
BlossomTree: Evaluating XPaths in FLWOR Expressions∗

Ning Zhang

University of Waterloo

School of Computer Science

nzhang@uwaterloo.ca

Shishir K. Agrawal†

Indian Institute of Technology, Bombay

Department of Computer Science

shishk@cse.iitb.ac.in

M. Tamer Özsu

University of Waterloo

School of Computer Science

tozsu@uwaterloo.ca

Technical Report CS-2004-58 November 2004

∗Research supported in part by grants from Communications and Information Technology Ontario and from the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

†This research was done while the author was visiting the University of Waterloo.

Abstract

Efficient evaluation of path expressions has been studied extensively. However, evaluating more com-
plex FLWOR expressions that contain multiple path expressions has not been well studied. In this paper,
we propose a novel pattern matching approach, called BlossomTree, to evaluate a FLWOR expression
that contains correlated path expressions. BlossomTree is a formalism to capture the semantics of the
path expressions and their correlations. These correlations include variable referencing, structural rela-
tionship, value-based relationship, or a mixture of structural and value-based relationship. We propose a
general algebraic framework (abstract data types and logical operators) to evaluate BlossomTree pattern
matching that facilitates efficient evaluation and experimentation. We design efficient data structures
and algorithms to implement the abstract data types and logical operators. Our experimental studies
demonstrate that the BlossomTree pattern matching approach can generate highly efficient query plans.

1 Introduction

XML data management, especially XML query processing, has attracted considerable research and develop-
ment activity in the past few years. In XML query languages, in particular XQuery [6], a path expression is
arguably the most natural way to retrieve nodes from tree structured data, such as XML documents. Path
expressions allow us to traverse XML trees in different directions (termed “axes”), to filter tree nodes by
specifying predicates on tag names and values, and to return tree nodes. By analogy, path expressions have
a similar role in XML query processing as selection operations have in relational query processing.

In a more general setting, e.g., XQuery FLWOR (for-let-where-order-by-return) expressions, path ex-
pressions are usually used as building blocks for retrieving relevant nodes from XML documents. The
intermediate results of these path expressions can be bound to variables, which are further referenced by
other expressions.

Example 1 Consider the following query, excerpted from XQuery Use Cases [8] (with minor modifications),
that extracts, from a bibliography document, all pairs of distinct books that are written by the same list of
authors:

<bib>

{

for $book1 in doc("bib.xml")//book,

$book2 in doc("bib.xml")//book

let $aut1 := $book1/author

let $aut2 := $book2/author

where $book1 << $book2

and not($book1/title = $book2/title)

and deep-equal($aut1, $aut2)

return

<book-pair>

{ $book1/title }

{ $book2/title }

</book-pair>

}

</bib>

There are 18 path expressions in this FLWOR expression, where two of them (both doc()//book’s) operate
on the same XML document, while others operate on the variable bindings of these two path expressions
(and the variable bindings thereof). The node comparison operator << compares the document order of two
nodes. The deep-equal() is a function that compares two subtrees. 2

Since all the path expressions in the above FLWOR expression are related to each other, we call them
correlated path expressions. More formally, two path expressions are correlated if they are related by variable
references, structural relationships (e.g., <<), value-based relationships (e.g., not =), or value and structural
mixed relationships (e.g., deep-equal). A straightforward approach to evaluating correlated path expressions
in such a complex FLWOR expression is to follow the semantics of FLWOR expression and evaluate the path

not =

author

book

bib.xml

book

author

//

title title($t2)($t1)

<<

($book2)

($aut2)

deep−equal

($aut1)

($book1)

//

~ ~

Figure 1: A BlossomTree for the query in Example 1

expressions for each iteration in the for-loop. However, this approach may be very inefficient, due to the
redundancy during the loop and the costs of evaluating path expressions.

To tackle this problem, we first formalize this FLWOR expression into a “BlossomTree”1 as shown in
Figure 1. The BlossomTree is an annotated directed graph that captures all the semantics specified in the
FLWOR expression. A vertex in the graph represents a tag-name and value constraints in a path expression.
Variables can be bound to any vertex, in which case the vertex is called a blossom. An edge represents the
(structural, value-based, or mixed) relationship between tree nodes that matches the two vertices. Among
these edges, solid lines represent tree edges that are specified by path expressions, while dashed lines represent
crossing edges that are generated by operators on variables bindings in the where-clause. To avoid clogging
the graph, tree edges are not shown as directed, but their directions follow the hierarchical structure. We
shall give a formal definition and semantics for BlossomTree pattern matching in Section 3.1.

Given such a BlossomTree, the problem of evaluating FLWOR expressions can be reduced to matching the
BlossomTree against an XML document. The focus of this paper is, therefore, to define a general algebraic
framework for evaluating the BlossomTree and to develop optimization techniques based on this framework.

Since BlossomTree is a generalization of pattern tree for path expressions, the evaluation of BlossomTree
can be extended from previous research on pattern trees [17, 4, 20, 2, 7, 22]. There are basically three
approaches to evaluating tree pattern matching: navigational approach, join-based approach and hybrid
approach2. In this paper, we extend the hybrid approach [22] to a broader environment including FLWOR
expressions. The objective of this research is to find out the pros and cons between the navigational and
join-based approaches and try to tradeoff between them.

In summary, our contributions are as follows:

1. We propose a general algebraic framework (abstract data types and operators) for a substantial subset
of FLWOR expressions.

2. We propose physical implementations of the abstract data type and its operators. In particular, data
structures are proposed to support efficient implementation of operators.

3. The implementation of two major operators—generalized NoK pattern matching and structural joins—
are discussed in detail. We propose a suite of join algorithms that exploit the properties of the input
data.

4. We implement the techniques and conduct experiments based on our framework and join algorithms.

The remaining of the paper is organized as follows: we first introduce the background and related work
in Section 2. The algebraic framework is presented in Section 3, where abstract data types are introduced
in Section 3.2, and operators on these data types are presented in Section 3.3. The design of data structures
and implementation of physical operators are introduced in Section 4. Implementation and experimental
results are presented in Section 5. At last, we conclude in Section 6.

1The name BlossomTree is inspired by FLWOR and multiple returning nodes.
2We shall introduce these three approaches in detail in Section 2.

2 Background and Related Work

In this section, we briefly introduce the existing approaches to evaluating path expressions. Previous work
on evaluating FLWOR expressions are also presented and compared with our approach.

2.1 Evaluating Path Expressions

The problem of evaluating path expressions against XML trees can be formalized as the tree pattern matching
(TPM) problem (a.k.a. twig query): a path expression can be modeled as a pattern tree that specifies a set
of constraints. The solution is to find all nodes in the XML tree that satisfy all the constraints, and return
all those that match a “returning node” specified in the pattern tree.

