted third parties are currently hosted on a
server at our university to simplify experimentation. The
server has Ubuntu 8.04 with Linux kernel 2.6.24-24-server in-
stalled and runs on two 2.40GHz Intel Xeon(R) CPUs with
3.9 GB memory. The three trusted third parties are im-
plemented in Python. We use the SOAPpy library [27] to
implement the SOAP services. We adopt the PyCrypto [22]
toolkit to implement the cryptographic algorithms.

8. EXPERIMENTS

APs are typically weak devices that could potentially throt
tle the performance of VeriPlace. Therefore, we provide
experimental performance results in this section. We first
measure the throughput of the controller and then pinpoint
the performance bottleneck.

We do not present TTPL and TTPU-related performance
measurements, because the results of such measurements
would have little value. In practice, neither a TTPU nor
a TTPL have to be run on a single server. Instead, they
could be deployed on multiple servers to ensure scalability
(e.g., a TTPU assigns a user to one out of multiple servers
based on IDyser). In general, the performance of the TTPL
and TTPU is less of a concern, since we expect them to be
more powerful compared to APs.

8.1 Controller Throughput

The controller is the master of all APs and responsible
for issuing location proofs. Therefore, it is the potential
performance bottleneck of VeriPlace. We conduct a series of
experiments to measure the throughput of the controller and
determine the scalability of the controller as the number of
location proof requests increases. We first eliminate the step
of user registration with the TTPU since it has no impact
on the controller throughput. We manually prepare TTPU
tokens and save them to files for the user-side program to
read locally instead of having to obtain them from the TTPU
in real time. Another factor that could potentially skew the
results is the delay between APs and users. We eliminate
this delay by running the user-side program on the APs, so
that location proof requests are directly issued from APs.
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We conduct eight rounds of experiments with an increas-
ing number of APs. For every round, we run the controller
for 15 minutes, during which we instruct a certain number
of APs to send location proof requests persistently and as
fast as possible. At the same time the controller keeps track
of the number of processed requests so far. We repeat each
round 10 times to compute the average number of requests
that the controller is able to handle per second. The exper-
imental results are displayed in figure 4. As shown in the
figure, the performance of the controller reaches its peak af-
ter we run three APs. Moreover, during the experiment we
monitored the CPU usage, which was at 100%. Therefore,
we can be certain that the network is not the bottleneck.

Our controller can issue about 100 proofs per second. As-
suming users get a location proof once every half an hour,
our setup can support up to 180,000 users, which is far above
the number of people in our building (and on our campus).

8.2 Micro Benchmarks

Now that we have determined that the controller is the
bottleneck, we need to find out which part of our protocol
significantly affects performance. Generally speaking, creat-
ing cryptographic signatures is an expensive operation and
is the most likely culprit. To confirm this expectation, we
conduct the following experiment:

We divide the controller’s processing of a request for a
location proof into three parts: (1) receiving the request and
sending the proof. This part measures the cost associated
with network activities. “Receiving the request” refers to the
time between accepting the user connection and receiving
the last bit of the request message. “Sending the proof”
refers to the time between transmitting the first bit of the
location proof and the last bit of the proof signature. (2)
constructing the location proof and (3) signing the proof.
We control an AP to send 100 location proof requests to
the controller and measure the time contributed by each
part. Figure 5 summarises the experimental results. The
most time-consuming part is signature creation, which is 23
times more expensive than the other two parts combined.
In terms of the numerical value of the cost, the three parts
take 0.3274+0.003 ms (for part 1), 0.387+0.004 ms (for part
2) and 15.02 £ 0.09 ms (for part 3).

Since we rely on PyCrypto’s implementation of RSA for
creating signatures, the question arises whether our library
choice is appropriate, given that interpreted languages like
Python are often considered to be significantly slower than
compiled languages such as C. We measured the PyCrypto
implementation of RSA signing and compared it to the pop-
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ular OpenSSL implementation [20]. Rather unexpectedly,
we find that PyCrypto performs better (on the controller)
or the same (on the server hosted at our university) as
OpenSSL. The reason is that PyCrypto implements its speed-
critical operations in C and relies on a high-performance
library for fast arbitrary precision arithmetic.

