CS 360 Assignment 4

Due Date Tuesday, April 3rd, at the beginning of class.

All questions are worth the same amount. Please ensure that your name and student number appear, in ink, on each page of your assignment.

Work is to be done individually.

Assignment Questions

1. Let L_{1}, \ldots, L_{k} be languages such that $L_{i} \subseteq \Sigma^{*}$ for each $i \in[1 . . k]$.

Suppose that for all $i, j \in[1 . . k]:$ if $i \neq j$ then $L_{i} \cap L_{j}=\emptyset ; \cup_{i \in[1 . . k]} L_{i}=\Sigma^{*}$; and for each $i \in[1 . . k], L_{i}$ is Turing recognizable. Show that each of the L_{i} are decidable.
2. If $A=\left\{<M_{1}, M_{2}, k>\mid M_{1}, M_{2}\right.$ are TMs and $L\left(M_{1}\right) \cap L\left(M_{2}\right)$ contains at least k strings $\}$. Show A is Turing-recognizable.
3. Let $A=\left\{<M>\mid M\right.$ is a TM that accepts w^{R} if it accepts $\left.w\right\}$. Show that A is not decidable.
4. Design a Turing machine to enumerate $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.

