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Abstract. Label stream partition is a useful technique to reduce the
input I/O cost of holistic twig join by pruning useless streams before-
hand. The Prefix Path Stream (PPS) partition scheme is effective for
non-recursive XML documents, but inefficient for deep recursive XML
documents due to the high CPU cost of pruning and merging too many
streams for some twig pattern queries involving recursive tags. In this pa-
per, we propose a general stream partition scheme called Recursive Path
Stream (RPS), to control the total number of streams while providing
pruning power. In particular, each recursive path in RPS represents a
set of prefix paths which can be recursively expanded from the recursive
path. We present the algorithms to build RPS scheme and prune RPS
streams for queries. We also discuss the adaptability of RPS and provide
a framework for performance tuning with general RPS based on different
application requirements.

1 Introduction

An XML document contains hierarchically nested elements, which can be nat-
urally modeled as a labeled ordered tree. Standard query languages for XML
usually specify a twig pattern query and retrieve a subset of XML elements in
the document. A twig pattern can be represented as a node-labeled tree whose
edges are either Parent-Child (P-C) or Ancestor-Descendant (A-D) relationships.

Extensive research efforts have been put into efficient twig pattern query pro-
cessing with label-based structural joins. Following the early binary structural
join algorithms [1,12], Bruno et al. [2] proposed holistic TwigStack join algo-
rithm to solve the problem of useless intermediate result in binary structural
joins. It produces no useless intermediate result for twig patterns with only A-D
relationships, which is defined as optimality. However, TwigStack is not optimal
for twig query with P-C relationship. Several following works [3,5,6,8,10,9] sug-
gest different ways of optimizing TwigStack, such as indexing [6], partitioning [3]
label streams, exploring Extended Dewey Label scheme [9], etc.

Most TwigStack optimization techniques focus on reducing intermediate
results and input I/O cost. [3] further defines the optimality of twig pattern
matching as minimal possible I/O cost in reading label streams and maintaining
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intermediate results. Though I/O is an important metric in traditional database
management, it alone does not well represent the performance in twig pattern
query processing, especially with stream partition approach. For example, in [3],
the prefix path stream (PPS) partition scheme performs very well in terms of
I/O cost. However, its response time is the worst for deep recursive data as a
result of high CPU cost of pruning and merging too many streams.

In this paper, in view of the success and limitation of label stream partition
in [3], we study the I/O and CPU tradeoffs for stream partition of holistic twig
joins and focus on optimizing response time rather than optimizing pure I/O
cost addressed previously. In particular,

1. We propose a novel stream partition technique called recursive path stream
(RPS) partition, which can effectively achieve the I/O benefit of PPS parti-
tion [3] while solving PPS’s problem of high CPU cost.

2. We also introduce a framework of adaptability of different streaming schemes
and further partition of recursive path streams to flexibly fit different appli-
cation requirements.

3. Our experiment results show that RPS is superior to other partition schemes
for deep recursive data, while for non-recursive data, RPS is better than
original TwigStack and as good as PPS.

Though our discussion in this paper focuses on label stream partition, our tech-
nique can be easily combined with other previous works, such as label indexing
[6] and Extended Dewey Labeling scheme [9], to utilize their benefits.

The rest of the paper is organized as follows: we present related work in
Section 2. In Section 3, we discuss the motivation and our Recursive Path Stream
scheme (RPS) in detail. Experiment results are shown in Section 4. Finally, we
conclude the paper and discuss possible future research in Section 5.

2 Related Work

Twig join processing is central to XML query evaluation. Extensive research
efforts have been put into efficient twig pattern query processing with label-
based structural joins. Zhang et al. [12] first proposed multi-predicate merge join
(MPMGJN) based on containment (DocId, Start, End, Level) labeling of XML
document. The later work by Al-Khalifa et al. [1] proposed an improved stack-
based structural join algorithm, called Stack-Tree-Desc/Anc. Both of these are
binary structural joins and may produce large amount of useless intermediate
results. Bruno et al. [2] then proposed a holistic twig join algorithm, called
TwigStack, to address and solve the problem of useless intermediate results.
However, TwigStack is only optimal in terms of intermediate results for twig
query with only A-D relationship. It has been proven [4] that optimal evaluation
of twig patterns with arbitrarily mixed A-D and P-C relationships is not feasible.