9. REAL-WORLD SERVICES

As discussed in section 3, VeriPlace is suitable for two
kinds of services: (1) services that are low-value and where
executing a targeted attack would be more expensive; (2)
services that currently have a weak location check and where
VeriPlace gives better security. We built three real-world
services based on VeriPlace that fit this profile: a service
for instructors to take class attendance, a browser extension
that adds location proofs to emails sent with Gmail, and
a browser extension that adds location proofs to Yelp. We
now present the third service. We first present the location
proof daemon, which is a client-side program that runs on a
user’s mobile device (a Linux laptop in our implementation)
and that automates the task of requesting location proofs.

9.1 Location Proof Daemon

The location proof daemon reads a local configuration file
on startup, where parameters, such as the address of the
TTPL and TTPU, desired location granularity, how often
to request a location proof, etc. are specified. The daemon
sends location proof requests periodically and saves location
proofs to the mobile device. Moreover, the daemon allows
the user to dynamically change the parameters through a
frontend command shell. The user can also instruct the
daemon to send a location proof request at once.

9.2 Location Proofs For Yelp Web Review

Yelp [30] is a social networking and user review website
with over 25 million visits per month. Users can provide
ratings and reviews for various places. In early 2010, Yelp
released a collection of location features for its iPhone ap-
plication that allows users’ reviews to be supported by their
location. Namely, a Yelp user can “check in” through Yelp’s
iPhone application. Alongside a user’s review, Yelp will then
display how often the user checked in at the reviewed loca-
tion. This feature can increase the credibility of reviews.

VeriPlace is a good fit for making Yelp more secure. Cur-
rently, by jailbreaking an iPhone, an attacker could mod-
ify the Yelp application and have it provide wrong check-in
locations. Instead, VeriPlace requires users to prove their
physical presence at the claimed location. Since we cannot
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modify the Yelp service directly, we developed a Firefox ex-
tension that lets reviewers attach a location proof to their
review and that retrieves location proofs for the readers of
a review. More specifically, a user composes a review on
the Yelp website as usual. Before submitting the review,
she attaches a location proof, retrieved from the location
proof daemon, to her review using the extension as shown
in figures 6 and 7. The extension generates a random re-
view identifier and adds it to the review. Then it submits
the location proof, the Yelp URL of the reviewed place, and
the review identifier to a server currently hosted by us. The
server acts as a service in our location proof architecture. It
first verifies the location proof. Then, using the URL it re-
trieves the address of the reviewed place and determines its
longitude/latitude using Google’s geocoding service. If this
location is indeed nearby the location extracted from the
location proof, the server stores the extracted location in-
formation along with the corresponding review identifier in
its database. Otherwise, the server stores the extracted lo-
cation information with an appended string that warns that
the location proof represents a non-nearby location (there-
fore, the user’s review is questionable). The user then sub-
mits her review to Yelp. Later when a user tries to view a
review, assuming that she has the extension installed, the ex-
tension will use the review identifier contained in the review
to automatically retrieve from our server location informa-
tion associated with the review and display it along with the
review, as shown in figure 8.

10. RELATED WORK

There are several previous approaches for location proof
architectures that rely on measuring the round trip time
of an electromagnetic signal to bound the distance between
two parties (e.g., [4, 6, 29], see [12] for a survey). A gen-
eral problem with these approaches is that they are based
on measurements of very high precision, which requires dedi-
cated hardware and hinders deployability. For example, Wa-
ters and Felten [29] introduce a system that allows a device
to obtain location proofs from a location manager (LM) and
submit proofs to a verifier. A device requests location proofs
by sending its device ID encrypted with the public key of
the verifier. The LM then sends the device a nonce which
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the device immediately sends back. The LM measures the
round-trip delay and sends the device a location proof con-
taining the measured delay and the encrypted device ID. A
drawback of this system is that a malicious intruder can craft
fake device IDs and collect location proofs on behalf of dis-
honest users, which is not possible in VeriPlace. Moreover,
the system requires the device to know verifiers in advance
and does not support proactively gathered location proofs.