Previous research on the evaluation and optimization of path expressions fall into three classes. A
navigational approach traverses the tree structure and tests whether a tree node satisfies the constraints
specified by the path expression [17, 4]. For example, the algorithm in [4] traverses the XML tree in
pre-order (document order). This traversal is either through SAX event callbacks or is supported by the
underlying storage system. A data structure called “work array” is established and maintained to keep track
of which pattern tree nodes have been matched and which need to be matched for the incoming SAX events
or XML tree nodes. This algorithm is very efficient when the document is non-recursive (i.e., an element
could not be the descendant of itself). However, for recursive documents, the presence of ‘//’ could result
in very large memory requirement (in the order of the maximum number of recursive degree) [3].

Another approach is to first select, for each pattern tree node, a list of XML tree nodes that satisfy
the constraints associated with it, and then pairwise join the lists based on their structural relationships
(e.g., parent-child, ancestor-descendant, etc.) [20, 2, 7, 16]. Using proper labeling techniques [11, 9, 18], TPM
can be evaluated reasonably efficiently by various join techniques (merge join [20], stack-based structural
join [2], and holistic twig joins [7]). We call this the join-based approach. Join-based approach is scalable to
large document and query size, by relying on the secondary storage to store intermediate results. Advanced
algorithms (e.g., [2, 7]), which take advantage of the existence of tag-name indexes, can reduce the need
to store intermediate results onto secondary storage, but the memory requirement is proportional to the
maximum depth of the input document tree. A major disadvantage of the join-based approache is the
update problem. Since it does not rely on navigation to discover the structural relationships between nodes,
encodings of the structural relationship must be pre-computed and inserted into the indexes. This pre-
computation can be thought of as a materialization process of the structural relationship. Thus, the join-
based approach inherits the update problem associated with materialized views [5] (e.g., if a single element
is inserted or deleted, the encodings of its subtree or all following nodes in the document may need to be
recomputed).

We proposed a hybrid approach [22] to combine the advantages and avoid the disadvantages of the
navigational and join-based approaches. The key idea is to, first, navigate through the XML documents to
obtain intermediate results that contain structural information, and then join the intermediate results based
on the structural information. In this way, we avoid the update problem since the structural information
is obtained dynamically. To avoid the complexity of matching recursive documents in the navigational
approach, we only navigate the tree using a subset of the path expression that will not result in a recursive
matching. This methodology is implemented by first decomposing a general pattern tree into interconnected
next-of-kin (NoK) pattern trees, which are special cases of a pattern tree that only consists of “/” and
“following-sibling” axes. For each NoK pattern tree, a navigational NoK pattern matching operator can be
evaluated highly efficiently using a single scan of the input, or index lookups. The efficiency is due to the
fact that the recursive (or “global”) axis “//” is excluded from the NoK pattern tree. The final result of
the interconnected NoK pattern tree is then obtained by joining, based on their structural relationships, the
intermediate results from the multiple NoK pattern matching.

We had shown previously that NoK pattern matching operator itself can be evaluated very efficiently [22],
but optimizing the evaluation of more general expression containing multiple NoK expressions intercon-
nected by global operations (e.g., //, <<) has not been studied. These cases occur when multiple NoK
expressions exist in the same path expression or in different for-clauses. For example, the path expression
doc("bib.xml")/book[//author="Smith"]/title retrieves the titles of the books that are written by “Smith”.
These two NoK patterns are interconnected by // relationship on book and author nodes. According to the

definition of NoK patterns, this path expression should be partitioned into two NoK pattern trees, corre-
sponding to doc("bib.xml")/book/title and author[.="Smith"]. Assuming that both NoK pattern matching
operators are evaluated using sequential scan (i.e., for each XML tree node in document order, try to match
the subtree starting from that node to the NoK pattern tree), we need to scan the input XML file twice,
which is not I/O optimal. The FLWOR expression given in Example 1 is another example where multiple
path expressions are connected by for- and let-clauses. Each of these path expressions can be decomposed
into NoK pattern trees, which operate on the same document. Combining them as a whole tree to apply the
hybrid approach may save significant I/O. This is the first issue we study in this paper.

The above examples motivate our first optimization technique: combining multiple NoK pattern matching
operators into one scan whenever possible. Suppose a pattern tree is decomposed into two NoK pattern trees,
each of which needs a scan of the (same) input XML tree. An intuitive observation is that the total number
of scans of the input data can be reduced to one, if the intermediate results can be pipelined to a structural
join operator without materializing them to secondary storage. We call this optimization technique pipelined
NoK (corresponding to pipelined join technique). One of our objectives in this paper is, therefore, to analyze
all types of structural joins3 and determine what kinds of properties are required of the input streams in order
to use the pipelined NoK technique. In fact, we will show that only some types of structural joins can use
the pipelined NoK approach, while others cannot, no matter what kind of information is associated with the
input nodes. However, pipelined NoK technique may not always be desirable since it requires more memory
to cache intermediate results. This could be a serious problem when the input document and the path query
is recursive. Therefore, we need to tradeoff between saving I/O and meeting the memory requirement.

2.2 Evaluating Path Expressions in the FLWOR Expression

Path expressions as the building blocks are often embedded in FLWOR expressions and constructor ex-
pressions (cf. Example 1). Evaluating them multiple times in a for-loop would greatly degrade the overall
performance. Instead, if all the path expressions can be considered as one unit, and decomposed whenever
needed, it could be much more efficient.

Previous research on evaluating path expressions in FLWOR expression can also be classified as naviga-
tional [12] and join-based approaches [10, 15]. These are natural extensions of the approaches to evaluating
path expressions.

In the navigational approach [12], all path expressions are extracted from the FLWOR expression to form
a single pattern tree. The pattern tree allows multiple nodes to be marked as “extraction nodes” (a.k.a.,
returning nodes), which correspond to variable bindings. The output of the pattern matching operator is
a set of tuples, each column in the tuple corresponds to a different variable binding. Since the output is a
relational table, this approach is particularly desirable when the XML query processor is built based upon
relational database systems. However, since, in general, the result of the tree pattern matching is another
tree whose nodes are mapped from the extracting nodes, relational tables (or flat tuples) are not space
efficient in representing the tree structure. For example, consider a pattern tree with three extraction nodes
“a”, “b”, and “c”, where “a” is the parent of “b” and “c”. If the XML tree has a subtree a1 with children
b1, c1, b2, c2, where each ai matches a, bi matches b, and so on (throughout the paper, we use ai to represent
the i-th occurrence of element a), the resulting tuples are (a1, b1, c1), (a1, b1, c2), (a1, b2, c1), and (a1, b2, c2).
This implies that the table contains redundancies due to the fact that its projection on b and c columns is
actually a Cartesian product of the matches of all b and c.

