
Netsim: Network simulation and hacking for high schoolers

Erinn Atwater, Cecylia Bocovich, Urs Hengartner, Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
{erinn.atwater, cbocovic, urs.hengartner, iang}@uwaterloo.ca

Abstract
This paper presents Netsim, a web-based game intended
to teach high school aged children the basics of network
routing and how common attacks are performed against
it by hackers. Netsim is implemented in the form of a
network simulator, with levels depicting how common
protocols operate, and accompanying tutorial text ex-
plaining the protocol or level. Users craft network pack-
ets, with a focus on manipulating the header fields, and
inject them into the network via computers they control.
Goals of the game include spoofing a source address to
steal data, or inducing a smurf attack to perform a dis-
tributed denial of service.

We present a technical description of the game and
how it is implemented. We provide a case study of our
experiences running the game as a workshop for both
high schoolers and educators several times, and the im-
provements we made to Netsim as a result. Netsim is
available free and open source, and is also available as a
hosted webapp that is free for users to access.

1 Introduction

Netsim is a webapp implementing a real network sim-
ulator, with gamification achieved by giving players the
ability to craft arbitrary packets and inject them into the
network, with the goal of achieving various network re-
connaissance/hacking objectives. Players work through
a series of levels, slowly introducing them to the sim-
ulator and network basics, and build up to performing
attacks inspired by real network vulnerabilities, such as
address spoofing, denial of service, and smurf attacks.
Each level is accompanied by a tutorial describing how
the concepts work in real life, explaining the objectives
of the level, and giving hints about how to achieve these
objectives. The intention of the game itself is to drive
interest in computer science, and particularly computer
networks and security, by encouraging students to be-
come “hackers” in a realistic game. In contrast to neon-

on-dark themed popular hacking games,12 however, Net-
sim aims to show that network security is primarily an
engineering pursuit.

The game can be played alone, but it is targeted at high
school teenagers in a workshop setting. The remainder
of this section presents an overview of the tool, and an
example of how a typical 90-minute workshop might go.
Section 2 gives technical details of Netsim, and Section 3
recounts our experiences running the workshop several
times (and the subsequent improvements made as a re-
sult). Section 4 outlines how we intend to continue im-
proving the game, and Section 5 provides the code and a
playable instance.

1.1 Gameplay overview
Netsim levels are composed of three objects: Devices,
Links, and Packets. Each level has a pre-specified layout
of Devices and the Links that connect them, representing
a network topology.

Devices include both computers and networking
equipment such as modems, switches and routers. These
Devices can only send Packets to each other if they are
connected by Links. Some Devices are specified by the
level definition as player-controlled, which means the
player “owns” that device and can send Packets from
it. These player-initiated Packets are created by the
player specifying packet header fields in a GUI, and then
launching them at any point during the simulation. Other
Packets can be pre-specified by the level definition itself
and launched at specific simulation times, or can be sent
by Devices according to their device script. For example,
most Devices respond to all ping packets; when received,
their script will send a response Packet to the device that
sent the ping.

To play the game, players must specify headers that
manipulate the Devices into sending/receiving Packets

1http://www.introversion.co.uk/uplink/about.html
2https://www.exosyphen.com/page hackerevolution.html



configured in a certain way (as specified in the level def-
inition). For example, players learn in an early level that
the “source IP address” need not be written honestly;
they are free to send Packets with spoofed source ad-
dresses to impersonate other Devices on the network. To
win this level, they must send a spoofed packet to the
intended target, which triggers the win-condition and al-
lows them to progress to the next level.

The interface for the game (shown in Figure 1) is that
of a typical simulator game: it can be paused, slowed
down, and restarted. Pausing is a key element to playing
the game, as it allows players to take their time and in-
spect Devices and Packets by clicking on them. This al-
lows them to view the attributes of any Device (namely,
its IP address) or Packet (with all of its packet headers,
which they may need to copy).