An approach that does not require dedicated hardware is
to have APs or GPS satellites broadcast a token. Only de-
vices that are close to the AP /satellite will see this token and
can hand it over as a location proof to a service [8, 9, 25].
For example, Faria and Cheriton [9] design a location-based
authentication architecture for wireless LANs. A centralised
wireless appliance (WA) controls a group of APs and broad-
casts a set of random nonces through its controlled APs.
To prove its closeness, a client must capture and send all
the received nonces back to the WA. Denning and MacDo-
ran [8] present a location-based authentication system where
a location signature sensor (LSS) creates location signatures
from GPS signals that describe the physical location of the
LSS at a particular time. A user carrying an LSS can hand
a location signature to a service, which learns the user’s
location based on the location signature. Broadcast-based
approaches lack a strong binding between the location proof
and the user identity, so proofs can be easily given away. In
comparison, VeriPlace ties location proofs to specific users.

Lenders et al. [18] describe a geotagging service that al-
lows a content creator to obtain a location/time certificate
for the content. Such a certificate proves the generation loca-
tion and time of the content, but, as opposed to VeriPlace, it
does not bind the content to its generator. In addition, their
system relies on a single trusted location/time verification
party, whereas VeriPlace distributes trust among multiple

Save Mow



parties run by different organisations.

Kirkpatrick and Bertino [17] have dedicated location de-
vices (LDs) issue location proofs based on Near-Field Com-
munication. A user’s device sends a proof to a Resource
Manager, which forwards it to a Role Manager for validation.
Separating between these two parties prevents them from
learning a user’s identity and location and the requested
resource, respectively. This system is designed to provide
only pseudonymity. Because the mapping between a user’s
identity and her device likely remains constant, LDs could
infer it over time and track the user. VeriPlace provides
anonymity, since APs learn neither a user’s identity nor a
pseudonym associated with her. Finally, the system does
not deal with cheating users, as opposed to VeriPlace.

Saroiu and Wolman [23] also have APs issue location proofs.

A user extracts a sequence number from a beacon broadcast
by an AP and signs and returns the number to the AP, which
issues a location proof. This design is problematic from a
privacy point of view. First, it reveals a user’s identity to the
AP, which makes the proactive collection of location proofs
impossible due to privacy concerns. In VeriPlace, privacy
protection is fundamental, which enables proactively gath-
ered location proofs. Second, their system always reveals a
user’s fine-grained location to a service, which can violate
a user’s location privacy. Finally, the system does not deal
with cheating users, as opposed to VeriPlace.

Gilbert et al. [11] and Saroiu and Wolman [24] intro-
duce mechanisms based on dedicated hardware (namely, a
Trusted Platform Module (TPM)) to ensure the integrity of
a sensing device, such as a smartphone. The assumption of
dedicated hardware violates one of our assumptions; for ex-
ample, consumer laptops (like netbooks) often do not come
with a TPM. In addition, whereas their mechanisms ensure
that a sensor cannot be manipulated, it does not help if the
sensed signal (GPS in case of location) is manipulated. The
approach also suffers from the disadvantages of broadcast-
based solutions mentioned above.

We presented an early version of our architecture in a
workshop paper [19]. The early version has no cheating
detection capabilities, and there is no implementation and
evaluation of the architecture.

11. CONCLUDING REMARKS

We have identified four challenges in designing a location
proof architecture and addressed them in VeriPlace. In par-
ticular, we illustrated how cryptographic techniques can aid
in preserving user privacy and protecting system security.
Furthermore, our work takes a first step towards defending
against wormhole attacks without relying on dedicated hard-
ware. Developing additional software-based defences against
wormhole attacks demands future research. Finally, we note
that sometimes users lie about their location not to access a
service that they are not entitled to, but to protect their pri-
vacy. Another topic of future research is studying whether
and how this kind of lying should be supported in a location
proof architecture.

Acknowledgements

We thank the anonymous reviewers for their helpful com-
ments. This work is supported by a Google Research Award
and by the Natural Sciences and Engineering Research Coun-
cil of Canada.