There are many subsequent works that optimize TwigStack in terms of I/O,
or extend TwigStack for different problems. In particular, a List structure is
introduced in TwigStackList [8] for wider range of optimality. TSGeneric [6] is
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based on indexing each stream and skipping labels within one stream. Chen et
al. [3] divides one stream (originally associated with each tag) into several sub-
streams associated to each prefix path or each tag+level pair and prunes some
sub-streams before evaluating the twig pattern. We call this approach as stream
partition. Lu et al. [9] uses Extended Dewey labeling scheme and scans only the
labels of leaf nodes in a twig query. Further techniques of processing twig queries
with OR-predicate [5], NOT-predicate [11] and ordered twig queries [10] have
also been proposed.

Our proposal is also based on label stream partition like [3]. However, we
extend the solution into general optimization of both I/O and CPU cost to reduce
response time. It is worth noting that our technique can be easily combined with
other works discussed above to achieve their benefits.

3 Recursive Path Stream

3.1 Motivation and Terminology

We model XML documents as labeled ordered trees. Each element, attribute and
text value in the tree is associated with a label according to some labeling scheme,
e.g. containment or prefix labeling schemes. One XML label uniquely identifies one
element in thedocument.XMLqueries use twigpatterns tomatch relevantportions
of data in an XML document. Twig pattern edges can be parent-child (P-C) or
ancestor-descendant (A-D) relationships. XML documents usually have DTD or
schema information to specify their structure and to guide users writing queries.

Fig. 1(b) shows a sample DTD. Fig. 1(c) is a twig pattern query with respect
to the DTD in (b). Double lines indicates A-D relationship among query nodes
while single line indicating P-C relationship is not shown in the example. A
sample XML tree conforming to the DTD is given in Fig. 1(a). Elements are
associated with containment labels. For illustration purpose, we also show the
document order of each element as subscripts n, and we use n to refer to the nth

element as well as its label.
To process the query of Fig. 1(c) over XML tree in Fig. 1(a), originalTwigStack

algorithm [2] scans all the labels of tags A, B and C. The set of labels of a tag
is usually referred to as a tag stream, and the process of scanning the tag stream
is called tag streaming. (We restrict our discussions from stream indexes, though
our approach can be easily extended with stream indexes [6].) The tag streams
that TwigStack algorithm needs to scan for this query are shown in Fig. 1(d).

Observe that elements A1 to A5 do not contribute to the final results of query
Q in 1(c). Therefore, Chen et al. [3] propose to partition each tag stream into
prefix path streams (PPS) and prune prefix path streams that definitely do not
contribute to final results before twig join, thus saving input I/Os. There are 21
prefix paths for sample data in Fig. 1(a). Fig. 1(e) shows all the streams of paths
ending with tag A. The five prefix path streams of tag A on the left column can
be pruned before processing Q ([3]) as there are no B in the prefix path.

Prefix path stream scheme saves input I/Os. However, it needs to check all the
paths to prune the useless ones. Moreover, holistic twig join algorithms require
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(b) DTD

A (A*,B*)
B (A*,B*,C*)
C (B*)

(c) Twig query

A: {1,2,3,4,5,7,9,13,16}
B: {6,8,10,11,12,14,15,18,20} 
C: {17,19,21}

(d) Tag streams

(f) All Recursive 
Prefix Path Streams 

for sample data

/A+

(/A/B+)+/A
/A(/B/C)+

/A(/B/C)+/B
(/A/B+)+

{1,2,3,4,5}
{7,9,13,16}
{17,19,21}
{18,20}
{6,8,10,11,12,14,15}

32,7

A2

A7

A5

A4

A3 C17

A13

A16

B12

B11

B6

B10

A9

B8

C19

B18

C21

B14

B15

B20

(a) Sample 
data

2:8,2

3:7,3

5,5

4:6,4

A1
1:38,1

9:37,2

10:16,3

11:15,4

12:14,5

13,6

17:27,3

18:26,4

19:25,5

20:24,6

21:23,7

22,8

28:36,3

29:35,4

30:34,5

31:33,6

C

B

A

(e) Prefix path streams ending with A

/A/B/A
/A/B/A/B/A
/A/B/B/B/A
/A/B/B/B/A/B/B/A

{7}
{9}
{13}
{16}

/A
/A/A
/A/A/A
/A/A/A/A
/A/A/A/A/A

{1}
{2}
{3}
{4}
{5}

I:
II:
III:
IV:
V:

Fig. 1. Example XML document and Query

scanning labels in document order. Therefore, PPS scheme has to merge-sort all
the prefix path streams for each tag during run time. The pruning and merge-
sorting can be CPU expensive for deep recursive data with many prefix paths
for each tag. In Fig. 1(e), we first need to prune 5 streams, then merge-sort 4
streams on the right column during holistic twig join.

We observe that prefix paths for A in Fig. 1(e) can be grouped and represented
as the first two special paths in Fig. 1(f), where the ‘+’ sign in /A+ indicates there
may be one or more consecutive /A’s in a prefix path. We term the special path
as Recursive Path. The following introduces the terminology used in the paper.

Recursive Path (RP) is a special representation of a set of prefix paths that
are recursively built on some tags. One or a sequence of tags in RP enclosed
within ‘+’ can be recursively expanded to represent prefix paths of different
lengths. We call tags enclosed within a ‘+’ as a Recursive Component (RC).
RC’s can be recursive, e.g. (/A/B+)+/A. Only P-C relationship is allowed be-
tween consecutive tags in RP. Each RP has a set of RC’s. We can also view one
prefix path as an RP with empty RC set, representing a singular path set of
itself. If two RP’s has the same tag sequence, but different RC sets, they can be
combined into a general form such that the RC set of the general form is the
union of RC sets of the two RP’s. Each RP is associated with a label stream,
called Recursive Path Stream (RPS). This stream contains the labels of
elements of all the prefix paths represented by the RP in document order.

In Fig. 1(f), we have only five recursive paths for 21 prefix paths. For query
node A in Fig. 1(c), we can prune RP I and only scan the stream of II since there
is no B in I. In this way, we save both I/O and CPU cost. We call RP II and
its stream as the Potential Solution Path (PSP) and Potential Solution
Stream for the query node A.

3.2 Building RPS Scheme from XML Data

We present the algorithm to extract RPS from XML data in Fig. 2. The algo-
rithm, BuildRPS, uses SAX event parser and extracts recursive paths and their
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Algorithm 1. BuildRPS

Input: Events e from SAX parser;
Output: RPS; /* RPS maps RP to stream */

1. initialize Stack ST ; /* ST is the stack for start tags */
2. initialize empty Hashtable RPS;
3. while there are more events e
4. if e is start tag then
5. push tag t of e onto ST ;
7. scan from the bottom to top of ST to get path p for the element;
8. let len = the number of tags in p;
9. for (n = 1, n ≤ �len/2�, n++);
10. while (there are consecutive occurrences of a same sequence of

tags of length n in p)
/* checking from root to leaf to ensure same PP gives same RP */

11. change p by replacing all occurrences of the same sequence
by one recursive component in p;

12. let len = new number of tags in p; /* len should be decreased */
13. end while
14. end for
15. if (there is a path p′ in RPS with the same tag sequence of p) then
16. generate the general form p′′ of p′ and p;

/* the recursive component set of p′′ is the union of p′ and p’s RC set */
17. associate p′′ with the stream of p′ and remove p′ in RPS;
18. else put p into RPS;
19. generate and append the start and level values of current element’s

label to corresponding recursive path;
20. else if e is end tag then
21. pop ST;
22. complete the label of e in RPS by generating and adding the end value;
23. end while

Fig. 2. Algorithm for building Recursive Path Stream (RPS) scheme

label streams with one pass of the data. This version of BuildRPS only handles
XML elements, but can be easily extended for attributes.