We currently have levels walking players through
networking basics, a variety of spoofing attacks, (dis-
tributed) denial of service attacks, and an attack on a sim-
ple encryption protocol. Some simplifications have been
made (vis-à-vis real computer networks) based on our
experience with the game. IP addresses are represented
as friendly names (such as “Alice”, “Bob”, or “Router”).
We present packet headers grouped into traditional net-
work layers, but omit the link layer entirely. We also
ignore the majority of packet headers, and network trans-
mission is automatically lossless and order preserving.

1.2 Typical workshop plan

We traditionally use Netsim as the main activity in a 90
minute workshop for students in grades 9–12. Recruit-
ment was focused on students with “an interest in com-
puter science, but no previous experience”. The work-
shop begins with a short introduction to the history of
computer networking, and an explanation of how the In-
ternet is a graph structure of interconnected devices and
ISPs. Participants are then directed to the URL for the
game, and left to explore the interface and levels for
themselves. Each level is accompanied by an in-game
explanation of the concepts in the level, and the first few
levels are designed to introduce them to the game inter-
face. We have experimented with having the participants
work in pairs, but found it works better if each student
has their own computer, allowing them to read the ac-
companying level explanations and experiment at their
own pace.

In 90 minutes, several students will complete all the
levels while most other students will get close to the end.
Periodically, based on how the students are progress-
ing in the game overall, the instructor will walk through
some levels on a projector, allowing the students who are
struggling to catch up. We also had the privilege of hav-
ing workshop volunteers with experience in networking

and security (CS graduate students) wander around the
lab, helping students when they have questions, but also
relating concepts from the game to the real world and
generally chatting with students about being a student in
computer science.

The requirements for this workshop are at least one
Internet-connected computer (or tablet) for every pair of
students, with a single instructor who has walked through
the entire game and is familiar with how to win the lev-
els. Additional teaching assistants are helpful, depending
on the number of participants, but the game is designed
to allow students to explore on their own with minimal
outside assistance. Instructors should test the game on
the target computers first, as some older computers may
be laggy enough to cause frustration by the players. Ded-
icated graphics cards make the gameplay smoother, but
should not be necessary to run a successful workshop.

2 Technical overview

Netsim is implemented as a web app. The simulator
graphics are written using Phaser3, a javascript game li-
brary. The user interface is written using jQuery UI,
a javascript webpage framework. The backend, which
stores user accounts, player-crafted packets, and level
progress, is implemented using PHP and an SQLite
database. Level definitions are currently stored as JSON
files (which are easy to hand-edit), and the level descrip-
tions as plain HTML files. These choices were made so
that the entire game is easy to install by simply copying
the files to any webserver that already has PHP installed.
The URL for an installed copy of the game can be given
to students participating in a workshop, and thus no lo-
cal installation of any software is necessary on individ-
ual computers. The game has worked well so far in all
modern browsers and operating systems we have tested,
and is even playable on tablets. The only performance
issue encountered so far is that some computers animate
packet movement in a laggy manner, but this does not
render the game unplayable.

The bulk of the game is written in javascript, and the
code structure has an emphasis on making it extremely
easy to create new levels. An example of a level file is
shown in Figure 2. A basic level definition can specify
Device objects with X and Y coordinates, whether they
are player-controlled, and whether the device should use
a device script. Links are defined by the Devices they
connect, and Packets can be written as simple JSON ob-
jects specifying when in the simulation they should be
launched and what their packet headers should be. Win-
conditions are specified as triggers: a collection of packet
headers that must be received by certain devices to win

3https://phaser.io/

2



Figure 1: A typical level in the Netsim simulator.

the level. Device scripts are also written in javascript,
which have a simple onPacketReceived method defin-
ing how to handle incoming packets. A collection of
common device scripts (such as an echo server, a switch,
and a manually configured router) are already available
by name and can be simply referenced from the level def-
inition, or a new device script can be written in the level
file itself. Sending a packet from a device script is a sim-
ple call to a sendPacket method with a javascript ob-
ject specifying the packet headers. Animating the packet,
user interaction with it, users pausing/unpausing the sim-
ulation, and passing it to the recipient device are handled
by the game engine.