On the other hand, the join-based approach [10, 15] treats every output of the pattern match as a tree.
Each pattern tree node could be marked as a “tree logical class (TLC)”, such that all matches to this pattern
tree node can be retrieved by this TLC. Therefore, these TLC’s can be thought of as references or indexes
to the matched values of the “extraction nodes”. In this sense, it is in the same role as the column names
(or positions) in the tuple format in the navigational approach. Therefore, no structural relationships can
be derived from the TLC’s. Furthermore, the join-based approach also performs a structural join on each
structural constraint, even though they can be answered more efficiently using navigation. When multiple
path expressions are combined together, the number of structural joins will quickly become unmanageable
for the optimizer to figure out an optimal join order.

3The types are defined based on the axes in path expressions [6].

In this paper, we extend the hybrid approach [22] for evaluating path expressions in a broader environment
with FLWOR expression. The basic idea is twofold: (1) the path expressions are first combined together to
form a BlossomTree to capture the semantics of the FLWOR expression. Then the BlossomTree is divided into
NoK pattern trees as in [22]. The difference is that edge-cutting may happen not only on the edge labeled
with global axes, but also value-based joins. (2) When a NoK pattern tree is constructed from multiple path
expressions in a FLWOR expression, it could contain multiple returning nodes (blossoms). We define an
abstract data type (NestedList) to represent the results of matching NoK Pattern Tree (which may contain
multiple returning nodes) against XML document. NestedList is a generalization of flat list that allows an
item be another list. Different from flat tuples or TLC references, each item in the NestedList has an ID
(Dewey ID) that contains the structural relationships between matches from different pattern tree nodes.
Furthermore, since NestedList can be thought of as trees, it also avoids the redundancy problem associated
with the flat table.

In the following sections, we first introduce the abstract data type NestedList, and discuss how NestedList
can be constructed from NoK Pattern Tree pattern matching. Then various operators on NestedList are
presented.

3 An Algebraic Framework

In this section, we will introduce the formalism to capture the semantics of FLWOR expression. The abstract
data type is presented in Section 3.2. The operators on the abstract data type are introduced in Section 3.3.

3.1 BlossomTree

The FLWOR expressions that we consider in this paper are a subset of that defined in XQuery [6], in that
we only allow path expressions in the for-, let-, where-, order by- and return-clauses:

FLWOR ::= (‘for’ var ‘in’ Path | ‘let’ var ‘:=’ Path)+

(‘where’ Boolean)?

(‘order by’ Path)?

‘return’ Path

To capture the semantics of the restricted FLWOR expression, we introduce the formalism of BlossomTree.

Definition 1 (BlossomTree) A BlossomTree is an annotated directed graph that consists of interconnected
pattern trees, at least one of which has a root node. Each vertex is annotated with a tag name and optional
value constraints. In addition, each vertex can be associated with a variable, called blossom.

Each edge in the graph is annotated with a 2-tuple 〈r, m〉, where r is a relationship between the incident
vertices, and m is a matching mode (“f” for mandatory and “l” for optional). 2

Based on the definition, edges can be classified into tree edges and crossing edges. The relationships
r associated with tree edges are always structural relationships (/, //, etc.), and the mode m could be
either “f” or “l”, representing whether the edges is contributed by a for-clause or let-clause, respectively. The
relationships r associated with crossing edges can be either structural, value-based, or a mixture of structural
and value-based relationships. In this case, the mode m could be “f” only.

For instance, the BlossomTree illustrated in Figure 1 has two “l” edges, represented by regular solid lines.
The other tree edges are annotated with “f”, represented by bold solid lines. The variables in the parentheses
beside the nodes are bound to those nodes. Unless otherwise labeled, the default tree edge r relationship is
/.

Taking a BlossomTree and an XML document, the semantics of the BlossomTree pattern matching can
be defined using a mapping f from the BlossomTree nodes to XML tree nodes:

• The root of each pattern tree is mapped to the root element of the corresponding document.
• For any node u in the BlossomTree, f(u) must satisfy the tag-name and value constraints associated

with u.

• If two nodes u and v in the BlossomTree are connected by a directed edge (u, v) with annotation 〈r, m〉,
then f(u) and f(v) must satisfy the relationship specified by r, i.e., r(f(u), f(v)) = True.
• If two nodes u and v are connected by an “f” annotated edge, f is a valid mapping iff for each non-empty

f(u), there is a non-empty f(v) satisfying the above conditions.
• If two nodes u and v are connected by an “l” annotated edge, f is a valid mapping iff f(u) is non-empty,

but f(v) may be empty. In this case, f(v) is defined to be an empty sequence if no XML tree nodes
satisfy the above conditions.

Example 2 Consider matching BlossomTree in Figure 1 against the following XML document:

<bib>

<book>

<title> Maximum Security </title>

</book>

<book>

<title> The Art of Computer Programming </title>

<author>

<last> Knuth </last>

<first> Donald </first>

</author>

</book>

<book>

<title> Terrorist Hunter </title>

</book>

<book>

<title> TeX Book </title>

<author>

<last> Knuth </last>

<first> Donald </first>

</author>

</book>

</bib>

The output is:

<bib>

<book-pair>

<title> Maximum Security </title>

<title> Terrorist Hunger </title>

</book-pair>

<book-pair>

<title> The Art of Computer Programming </title>

<title> TeX Book </title>

</book-pair>

</bib>

The second book-pair being returned is obvious, since all the BlossomTree nodes are matched and all
constraints are satisfied.

The first book-pair is in the output, because neither of these books have an author element, but the
matching of them is optional (due to the “l” annotated edge connecting them), so both variables $aut1 and
$aut2 are bound to empty sequences, which matches to each other by the definition of deep-equal() function
(define in XQuery Functions and Operators [14]). 2

Given such a BlossomTree, the hybrid approach first decomposes it into interconnected NoK Pattern
Tree’s. Each NoK Pattern Tree is evaluated by a navigational pattern matching operator. The interme-
diate results are then joined together using the join-based approach. It is straightforward to decompose a
BlossomTree into interconnected NoK Pattern Trees. Algorithm 1 gives the pseudo-code to decompose a
BlossomTree based on depth-first traversal. In the parameters, pt is a BlossomTree, S is a set containing the
roots of the NoK Pattern Tree, and T is a set containing the non-root nodes in the current NoK Pattern
Tree. Initially, S is set to be the set of all roots in pt, and T is set to be ∅.

Algorithm 1 Decomposing BlossomTree into NoK’s

Decompose(pt : BlossomTree, S, T : Set)

1 while S 6= ∅
2 do extract an item u from S;
3 T ← ∅;
4 initialize t as empty NoK tree;
5 for each out-edge (u, v) s.t. v has not been visited
6 do if the label of (u, v) is a local axis
7 then set v as visited;
8 put v in T ;
9 add v and edge (u, v) in t;

10 else put v in S;
11
12 DFS(t,S,T);
13 output t;

DFS(t : NoKBlossomTree, S, T : Set)

1 while T 6= ∅
2 do extract an item u from T ;
3 delete u from pt;
4 for each out-edge (u, v) s.t. v has not been visited
5 do if the label of (u, v) is a local axis
6 then set v as visited;
7 put v in T ;
8 add v and edge (u, v) in t;
9 else put v in S;

10 DFS(t,S,T);

3.2 Abstract Data Type

Before introducing how the pattern matching is performed on the NoK Pattern Tree, we first introduce the
abstract data type (a.k.a. sort in algebra) that represents the output of pattern matching. Note that the
abstract data type introduced here is at the conceptual level. It could be implemented by different concrete
data structures (introduced in Section 4) to ensure efficiency.