BuildRPS works in three steps for each element in the XML document.
Step 1 (lines 4–14) computes the element’s path p and compacts it into recursive
path (RP). It searches for consecutive occurrences of the same tag sequences of
length n (where n ranges from 1 to half of the length of p since the length of
the tag sequence can be at most the half of p in order to have two consecutive
occurrences of the same tag sequences) from root to leaf of p. If there are such
consecutive occurrences, lines 11 & 12 compact p by replacing the multiple same
sequences by one sequence as the recursive component (RC) and set length len to
the new length of p. Step 2 (line 15–20) combines RPs of the same tag sequence
into their general form and appends the partial label of start and level values
to the corresponding stream. This is to ensure that two different RPs produced
by the algorithm represents two disjoint set of prefix paths. Step 3 (lines 21–23)
completes the label of the ending element by adding the end value.
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Example 1. Consider how BuildRPS algorithm extracts the RP (/A/B+)+/A
and its label stream in Fig. 1(f) for data of Fig. 1(a). When the scan reaches start
tag of A7, steps 1 first computes its path p1, /A/B/A. Since p1 is uncompactable,
and this is the first path with tag sequence (A, B, A), step 2 associates p1 with
the partial label of A7 without end value. Then after start tag of A9 is reached,
the algorithm gets the path p2, /A/B/A/B/A, compacts it into recursive path
rp1, (/A/B)+/A, with {(/A/B)+} as the RC set. Now, since p1 and rp1 have
the same tag sequence and their general form is identical to rp1 with a singular
RC set, step 2 replaces p1 by rp1 and appends the partial label of A9 to the
label stream. Then after scanning the end tags of A9 and A7, step 3 completes
their labels with end values. When the scan reaches the start tag of A13, step 1
computes rp2, (/A/B+)/A, then step 2 combines it with rp1 to get the general
form (/A/B+)+/A to replace rp1 and appends the stream. Similar actions are
taken when the start and end tags of A16 and end tag of A13 are reached.

Note that step 2 does not produce /A(/B/A)+ for p2, /A/B/A/B/A, since
it searches from the root to leaf. The algorithm first finds the consecutive oc-
currences of /A/B and immediately changes p2 into rp1 which does not contain
consecutive occurrences of /B/A any more.

The time complexity of BuildRPS is O(D ∗ L3), where D and L are the size
and maximum depth of the document. The followings are two properties of RPS
scheme computed by BuildRPS. The proofs are omitted due to lack of space.

Property 1: Same prefix paths are always compacted to the same recursive
path with shortest possible tag sequence.

Property 2: Two different recursive paths represent two disjoint prefix path
sets as well as disjoint label streams.

3.3 Identifying Potential Solution Paths

We now discuss the process of identifying potential solution (and pruning useless)
paths for a twig pattern query. The algorithm is based on the following two
properties of a recursive path.

Property 3: For any two tags T1 and T2 in a recursive path P , T1 is an an-
cestor tag of T2 if T1 appears before T2 in P or there exists some recursive
component in P containing both T1 and T2

Property 4: For any two tags T1 and T2 in a recursive path P , T1 is a parent
tag of T2 if T1 appears before T2 consecutively in P or there exists some
recursive component RC in P such that T2 is the first tag and T1 is the last
tag of RC.

Example 2. Consider the recursive path /A(/B/C/D)+. A, C and D are all an-
cestor tags of B since 1) A appears before B and 2) there is one recursive
component containing all B, C and D. C and D will appear before B if we ex-
pand (/B/C/D)+ once to get /A/B/C/D/B/C/D. However, only A and D are
the parent tags of B as they appear before B consecutively after the expansion.
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Algorithm 2. IdentifyPSP

Input: Twig query Q and RPS partition scheme P
Output: Potential Solution Path sets Psets for all query node N in Q