When players create packets through the interface by
specifying packet headers, these are also converted to
javascript objects by the game engine. They become
available in a “launcher” sidebar on the interface, and
players can continue to edit them any time, or launch
them, which is the same as using the sendPacket

method that device scripts use. This allows players to
iteratively work on their solution for the level until they
work out the solution. Players register an account to log
in to the game (which only takes several seconds and
does not require an email address), so the game can track
their progress. It saves any edits players make to their
user-defined packets, and which levels they have won
so far. The levels themselves typically take less than a
minute to play out in the simulator, so it is easy to reset
the simulation frequently from the beginning and thus
there is no need to track progress mid-simulation.

Figure 2: The definition file for a simple level, which
contains two devices: Alice and Bob, connected by a sin-
gle link. In the timeline section, we see that a packet is
automatically launched from Bob to Alice at 500 ms into
the simulation. The win condition is triggered when Bob
receives a packet from Alice.

3



3 Case study

In this section, we describe three informal case studies
we performed on our educational game. We conducted
two sessions with a group of about twenty high-school
aged students and an hour-long session with high school
computer science teachers. Both the students and teach-
ers had varying levels of computer science background
and knowledge. For example, some students in the ses-
sions had done some introductory programming, while
others were unfamiliar with computer science but had a
general interest in STEM. Based on feedback from both
types of groups, we made several changes to the UI and
game mechanics. Here we discuss those changes as well
as general lessons we learned about the design of educa-
tional games and tools.

Before each of the sessions, we gave a brief overview
of network security and emphasized that the goal of the
game was for the players to explore and discover the vari-
ous pitfalls and vulnerabilities of common networks. We
drew comparisons between the Internet and other modes
of communication such as paper mail and telephone net-
works. The main lessons we hoped students would learn
throughout the introduction and the activity were:

1. Systems and their usages change; a protocol or pro-
gram that was secure in one context or usage may
not be secure in another.

2. Designing secure systems (and programs) requires
thinking like an attacker. Designers should consider
what happens when someone does not use a system
the way they are supposed to, but rather in ways that
they can.

3. Learning is about exploration and making mistakes.

After the introduction, we let the students start diving
into the game levels. We found that a small number of
volunteers (about 5 volunteers for 30 students) wander-
ing around the room to help with questions helped signif-
icantly with progress and understanding. In some cases,
the students needed clarifications on what certain words
meant or more guidance about how a protocol worked. In
other cases, they just needed affirmation that they were
on the right track or encouragement that it was okay to
experiment with the construction and timing of packets:
that there is no correct or incorrect way to explore how
network protocols work.

The volunteers in our case study sessions were all
graduate students in computer security; however, we are
currently compiling a set of companion documents for
high school teachers that do not have a computer sci-
ence or security background to educate and assist them
in teaching the game concepts and helping with student
questions. Additionally, there were some questions and

simple clarifications that could be answered quickly with
tooltips that contain definitions, explanations, and exam-
ples integrated into the game. We are currently consult-
ing with educators of both technical and non-technical
backgrounds to decide which terms should be renamed
and what tooltips should be added to keep the immersive
feel of the game while providing extra information and
reducing the reliance on classroom volunteers.

The lessons we learned can be grouped into four main
categories: changes to the UI that simplified concepts
and made game-play easier, tweaks to game mechanics
that immersed the students in the game and gave positive
feedback on progress, technical bottlenecks in terms of
efficiency and the ease of setting up and distributing the
game, and general comparisons between our activity and
other computer science teaching tools.