Since the XML tree data model is very irregular and flexible, our basic idea of the design of the abstract
data types is to define more “regular” data structures (thus operators based on it could be more efficiently
implemented) that isolate the irregular tree structures. This separation allows further operations to operate
on the regular data structures only.

In our algebraic framework, the “more regular” data structure is NestedList, which is the output of NoK
pattern matchings. Many operations, such as selection, projection and joins, can be applied to NestedList.
Another abstract data type Env is generated when variables are bound to some specific values in the Nest-
edList. The final XML document result is constructed from Env. The relationship between these abstract
data types is illustrated in Figure 2.

NoK

projection
join

variable
binding

XMLTree NestedList Env

construction

selection

Figure 2: The data flow from one abstract data type to another

In this paper, we concentrate on the NestedList and operations on it. The Env abstract data type and
how variables are bound are outside the scope of this paper. Interested readers are referred to [21] for a brief
overview.

Before giving the formal definition, we shall give an example of how the NestedList is constructed.

Example 3 Consider the NoK Pattern Tree illustrated in Figure 3(a), where all nodes in the tree are
returning nodes. Under the same convention, the bold edges are “f” annotated (mandatory matching)
and regular edges are “l” annotated (optional matching). To be able to reference the tree node, we first
(arbitrarily) fix an order on the children (since normal pattern tree is unordered), and assign each tree node
a Dewey ID shown in the parenthesis. This artificial ordering does not affect the semantics of the pattern
matching since it is never used to match any order (e.g., document order), but just used to conveniently
reference nodes.

(1.1.1)

a

b

d

c

(1)

(1.2)(1.1)

(a) NoK tree

d3

b1 c1 b2

d1 d2

c2

a1

b3

(b) XML tree

b1 b2 b3 c1 c2

a1

d1 d2 d3

(c) Matchings

Figure 3: NoK Pattern Tree Pattern Matching against an XML tree

Figure 3(b) shows an example XML tree, where each ti represents the i-th occurrence of tag t. The
resulting tree is shown in Figure 3(c). The result of the match can be thought of as a special tree structure
that conforms to the NoK pattern tree. For instance, all XML tree nodes (b1, b2, and b3) that are matched
with pattern tree node 1.1 are grouped together, indicated by the box around the nodes. By grouping such
nodes together, it is efficient to retrieve all nodes that are matched with a pattern tree node, given its Dewey
ID. The tree edges in Figure 3(c) indicate which pairs of nodes satisfy the structural relationships specified

by the NoK pattern tree. If xi has an edge to ym and, xi+1 has an edge to ym+k, this implies that xi can
pair any of ym up to ym+k−1 to form a match to the edge (x, y) in the NoK pattern tree. For instance, the
tree edges between the b’s and d’s in Figure 3(c) indicate that b1 has no children in the match, b2 has two
children d1 and d2, and b3 has one child d3 in the match. 2

The result tree is a compact representation of all mappings f from NoK Pattern Tree nodes to XML
tree nodes (recall the semantics definition in Section 3.1). To derive a mapping from the result tree, simply
choose one node from each “array” associated with each Dewey ID, and check whether any pair of nodes
conform to the structural relationship specified by the NoK pattern tree.

Conceptually, the above “resulting tree” can be defined as an instance of an abstract data type, which
we term NestedList. The NestedList abstract data type is a more restricted form and has some special
features than the general nested list defined in languages such as Lisp. A NestedList can be constructed
from a BlossomTree (or specially NoK Pattern Tree), where each returning node is given a Dewey ID. For
instance, the initial NestedList constructed from the NoK Pattern Tree in Figure 3(a) is (a(b(d))(c)),
where each ‘(’ indicates a nesting, each ‘)’ indicates a unnesting, and the characters (actually Dewey ID’s
of these characters) are placeholders for the matchings result to these characters. It is well-known that any
tree can be represented by such a nested list form [13]. When the NoK pattern tree is matched with XML
tree nodes, the placeholders are “filled out” with the actual nodes. To represent the “grouping” of multiple
matchings with the same Dewey ID, a new notation “[]” is introduced. For example, the final resulting tree
in Figure 3(c) is represented by the NestedList shown in Figure 4.

(a1,[(b1,()),(b2,[(d1),(d2)]),(b3,(d3))],[(c1),(c2)])

b subtrees c subtrees

Figure 4: An example NestedList

In this notation, “[]” represents the grouping of subtrees under the same parent (e.g., grouping b1, b2,
and b3 subtrees, but not d3 with d1 and d2), and “()” represents nesting. Note that an empty sequence “()”
is introduced to b1’s child in order to conform to the structure of NoK pattern tree.

Definition 2 (NestedList) The NestedList abstract data type is a nested list representation of an ordered
tree structure that is leveraged by the grouping notation “[]”. 2

Note that the NestedList abstract data type is conceptual; one can use any data structure to implement
it in order to guarantee good performance for certain operations on it. In Section 4, we shall introduce the
physical data structures for NestedList to support efficient operations.

3.3 Operators on NestedList

In this subsection, we define logical operators on NestedList. These operators are very similar to relational
operators, but working on a sequence of “nested tuples” instead of a set of “flat tuples”. Instead of taking
column names or positions as parameters in the flat tuple case, the operators on NestedList take Dewey ID’s
as parameter.

As shown in Figure 2, the signature of each of these operations is from a NestedList (in the case of Join,
two NestedList’s) to a NestedList. The semantics of each operator is as follows:

• Projection (πID): Unnest the NestedList according to the Dewey ID to a list of subtrees. The result
is the concatenation of all the roots of the subtrees. For example, π1.1(t) = [b1, b2, b3], where t is the
NestedList in Figure 4.
• Selection (σϕ(ID)): First project on the Dewey ID, then evaluate the predicate ϕ on the projected

list. If the predicate returns false, remove the corresponding item from the NestedList. If the re-
sulting NestedList is not a valid match anymore (e.g., a mandatory node matches to empty sequence
after the removal), return empty sequence; otherwise return the modified NestedList. For example,
σposition(1.1)=2 = [b2], where position is the list position function in path expression (e.g., //book[2]).

• Join (1ϕ(ID1,ID2)): The join of two NestedList’s is a combination of projection and selection. It first
projects the Dewey ID’s on the corresponding two NestedList’s, and then apply join predicate ϕ on
the projected lists. If the predicate ϕ returns true, the two NestedList’s are combined into a single
NestedList (see below for details); otherwise, return empty sequence.

This semantics can be easily extended to a sequence of NestedList’s: simply concatenate the results on
each NestedList in order.