1. initialize Pset of each query node as empty set.
2. depth first search query twig Q, upon returning from current query node N ;
3. let Cset of N be an empty set /* Cset is “Candidate PSP set” */
4. get query path qp from query root to N
5. if N is leaf query node then
6. let Cset be all recursive paths ending with tag N in P ;
7. else if N is non-branching internal query node then
8. let Cset = getCset(N , PSet of child of N);
9. else if N is branching query node then
10. for Pset of each child Ci of N’s children
11. let Cseti = getCset(N , Pset);
12. end for
13. let Cset be the intersection of all Cseti’s;
14. for each rp in Cset
15. if checkPSP (rp, qp) == true then put rp in Pset of N ;
16. end for
17. end depth first search
18. for each query node N
19. for each rp in Pset of N
20. if ¬∃ rp′ in Pset of root s.t. tag sequence of rp′ is a prefix of rp then
21. remove rp from Pset of N ;
22. end for
23. end for

Function getCset(N , childPset) /* get Cset of N based on Pset of N ’s child */
1. let Cset be empty set;
2. for each rp in childPset
3. put each RP whose tag sequence is a prefix of rp and ends with N into Cset;
4. for each recursive component rc containing but not ending with N in rp
5. get tag sequence ts by repeating tags up to N in rc once;
6. put into Cset the RP of tag sequence from the root to repeated N in ts;
7. end for
8. end for
9. return Cset;

Function checkPSP (rp, qp) /* check if rp is potential solution path of qp */
1. let tag set s1 be N where N is the leaf node of rp;

/*elements in tag set are of the same name, differentiated by the positions in rp*/
2. for each qp tag T from leaf to root /* T ’s parent is dummy if T is root */
3. let PT be parent tag of T in qp and E be the edge between PT and T ;
4. if T is the root then return BOOLEAN(E is A-D OR s1 contains root of rp);
5. let tag set s2 be {e2 | e2 and pt have identical tag ∧

∃e1 ∈ s1 s.t. e2 is the parent (or ancestor based on E) tag of e1 in rp};
6. if s2 is empty then return false;
7. else let s1 be s2;
8. end for

Fig. 3. Algorithm for Identifying Potential Solution Paths in RPS scheme
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We show algorithm IdentifyPSP in Fig. 3. It identifies the Potential Solution
Path (PSP) set (Pset) for each query node in a given twig query, with two
phases: bottom-up pruning from query leaves and top-down pruning from query
root. The bottom-up phase first propagates branching information for pruning
from branches to the branching nodes; whereas top-down phase then propagates
the combined branching information to each individual branch.

In the bottom-up pruning phase (lines 2-17 of Main), it visits each query node
N in depth first order. Upon returning from N , it first computes N ’s Candidate
Potential Solution Path set (Cset) (lines 3-13), then checks each recursive path
rp in Cset if it is a PSP to be put into Pset (lines 14-16). Note that for branching
node, the Cset is the intersection of the Csets computed based on the Psets of
each child query node. We will shortly discuss how to compute Cset of a query
node based on its child’s Pset. In the top-down pruning phase (lines 18-23), for
Pset of each non-root query node, it removes all the recursive paths (RP) for
which there exists no RP as its prefix in the Pset of the query root.

There are two auxiliary functions for the algorithm: getCset and checkPSP.
Function getCset finds the Cset of query node N based on the Pset of N ’s child.
It puts into Cset all recursive path rp such that rp ends with N and is a prefix
of either 1) any rp′ in Pset of N ’s child or 2) tag sequence expanded from rp′ by
repeating any single recursive component once. Function checkPSP checks if the
given recursive path rp is the PSP for query path qp. It recursively scans query
tag T from the leaf to the root of qp. For each T and T ’s parent query node PT ,
it computes the T ’s ancestor (or parent depending on the query edge between T
and PT ) tags that are same to tag name PT . When none can be found or T is
the root query node, checkPSP returns.

The time complexity of IdentifyPSP is O(|Q| ∗ |rp| ∗ (FQ ∗ |rc| + Dq ∗ Drp)),
where |Q|, |rp|, FQ, |rc|, Dq and Drp are number of query nodes, number of RPs
(for each tag if we have a mapping from tags to their RPs), maximum query
fan-out, maximum number of RCs in one RP, query depth and maximum depth
of RP respectively. Since most of the above values are usually small, saving in
IO is usually worth the efforts in pruning. The following theorem shows the
correctness of IdentifyPSP. However, due to lack of space, we cannot provide
the proofs for the time complexity and the theorem.