3.1 UI improvements

We noticed shortcomings in the first few iterations of
our tool almost immediately into the case study sessions.
The largest change we made was to remove any unnec-
essary memorization of terminology and exact reproduc-
tion of key terms. These pitfalls are also seen in the
teaching of programming languages to introductory stu-
dents. It is difficult for students to remember the key-
words of various languages and reproduce them perfectly
every time. Frequently mistakes such as capitalizations,
misspellings, or the misuse of whitespace result in frus-
tration from the student and a lot of work on behalf of
the teacher or volunteer to travel around the room de-
bugging student work. Furthermore, the memorization
of terms was not a learning objective for this tool; rather,
we aimed to teach students how to think about the se-
curity of systems and creatively detect potential security
problems in existing designs.

In Figure 3, we compare the packet crafting interface
of the old and new versions of our game. In the old ver-
sion, we required students to correctly reproduce both
the header name and the value of fields in each layer
(e.g., they had to type in “srcip” exactly, as well as the
sender’s IP address). This led to confusion, frustration,
and mistakes. In our current version, we fix the header
name of each field, as these remain constant across lev-
els. This also more accurately reflects reality, in which
protocols do not specify the names of fields in protocol
headers, but rather rely on byte ordering and header size
to craft packets.

Our other main UI improvement was to combine both
the packet editor and the simulator into the same in-
terface. In the previous version, players had to switch
between two different windows, and save the contents
of one window before using them in another. This re-
sulted in students forgetting to save their progress, and

4



(a) The old packet crafting interface (b) Our new packet crafting interface

Figure 3: A comparison of the old and new interfaces for crafting and editing new packets. We simplified the interface
and reduced the information that the player needs to enter to craft a fully functioning packet.

re-running their simulation, only to notice after some
time had elapsed that their newly crafted packets were
missing.

3.2 Game mechanics

The integration of the packet editor and the timed sim-
ulator into the same window and interface also changed
the mechanics of our game in a positive way. During
the crafting of a packet in the old version, the player had
to specify the time in the simulation at which the packet
would be released into the network. Many attacks require
sending packets at specific times relative to other pack-
ets. This led to a lot of unnecessary work on behalf of
the students, who had to use trial and error to determine
when pre-existing packets were sent. In the new version,
the student fills in all the details for a packet, restarts the
simulation, and then presses a button while the simula-
tion is running to send the packet. This immerses the
student more fully in the game and cuts out unnecessary
work in performing timing-dependent attacks.

One of the first changes we made was to add a flashy,
positive message (such as fireworks) at the completion
of each level. Much in the same way that a security stu-
dent in university feels that moment of elation when they
first drop into a root shell, this sudden message of suc-
cess provoked a lot of positive emotions in the players of
our game. Exclamations of joy and relief, followed by
increased determination to tackle the next level, infected
not only the successful player but everyone around them.
This made the game more of a community experience.

3.3 Technical obstacles

From teachers who wished to use the game and admin-
istrators responsible for setting it up on school comput-
ers, we received a lot of feedback on how to make the
game more deployable and dependable. In our first iter-
ation, we wrote the game in Java. While this provided
a nice interface, the new Java version we used did not
match the version currently installed on the school com-
puters. Linking to the newer version without also break-
ing existing programs required a lot of setup time that
occasionally ate into the time students could spend play-
ing the game. Additionally, the computers we used had
a networked file system. This allowed the students to
switch computers in the event of technical difficulties or
changes in classroom structure, but also slowed down the
execution of desktop programs. We also found deploy-
ment of desktop programs to be difficult; we had to com-
pile different versions for different operating systems and
address the installation difficulties of each user that de-
pended on the specifics of their setup.

As a result of these challenges, we decided to imple-
ment the current version of our game as a web applica-
tion. It can be played simply by visiting a website, and
educators can either use our free hosted copy or host it
on their own webservers. The efficiency problems we
encountered before with a locally run program on a net-
worked file system are non-existent in this setup. Instead,
only a steady Internet connection is needed. For suffi-
ciently large classes, the server can be configured to han-
dle more incoming connections more easily than chang-
ing the specifications of each individual computer.