32

12. REFERENCES

(1] http://mashable.com/2010/05/28/foursquare-checkins/.
Accessed June 2010.
http://blog.foursquare.com/post/503822143/
on-foursquare-cheating-and-claiming-mayorships-from.
Accessed June 2010.

[3] N. Ahmed and U. Ismail. Designing a High Performance
WLAN Testbed for Centralized Control. In Proc.
TridentCom 2009, pages 1-6.

[4] S. Brands and D. Chaum. Distance-Bounding Protocols. In
Proc. EUROCRYPT ’93, pages 344—359.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
Device Identification with Radiometric Signatures. In Proc.
MobiCom 2008, pages 116-127.

(6] S. C&pkun, L. Buttydn, and J.-P. Hubaux. SECTOR:
Secure Tracking of Node Encounters in Multi-hop Wireless
Networks. In Proc. SASN 2003, pages 21-32.

[7] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca.
GEO-RBAC: A Spatially Aware RBAC. TISSEC, 10(1),
2007.

[8] D. E. Denning and P. F. MacDoran. Location-Based
Authentication: Grounding Cyberspace for Better Security.
pages 167-174, 1998.

[9] D. Faria and D. Cheriton. No Long-term Secrets: Location

Based Security in Overprovisioned Wireless LANs. In Proc.

HotNets-II1, 2004.

Foursquare. http://foursquare.com/.

P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall. Toward

Trustworthy Mobile Sensing. In Proc. HotMobile 2010,

pages 31-36.

A. 1. Gonzélez-Tablas Ferreres, B. R. Alvarez7 and A. R.

Garnacho. Guaranteeing the Authenticity of Location

Information. IEEE Pervasive Computing, pages 72—80,

Jul-Sept 2008.

Google Latitude. http://www.google.com/latitude/.

Gowalla. http://gowalla.com/.

Y. C. Hu, A. Perrig, and D. B. Johnson. Packet Leashes: a

Defense against Wormhole Attacks in Wireless Ad Hoc

Networks. In Proc. INFOCOM 2003, pages 1976-1986.

IBM. IBM PCle Cryptographic Coprocessor.

http://www-03.1ibm.com/security/cryptocards/pciecc/

overview.shtml.

M. S. Kirkpatrick and E. Bertino. Enforcing Spatial

Constraints for Mobile RBAC Systems. In Proc. SACMAT

2010, pages 99-108.

V. Lenders, E. Koukoumidis, P. Zhang, and M. Martonosi.

Location-based Trust for Mobile User-generated Content:

Applications, Challenges and Implementations. In Proc.

HotMobile ’08, pages 60—64.

‘W. Luo and U. Hengartner. Proving Your Location

Without Giving up Your Privacy. In Proc. HotMobile 2010,

pages 7-12.

OpenSSL. http://www.openssl.org/.

Parking Mobility. http://www.parkingmobility.com/.

PyCrypto. http://www.dlitz.net/software/pycrypto/.

S. Saroiu and A. Wolman. Enabling New Mobile

Applications with Location Proofs. In Proc. HotMobile ’09,

pages 1-6.

S. Saroiu and A. Wolman. I Am a Sensor, and I Approve

This Message. In Proc. HotMobile 2010, pages 37-42.

A. Sheth, S. Seshan, and D. Wetherall. Geo-fencing:

Confining Wi-Fi Coverage to Physical Boundaries. In Proc.

Pervasive 2009, pages 274—290.

SimpleGeo. http://simplegeo.com/.

SOAPpy. http://pywebsvcs.sourceforge.net/.

Tor. http://www.torproject.org/.

B. Waters and E. Felten. Secure, Private Proofs of

Location. Technical Report TR-667-03, Department of

Computer Science, Princeton University, January 2003.

[30] Yelp. http://wuw.yelp.com/.

2

[10]
(11]

(12]

(13]
[14]
(15]

[16]

(17]

(18]

(19]

20]
(21]
[22]
23]

[24]
(25]
[26]
27]

(28]
29]