Theorem 1. Given query Q and RPS scheme, labels of streams pruned by Iden-
tifyPSP algorithm do not contribute to final answer of Q.

Example 3. Let us trace algorithm IdentifyPSP on the query and RPS scheme
in Fig. 1(c) and (f). In bottom-up phase, depth first search first returns from
query node A. Within the two candidate RPs {I, II} of A, only RP II in Fig.
1(f) is identified as PSP since query root B appears as an ancestor tag of A
in II, but not in I. So, the current PSP set of A is {II}. Similarly, {III} is the
PSP set for C. Now, according to function getCset, the candidate PSP sets for
B are {V} based on A’s PSP set and {IV, V} based on C’s PSP set (IV is in
the candidate PSP set of B since it is a prefix of the expansion of RC in III).
So the intersection is {V}, which is then identified as the PSP set of B. The
top-down pruning does not take effects in this case. Thus the final PSP set of
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A, B and C are {II}, {V} and {III} respectively. However, suppose we modified
the sample data to have one more RP as /A/D+/B/A, it would be PSP for A
after bottom-up phase but pruned after top-down phase since V is not its prefix.

3.4 Adaptability of Different Stream Partition Schemes

As mentioned in Sec. 3.1, uncompactable prefix path is a special case of recursive
path. The RPS scheme is a generalization of PPS. Applying RPS to non-recursive
data generates the same stream partition as PPS. Therefore, it is safe to replace
PPS with RPS in non-recursive data. Besides, we can further partition streams
in RPS according to different application requirements. For example, when there
are many A’s at depths more than three, but most queries are only interested in
A’s at depth less than or equal to two, we can partition the stream associated
with /A+ into streams /A1:2 and /A3+, meaning RC /A can be repeated at most
twice and at least three times respectively.

However, for irregular data, even RPS may generate too many streams and
result in long query response time. For example, if we change the DTD in
Fig. 1(a) as “every element of (A, B, C) can have any element of the three
as their children”, we may have the following deep uncompactable data path

/A/B/C/B/A/B/C/A/C/B/A/B/C/ . . . .

In such case, it is better to use non-partitioned Tag Streaming to avoid merge-
sorting overwhelming number of streams during holistic twig joins.

4 Experimental Evaluation

We experimentally compare the performance of RPS with non-partitioned tag
stream scheme and existing partition schemes: PPS and Tag+level. Results show
that, RPS and PPS are comparable and better than Tag or Tag+level in non-
recursive or light recursive data (e.g. XMark). In deep recursive data (e.g. Tree-
Bank), RPS significantly out-performs others for total query response time.

4.1 Experimental Settings

Implementation and Hardware. We implemented all algorithms in Java.
Different stream partition schemes were compared based on TwigStack holistic
join [2]. The experiments were performed on a normal PC with 2.6GHz Pentium
4 processor and 1GB RAM running Windows XP.

XML Data Sets. We use two well-known data sets (XMark and TreeBank)
for our experiments. The characteristics and the number of streams for each
partition technique of these two data sets are shown in Table 1. We choose these
two data sets because XMark is light recursive with non-recursive tags, while
TreeBank is deep recursive. In this way, we can study the performance of various
stream partition methods with different levels of recursion in XML data.
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Table 1. XML Data Sets Table 2. Tested Queries