5



3.4 General lessons

We noted several distinct differences in the reactions of
both students and teachers to our sessions, compared to
other popular introductions (e.g., beginner programming
languages [1, 2]) to computer science or programming.
The majority of these differences stemmed from the ex-
ploration component of our tool and the positive feed-
back that players receive at the end of each level. In tradi-
tional introductions to programming, students are taught
that there is a correct and incorrect way of designing and
writing programs. This mentality is re-enforced by the
largely negative feedback of compiler warnings, errors,
or unintended behaviour. At the end of these exercises,
the student has either succeeded in building a program
that matches their expectations or has failed. Beginner-
friendly programming languages such as Alice [1] or
Scratch [2] gamify this process by letting students visu-
ally see the impact of their decisions and correct their
mistakes, but the emphasis on correctness rather than ex-
ploration remains.

In our game, the main goal is to learn about how
packets are sent between machines, how basic protocols
work, and how unintended behaviour can be exploited.
While each level has a specific success trigger, the craft-
ing of a packet that does not trigger the end of the level
is not a failure. It is simply a learning step that gives the
player more information about how the Internet works.
Furthermore, positive feedback in the form of a success-
ful completion of a level is doled out frequently through-
out the game. This differs from traditional programming
in which success is evaluated at the end of the class, and
mistakes made early in the exercises may adversely af-
fect the student in future steps.

We noticed a marked difference in how students in-
teracted with each other and helped their neighbours
progress through levels of the game. Rather than the
prescriptive advice a more seasoned student gives in
response to compiler warnings in traditional exercises,
students of all levels were sharing cool or unusual be-
haviours they managed to produce by crafting different
kinds of packets. The goal was not so much to produce
a correct result, as it was to show off unexpected ways to
“break” their networks.

4 Future work

We are continuing to develop Netsim into the future, and
have a plan in place for its continued development. Many
of the improvements are based on feedback and experi-
ence from our previous workshop sessions. For example,
in our session with educators, they expressed an interest
in being able to create new levels. While this can already

be done fairly easily by editing JSON files, we intend to
add a graphical level editor. We also learn more about
how the user interface can be tweaked to be more intu-
itive every time we run the workshop.

Perhaps most importantly, we are working with the
University of Waterloo’s Centre for Education in Math-
ematics and Computing4 to create a package of teach-
ing materials for non-technologist teachers to run this
workshop with. This will include introduction slides, ex-
tended background information for teachers on the con-
cepts involved in the game, and consultations with high
school teachers from across Ontario.

The hosted version will remain in place as long as
there is interest from people in playing it or running
workshops. At the time of this writing, more than 1200
people have registered accounts to play the online ver-
sion. We are also working on a version that does not
use PHP at all; this precludes us from tracking players’
progress through the levels, but also makes it trivial to
install on free hosting services.

Finally, we also have a list of potential future levels
to implement. The simulator engine already makes it
easy to demonstrate protocols such as DHCP, DNS, and
email. These can be used to illustrate concepts such as
Internet privacy, and common network utilities such as
traceroute. We also envision adding wireless packets to
demonstrate concepts like “coffee shop” attacks. This
also gives us a place to expand on the concepts we ab-
stracted away from the game, such as numeric IP ad-
dresses.

5 Availability

The source code of Netsim is free under the MIT license,
and is available on Github at:

https://github.com/errorinn/netsim

Educators can download the code and host it on their
own webserver, or can use our free hosted copy at:

https://netsim.erinn.io/

References
[1] COOPER, S., DANN, W., AND PAUSCH, R. Alice: A 3-D Tool

for Introductory Programming Concepts. J. Comput. Sci. Coll. 15,
5 (April 2000), 107–116.

[2] MALONEY, J., RESNICK, M., RUSK, N., SILVERMAN, B., AND
EASTMOND, E. The Scratch Programming Language and Envi-
ronment. Trans. Comput. Educ. 10, 4 (November 2010), 16:1–
16:15.

4http://cemc.uwaterloo.ca/

6


	Introduction
	Gameplay overview
	Typical workshop plan

	Technical overview
	Case study
	UI improvements
	Game mechanics
	Technical obstacles
	General lessons

	Future work
	Availability