The semantics for projection and selection are quite straightforward, however, the join semantics needs
more elaboration. The problem is how to construct the resulting NestedList from two NestedList’s. Consider
the BlossomTree in Figure 1. Since matching to the whole BlossomTree should contain all the returning nodes
(those with variable bindings), we should assign a Dewey ID to each returning node before decomposing it
into interconnected NoK pattern trees. Since there are two root nodes in the BlossomTree, we introduce an
artificial (super-)root that is the parent of both root nodes. The Dewey ID’s can be assigned according to
any ordering of the roots. Suppose that $b1 is assigned 1.1, $b2 is assigned 1.2, $aut1 is assigned 1.1.1, $t1
is assigned 1.1.2, $t2 is assigned 1.2.1, and $aut2 is assigned 1.2.2. The initial NestedList for each of the NoK
pattern tree is of the form:

(($book1,($aut1),($t1)),($book2,($t2),($aut2)))

Each NoK pattern tree outputs a sequence of NestedList’s that conform to the above format, although
some results contain placeholders. When two sequences of NestedList’s are joined, the placeholders are filled
out in the result.

Example 4 Consider the BlossomTree in Figure 1 and the XML document in Example 2 as input, and
suppose the execution plan is shown in Figure 5, where NoK1 and NoK2 are both (book,(author,title))

with different variable bindings.

1ϕ

rrrrrrrrrr

LLLLLLLLLL

NoK1 NoK2

doc(bib.xml) doc(bib.xml)

Figure 5: A query plan, where the join predicate ϕ = (1.1.2 6= 1.2.1) ∧ deep-equal(1.1.1, 1.2.2)

The result of NoK1 is of the form (assuming bi represent the i-th occurrence of book, ai represent the
i-th occurrence of author, and ti represent the i-th occurrence of title):

[((b1,(),(t1)), ((),())),

((b2,(a1),(t2)), ((),())),

((b3,(),(t3)), ((),())),

((b4,(a2),(t4)), ((),()))]

Each line above is a matching against NoK1, and the empty sequences are placeholders. The result of
NoK2 is of the same form, but with placeholders in the position of NoK1:

[(((),()), ((b1,(),(t1)))),

(((),()), (b2,(a1),(t2))),

(((),()), (b3,(),(t3))),

(((),()), (b4,(a2),(t4)))]

The join operator takes the two sequences of NestedList’s and the join predicate, and evaluates the
predicate for each combination of the NestedList’s from the two sequences. The final result is:

[((b1,(),(t1)),((b3,(),(t3)))),

((b2,(a1),(t2)),(b4,(a2),(t4)))]

This is the same result returned by Example 2. 2

Given a NoK Pattern Tree and an XML tree, a sequential scan of the XML tree against the blossom tree
is defined to be the process of scanning the XML tree node in document order. At each node, a NoK pattern
matching operator is applied. The results of all matchings are concatenated into a sequence of NestedList’s.

4 Physical Operators

In this section, we introduce how the operators defined in the previous section are implemented. Since selec-
tion and projection are rather straightforward, we concentrate on the NoK Pattern Tree pattern matching
operator and various join operators.

4.1 NoK Pattern Tree Tree Pattern Matching

A NoK pattern tree could have multiple returning nodes, and optional edges (“l” annotated edges). As
introduced in Section 3, we should give each returning node a Dewey ID indicating their structural relation-
ships. This is achieved by extracting all returning nodes to form a “returning tree”. In the returning tree,
two nodes are connected by an edge if and only if they are the closest ancestor-descendant in the NoK tree.
For example, in the NoK pattern tree, a has a child b and b has a child c, and only a and c are returning
nodes, in the returning tree a and b are directly connected by an edge. Before introducing the NoK Pattern
Tree pattern matching algorithm, we first introduce the data structure that implements NestedList abstract
data type.

Given a Dewey ID, the data structure should support the following operations:

Unnesting a NestedList is one of the most common operations. The data structure should support efficient
navigation (e.g., through pointer) between nesting levels.

Retrieving child by position index is another common operation. This operation usually follows unnesting
and retrieve the i-th item in a sequence. For example, projection on Dewey ID 1.5.3 can be translated
into the operations unnesting on the root, then retrieving the fifth child, then unnesting again, and
last retrieving the third child.

Inserting a child to a list is frequently used in constructing the NestedList. Since the NestedList is dynami-
cally constructed from depth-first traversal of the XML tree, it requires dynamically inserting an item
into the sequence.

Based on these requirements, we design the data structure as shown in Figure 6. Each returning node
is associated with a linked list (a is associated with list a1, etc.), where new element is inserted at the
end. We say that this linked list is connected by sibling pointers (indicated by _ arrows in Figure 6). If a
returning node has k children in the BlossomTree, it includes an array of size k, containing pointers to the
list associated with its children. We call these pointers child pointers (indicated by → arrows in Figure 6).
In addition to these pointers, a pointer to the last child, a pointer to its parent, a pointer to the next node in
document order are also added to facilitate efficient navigation. To avoid clogging the graph, we omit them
in Figure 6, but readers should keep in mind that they are associated with each node in the data structure.

Given a returning tree, the resulting NestedList can be constructed as shown in Algorithm 2. Parameters
p and q of the algorithm are NoK pattern tree nodes that are both returning nodes and p is a child of q. x

is an XML tree node. Before invoking the algorithm, a prerequisite is that p matches with x.
This algorithm is an extension of the NoK pattern matching algorithm [22]: instead of returning only one

list, it keeps a list of resulting nodes on each returning node and maintains the hierarchical structure between
them. It traverses the XML tree in depth-first order (through First-Child and Following-Sibling in
lines 8 and 19). During the traversal, it also recursively matches the NoK pattern tree node and builds up
a list of matchings for each returning node. Each recursive call (lines 13 and 14) represents a matching of
a NoK subtree against an XML subtree. In the algorithm, the sibling pointers and children pointers are
established in lines 2 to 5. The frontier children mentioned in line 7 are the children of a NoK pattern tree

a1

b1 b2 b3 c1 c2

d1 d2 d3

Figure 6: The concrete data structure for NestedList

Algorithm 2 NoK Pattern Tree Pattern Matching

NoK-Blossom(p, q : NoKNode, x : XMLTreeNode)

1 if p is a returning node
2 then append x to the sibling list associated with p;
3 t← last element of q ;
4 if t has no child pointer
5 then add a child pointer from t to x ;
6 else add x to the last child of t;
7 S ← frontier children of p;
8 u← First-Child(x);
9 repeat

10 for each s ∈ S that matches u with both tag
name and value constraints

11 do
12 if p is a returning node
13 then b← NoK-Blossom(s, p, u);
14 else b← NoK-Blossom(s, q, u);
15 if b = true or s is “l” annotated
16 then S ← S \ {s};
17 delete s and its incident arcs

from the pattern tree;
18 insert new frontiers caused by

deleting s;
19 u← Following-Sibling(u);
20 until u = nil or S = ∅
21 if S 6= ∅ and p is a returning node
22 then remove all matches to p associated with its parent
23 return false;
24 return true;

node that are candidate matches for the incoming XML tree node [22]. If after matching the whole subtree
rooted at p, there are still unmatched pattern tree nodes (line 21), the partial results built up during the
recursive call are removed (line 22).