XMark Treebank

Size 113MB 82MB

Nodes 2.0 million 2.4 million

Max Depth 12 36

Ave Depth 5 8

Tags 75 251

Tag+Level# 119 2237

PPSs # 514 338724

RPSs # 415 119748

XM1 //site/people/person/name

XM2 //site//people/person[/name]//age

XM3 //text[//bold]//emph//keyword

XM4 //text[/emph/keyword]/bold

XM5 //listitem[//bold]/text[//emph]//keyword

TB1 //S[//ADJ]//MD

TB2 //VP[/DT]//PRP DOLLAR

TB3 //PP[/NP/VBN]/IN

TB4 /S/VP//PP[//NP/VBN]/IN

TB5 //S//NP[//PP/TO][//VP/ NONE ]/JJ

Queries. We select a wide range of representative queries (shown in Table 2)
for each data set (XM for XMark and TB for TreeBank). In particular, XM1
and XM2 contain non-recursive tags, while the rest all contain recursive tags.
XM1 is a path query. XM2–4, TB1–4 are simple twig queries with only one
branching node of fan-out two. Except incoming root query edge, XM3 and TB1
have only A-D edges; XM4 and TB3 have only P-C edges; while XM2, TB2 and
TB4 have a mixture of A-D and P-C edges. For complex twig queries, XM5 has
two branching nodes whereas TB5 has one branching node of fan-out three. The
number of various label streams for all the tags of each query before and after
pruning is shown in Table 3. We can see the number of RPSs is much smaller
(up to 67% less) than PPSs.
Performance Measures. We compare RPS with non-partitioned Tag streams
and existing PPS and tag+level partition schemes. The presented performance
measures include pruning time, IO time of reading labels, CPU time of structural
join (including merge-sorting streams) and total response time of each query. The
IO time and CPU time of joins are estimated by reading all labels into memory
(IO time) before in-memory structural join (CPU time). Although the number
of labels (or bytes) scanned for each query is also an important measure for the

Table 3. Number of Streams before and After Pruning for various Partition Schemes

Tag + Level PPS RPS

before after before after before after

XM1 7 4 11 4 11 4

XM2 8 6 12 5 12 5

XM3 27 25 330 198 240 144

XM4 27 25 330 132 240 96

XM5 31 23 348 198 249 99

TB1 62 46 12561 1623 5126 743

TB2 87 86 38527 2455 12067 814

TB3 118 100 97285 1164 29563 624

TB4 177 138 123669 1874 38693 798

TB5 209 182 132503 2805 42915 1341
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effectiveness of partition schemes, it is not shown due to space limitations as
their experiment results are similar to IO time.

4.2 Experiment Results and Analysis

We show the experiments results for XMark data in Fig. 4. We did not show
the pruning time for XMark as it is only a few milliseconds, for all queries,
thus is a negligible component of total response time. It is clear that holistic
twig join with RPS partition is faster than Tag+Level (T+L) partition and non-
partitioned Tag in both input reading and structural join as a result of less labels
scanned and processed. We can also observe that RPS is comparable to PPS for
XM1 and XM2 containing non-recursive query tags and slightly better than PPS
for XM3–5 containing recursive query tags in terms of structural join and total
response time. Theoretically, the number of labels scanned in PPS is less than
or equal to RPS. So, it is interesting to see RPS is better than PPS in input
reading for XM3 as shown in Fig. 4(a). This is the result of the larger overhead
of PPS to read the same number of labels in more streams compared to RPS.
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Fig. 4. Experimental Results for XMark dataset (metrics of different scales)
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Fig. 5. Experimental Results for TreeBank dataset (metrics of different scales)

The results for TreeBank data set are shown in Fig. 5. We can see from
Fig. 5(a), RPS is much faster than PPS, but slower than Tag+Level in pruning
phase as expected. In reading inputs (Fig. 5(b)), PPS is the best since it reads the
least amount of labels by pruning more label streams; RPS is a bit slower than
PPS, but much faster than Tag and Tag+level. For CPU time of structural join
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(Fig. 5(c)), non-partitioned Tag scheme is the best. Although PPS processes the
least amount of labels, it is still the worst in structural join time due to high cost
of merge-sorting too many streams. RPS is better than Tag+level in structural
join time in general because RPS processes much less labels, which outweighs
the overhead of merge-sorting more streams. For RPS alone, although it is not
the best in any of the pruning, input reading or structural join, the beneficial
trade-off between IO and CPU helps RPS to be the best in overall query response
time (up to 2 times faster than the most competitive ones) as shown in Fig. 5(d).

5 Conclusion and Future Work

In this paper, we propose a novel stream partition scheme for efficient holistic
twig joins, namely recursive path stream. RPS scheme is a generalization of
prefix path stream proposed in [3]. Experiment results show that RPS is more
efficient than other stream partition techniques in recursive XML data while it
is as good as PPS and better than others in non-recursive data. As a part of
future work, we would like to study the cost model for holistic twig joins with
stream partition and indexing.
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