Based on this data structure and algorithm, we shall prove that when we project on any Dewey ID, the
resulting list associated with that DeweyID is in document order. We call any operator that has this property
order preserving. This property is important for developing the join algorithms introduced in Section 4.2.

Theorem 1 (projection is order-preserving) Suppose the sequential scan of an XML tree against a
NoK Pattern Tree is s. Given any Dewey ID on the NoK pattern tree, the projection that simply returning
the resulting list associated with that ID is in document order.

Proof The proof has two steps: first, we prove that for any NestedList l that is the result of a non-recursive
NoK pattern matching (i.e., no // connecting the NoK with the root), the projection on l is in document
order. Secondly, we prove that for recursive matching, the list is still in document order.

The first step can be proved by the construction of the NestedList. Since the construction is by traversing
the XML tree in document order, and a node is inserted into the result as soon as it is first discovered.
Therefore, if two nodes are matched with the same pattern tree nodes, the node with lower document order
must be inserted before the one with higher document order. Therefore, the projection on the NestedList on
any Dewey ID is in document order.

The second step is also straightforward. Since a NoK pattern tree can have multiple matches during
a recursive traversal of a subtree (in the case of recursive document), these matches can be interleaved
together among the lists associated with each pattern tree node. By child pointers, different matches can
be separated. When the NoK is recursively matched against a subtree, each matching node (in document
order) is inserted into the list associated with its pattern tree node. These matches must in document order
because they are inserted at the first time discover it in depth-first traversal (document order). �

4.2 Merging NoK operators and pipelined joins

As we have seen in Figure 5, there are situations where multiple NoK operators operate on the same XML
file and the results are then joined together. There are two situations that an optimizer can exploit: (1) if
both NoK operators use a sequential scan access method (e.g., when no tag-name or value-based indexes are
available), we can save I/O by merging multiple NoK operators into one combined operator and using one
scan only. (2) If the join connecting these two NoK operators has some special properties (e.g., the input is
ordered by document order), we can use pipelined joins (merge-join style) to save the I/O for intermediate
results. In this subsection, we shall present the two optimization techniques.

The merging of two NoK pattern trees proceeds as follows. For each NoK pattern tree, maintain a set of
pattern tree nodes that are eligible for matching the incoming XML tree nodes (following the same notation
in [22], we call these pattern tree nodes frontier nodes). When a new XML tree node arrives, it is matched to
both sets of frontier nodes. This is in the same way that multiple Deterministic Finite Automata (DFA) are
merged to a Nondeterministic Finite Automaton (NFA). This technique can be extended to merge arbitrary
number of NoK pattern trees.

Given two sequence of NestedList’s resulting from NoK operators, the join on DeweyID d1 and d2 is
performed on the projections of d1 and d2 on the two NoK’s. By Theorem 1, the results of the projections
will preserve document order. Therefore, we can use any structural join algorithms (e.g., TwigStack [7]) that
rely on the inputs being in document order.

However, some joins are not order-preserving. For example, the structural join on << operator is not
order preserving. We shall give a counter example showing why it is not.

Example 5 Consider the example shown in Figure 1. A sub-query execution plan could be shown in
Figure 7. Given the XML document as shown in Example 2, the resulting NestedList’s are as follows:

[((b1,(),(t1)), (b2,(a1),(t2))),

((b1,(),(t1)), (b3,(),(t3))),

((b1,(),(t1)), (b4,(a2),(t4))),

((b2,(a1),(t2)), (b3,(),(t3))),

1ϕ

xxx
xx

xxx

FFFF
FF

FF

NoK1 NoK2

Figure 7: A Query Plan, where the join condition ϕ = $book1 << $book2

((b2,(a1),(t2)), (b4,(a2),(t4))),

((b3,(),(t3)), (b4,(a2),(t4)))]

The projection on the Dewey ID 1.2 over the above sequence of NestedList’s is [b2, b3, b4, b3, b4, b4], which
is not in document order. 2

In fact, it is easy to show that some other structural joins, such as preceding, following, isnot, and all
value-based joins are not document-order-preserving.

Nevertheless, the most commonly used //-joins are indeed document-order-preserving on non-recursive
documents, which gives the nice property of being able to compose //-joins in pipelined fashion.

Theorem 2 (order-preserving on non-recursive documents) If the NoK pattern trees connected by
//-join operators are assigned Dewey ID globally (i.e., according to the BlossomTree, rather than individual
NoK pattern tree), the result of //-joins preserves document order on non-recursive documents.

Proof From Theorem 1, we know that the projections on each of the NoK pattern trees are order-preserving.
We need to prove two cases: first, suppose l is a NestedList that matches the first NoK, and m1, m2 are the
two consecutive NestedList’s that join with l, since projection on NoK is order-preserving, m1 and m2 must
be in document order, therefore, the join of l and m1, m2 must also be in document order.

Secondly, suppose l1 and l2 are two consecutive NestedList’s that match the first NoK, and m1 and m2 are
two consecutive NestedList’s that matches the second NoK. Since projection on both NoK’s are document-
preserving, i.e., l1 < l2 and m1 < m2 in document order, l1 and l2 cannot both join with m1 and m2, i.e.,
the situation that (l1, m1), (l1, m2), (l2, m1), and (l2, m2) or (l1, m2) and (l2, m1) will never happen. This is
because (1) the document is non-recursive, so li (or mi) cannot match to the same pattern tree node, and
(2) the tree structure prevents a node u being a descendant of a node v and v’s sibling at the same time.
Therefore, the projection of the result of the join is still in document order. �

For //-join on non-recursive documents, we propose a pipelined join algorithm. As in the relational
pipelined joins, the pipelined //-join and NoK pattern matching are defined using iterators: each time a
getNext() function is called, a matching of the NoK pattern tree or join result is returned. The getNext()
function of NoK pattern matching is based on Algorithm 2. Here, we only introduce the algorithm for the
//-join operator.

GetNext(M, N : NoKTree; k, l : ID)

1 m←M.GetNext();
2 n← N.GetNext();
3 if m = null ∨ n = null

4 then return null;
5 if Desc-or-Self(proj(m, k), proj(n, l)) = true
6 then return fill(m,n);
7 else if m << n

8 then m←M.GetNext();
9 else n← N.GetNext();

10 goto 3;

Of these parameters, M and N are two pipelined NoK pattern matching operators, and k and l are two
Dewey IDs on which the join is performed. This algorithm is in a merge-join fashion.

In this algorithm, the //-join GetNext function calls the NoK pattern matching operator’s GetNext
function (line 1 and 2). If one of them reaches the end (returning null), the join finishes as well. If m is not
the ancestor of n or n itself, depending on which one has lower document order, another GetNext function
call is invoked to the NoK pattern matching operator with lower document order (lines 7 to 9). If there
are some nodes in the projection of m on DeweyID k that matches the projection of n on l, the resulting
NestedList’s are constructed by filling out the placeholders in one of the NestedList’s and return it as a result.

The pipelined //-joins can save intermediate results being stored on secondary storage. However, if
the input XML document is recursive, the order preserving property will not hold. Even if we modify the
pipelined algorithm to cache more results to guarantee no results will be lost, the memory requirement for
caching the intermediate results or candidates thereof could be large [3]. Therefore, in order to tradeoff
between memory requirement and secondary storage access, the optimizer needs to have the knowledge of
how recursive the input XML document is. For non-recursive or low degree of recursive document, the
pipelined join algorithm (or its modification with caching capability) can be used. For highly recursive
document, we propose a nested loop style join algorithm.

4.3 Nested Loop Joins

For those joins that are not order-preserving (e.g., <<-join, following-join, and isnot-join), a nested-loop join
is in order. Since this join destroys the document order, we cannot compose other pipelined joins on top of
the nested-loop join. For the joins that potentially return all pairs of combinations from two lists (essentially
a Cartesian product), a straightforward naive nested loop join algorithm is unavoidable, so we omit it here.

For the nested loop joins on //-relationships, a special optimization technique can be applied. The basic
idea is to exploit the fact if node u is an ancestor of v, then u’s following sibling is not an ancestor of v. In
the nested loop join algorithm, if NoK pattern tree T1 connects another NoK pattern tree T2 via a //-edge,
T1 is always on the left (outer) and T2 is always on the right (inner). When the join operator get a nest
matching from T1, it will piggyback the range (p1, p2), where p1 is the position of the XML tree node that
matches with the joining node, and p2 is the position of its nest sibling. The inner NoK T2 can then only
scan within this (p1, p2) range. We call this bounded nested loop join (BNLJ) algorithm.

5 Experimental Evaluation

categories recursive? data set size #nodes avg. dep. max dep. |tags| |tree|

Synthetic
Y d1 69 MB 1, 212, 548 7 8 8 4.3 MB

N
d2 17 MB 403, 201 3 3 7 0.5 MB
d3 30 MB 620, 604 5 8 51 1.2 MB

Real
Y d4 82 MB 2, 437, 666 8 36 250 5.3 MB
N d5 133 MB 3, 332, 130 3 6 35 8 MB

Table 1: Categories of testing data sets

The framework based on BlossomTree can be thought of as an algebra for the FLWOR expressions. As we
have seen in the previous sections, a BlossomTree can be broken down into logical operators, each of which has
different physical implementations (e.g., a structural join can be implemented with pipelined joins, nested
loop joins, or TwigStack joins [7]). Each operator may have different performance on different data sets and
queries. An optimizer is responsible for choosing an appropriate physical operator based on its knowledge
of the system environment. Therefore, the purpose of our experiments is to find out in which situation a
particular physical operator performs better than the others. In this paper, we focus on the join operator
implementations.

To assess the effectiveness and efficiency of the proposed join operators, we conducted extensive exper-
iments and compared them with the performance of existing systems or prototypes. Both the data and

Query Category Example query

Q1 hc /a/b//[c/d//e]

Q2 hb /a//b[//c/d]//e/f

Q3 mc //a//b//c

Q4 mb //a/b[//c][//d][//e]

Q5 lc //a//b

Q6 lb //a[//b][//c]//e

Table 2: Query categories

the queries are classified into categories so that we can test the efficiency of all approaches in different
environments.

5.1 Experimental setting

We implemented the algorithms in Java with JDK 1.5. All the experiments were conducted on a PC with
Pentium 4 2GHz CPU, 1GB RAM, and 200GB hard disk running Windows XP.

We conducted our experiments using both synthetic and real data sets (see Table 1). Both categories are
further classified into recursive (an XML document is “recursive” if an element could appear as a descendant
of itself) and non-recursive data sets. The reason that we include recursive data sets is to show the memory
requirement for the online //-structural joins.

Of these synthetic data sets, d1 is generated from a recursive DTD, while d2 and d3 are chosen from
XBench benchmark [19] (address and catalog, respectively). The real data sets d4 and d5 are selected
from University of Washington XML Data Repository [1] (Treebank and dblp, respectively). Note that the
recursive data sets also represent deep data, and the non-recursive data sets represent shallow (bushy) data.

When we select the testing queries, our concentration is on evaluating the performance of the tree
navigation and join processing. The presence of value-based constraints is an orthogonal issue, therefore it is
eliminated from our testing criteria. To cover the navigational and join processing aspects, we select queries
based on the following properties:

Selectivity: A path expression returning a small number of results should be evaluated faster than those
returning a large number of results. To evaluate whether our algorithm is sensitive to selectivity,
we divided queries into three categories based on their selectivity: high (around 1% of total nodes),
moderate (around 10% of total nodes), and low (around 50% of total nodes).

Topology: The topological properties of a pattern tree (which may be created from multiple path ex-
pressions) include how many NoK subtrees it includes, how many returning nodes each NoK subtree
contains, whether these NoK subtrees form a chain or tree (with two or more branches), etc. To ex-
perimentally verify our join algorithms, we require that all the queries have at least two NoK subtrees
and each NoK subtree has at least one returning nodes.

Combining these two criteria, we designed queries in six categories shown in Table 2. Each category is
denoted by a string of length two, where each position denotes one of the above criterion. The character in
each position stands for: low (l), moderate (m), or high (h) for selectivity; and chain (c), or branching (b)
for topology. The tag names in the example queries are dummy and they should be replaced by appropriate
tag names in different data sets.

5.2 Performance evaluation and analysis

We compared different join algorithms: pipelined (PL), bounded nested loop (NL), and TwigStack (TS)
on different data sets. To compare with the industry strength product, we also tested the state-of-the-art
native XML database system X-Hive/DB version 6.0 (XH). For each data set, we chose a representative path
expression in each of the six categories.

Since the PL join is not order-preserving on recursive data sets, we only test NL, TS, and XH on these
data sets. Not surprisingly, NL join has the worst performance on non-recursive data sets for all queries.

Therefore, we eliminate it from the experiment and only show PL, TS, and XH. The performance evaluation
results for other systems are shown in Table 3. In this table, “DNF” denotes “did-not-finish” in 15 minutes.
Each running time is the average over three executions.

file sys. Q1 Q2 Q3 Q4 Q5 Q6

d1
XH 5.1 24.32 6.63 17.59 7.54 49.58
TS 0.12 4.19 13.18 20.54 10.26 11.69
NL 10.41 30.92 DNF DNF 114.03 DNF

d2
XH 4.46 8.52 3.22 14.31 3.22 13.14
TS 0.94 2.23 0.96 1.01 1.38 2.25
PL 0.92 1.20 0.99 1.24 1.02 1.22

d3
XH 3.54 3.95 3.47 3.86 3.94 14.21
TS 0.95 0.51 0.44 0.77 0.25 0.40
PL 1.30 1.24 0.62 0.62 0.90 1.11

d4
XH 15.87 15.23 14.59 15.22 16.42 75.85
TS 5.337 7.61 5.06 5.99 5.46 3.96
NL DNF DNF 22.38 DNF DNF DNF

d5
XH 33.56 127.95 33.11 138.36 34.26 140.42
TS 4.97 0.18 2.62 4.03 0.25 3.71
PL 3.86 3.89 3.91 3.87 3.99 4.10

Table 3: Running time (in sec) for X-Hive (XH), TwigStack (TS), and BlossomTree (BT)

Among these join algorithms, TwigStack is the most efficient algorithm in recursive documents. Since
most of the axes in our test queries are //’s, it confirms the conclusion that TwigStack is optimal when
all axes are //’s [7]. If the recursive data set is large, nested loop join is not efficient since it requires too
many scans of the input. For non-recursive data sets, pipelined algorithm is comparable or even faster than
TwigStack. Since TwigStack requires tag-name indexes, it is faster when the tag constraints in the query
are selective. On the other hand, pipelined join algorithm does not rely on indexes, thus it resembles a
sequential scan operator in relational databases. Therefore, pipelined algorithm is preferred in the stream
context and in the case where no tag-name indexes are available. The optimizer needs to consider all these
situations and makes the best choice of join algorithms based on its knowledge.

6 Conclusion and Future Work

FLWOR expressions are complex and usually containing multiple correlated path expressions. In this paper,
we proposed a BlossomTree to combine these path expressions in a graph structure that contains all semantics
specified in the FLWOR expression. A general algebraic framework is defined to evaluate the BlossomTree.
Concrete data structures and algorithms are also designed to implement the abstract data types and logical
operators defined in the framework. Our experimental results also show that the physical operators are
highly efficient and the algebraic framework can generate multiple plans for the optimizer to choose.

Although we have efficient operators and access methods, the decisions on which operator to use requires
a full-fledged optimizer. To choose an optimal plan automatically, the optimizer needs a cost model or similar
mechanism. These will be topics of future work. Another future work is to investigate more expressions
in XQuery, e.g., construction expressions, and develop a complete algebraic framework for the extended
language.

References

[1] UW XML Data Repository. Available at http://www.cs.wa-shington.edu/research/xmldatasets/www/repository.html.
[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu. Structural Joins: A Primitive

for Efficient XML Query Pattern Matching. In Proc. 18th Int. Conf. on Data Engineering, pages 141–152, 2002.
[3] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the Memory Requirement of Evaluating XPath Queries over

XML Streams. In Proc. 23nd ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems, 2004.

[4] C. Barton, P. Charles, D. Goyal, M. Raghavachari, M. Fontoura, and V. Josifovski. Streming XPath Processing
with Forward and Backword Axes. In Proc. 19th Int. Conf. on Data Engineering, 2003.

[5] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently Updating Materialized Views. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 61–71, 1986.
[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu. XQuery 1.0:

An XML Query Language. Available at http://www.w3.org/TR/xquery/.
[7] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML Pattern Matching. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 310–322, 2002.
[8] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query Use Cases. Available at

http://www.w3.org/TR/xmlquery-use-cases.
[9] Y. Chen, G. Mihaila, S. Padmanabhan, and R. Bordawekar. Labeling Your XML. preliminary version presented

at CASCON’02, October 2002.
[10] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Paparizos. From Tree Patterns to Generalized Tree

Patterns: On Efficient Evaluation of XQuery. In Proc. 29th Int. Conf. on Very Large Data Bases, 2003.
[11] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. 21st ACM SIGACT-SIGMOD-

SIGART Symp. Principles of Database Systems, pages 271–281, 2002.
[12] V. Josifovski, M. Fontoura, and A. Barta. Querying XML Streams. The VLDB Journal, 2004.
[13] D. E. Knuth. The Art of Computer Programming, volume 1. Addison Wesley, 3rd edition, 1997.
[14] A. Malhotra, J. Melton, J. Robie, and N. Walsh. XQuery 1.0 and XPath 2.0 Functions and Operators. Available

at http://www.w3.org/TR/xquery-operators/.
[15] S. Pararizos, Y. Wu, L. V. Laksmannan, and H. Jagadish. Tree Logical Classes and Efficient Evaluation of

XQuery. In Proc. ACM SIGMOD Int. Conf. on Management of Data, 2004.
[16] D. Shasha, J. T. L. Wang, and R. Giugno. Algorthmics and Applications of Tree and Graph Searching. In Proc.

21st ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database Systems, pages 39–53, 2002.
[17] J. Simeon and M. Fernandez. Available at http://www-db-out.bell-labs.com/galax/.
[18] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang. Storing and Querying

Ordered XML Using a Relational Database System. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, pages 204–215, 2002.
[19] B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench Benchmark and Performance Testing of XML DBMSs. In

Proc. 20th Int. Conf. on Data Engineering, 2004.
[20] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Supporting Containment Queries in Relational

Database Management Systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 425–436,
2001.

[21] N. Zhang. XML Query Processing and Optimization. In 20th Intl. Conf. on Data Engineering, Ph.D. Workshop,
2004.

[22] N. Zhang, V. Kacholia, and M. T. Özsu. A Succinct Physical Storage Scheme for Efficient Evaluation of Path
Queries in XML. In Proc. 20th Int. Conf. on Data Engineering, pages 54 – 65, 2004.

Appendix A: Testing Queries

d1:
Q1(hc): //a//b4
Q2(hb): //a[//b2][//b1]//b3
Q3(mc): //a//c2/b1/c2/b1//c3
Q4 (mb): //a//c2//b1/c2[//c2[b1]]/b1//c3
Q5(lc): //b1//c2//b1
Q6(lb): //b1//c2[//c3]//b1

address (d2):
Q1 (hc). //addresses//street address//name of state
Q2 (hb). //addresses[//zip code][//country id]
Q3 (mc). //addresses//street address
Q4 (mb). //address[//name of state][//zip code]//street address
Q5 (lc). //address[//street address]
Q6 (lb). //address[//street address][//zip code][//name of city]

catalog (d3):
Q1(hc): //item/attributes//length
Q2(hb): //item/title[//author/contact information//street address]
Q3(mc): //publisher//street information//street address
Q4(mb): //publisher[//mailing address]//street address
Q5(lc): //author//mailing address//street address
Q6(lb): //author[date of birth][//last name]//street address

treebank e (d4):
Q1(hc)://VP//VP/NP//PP/PP
Q2(hb): //VP[VP]//VP[PP]/NP[PP]/NN
Q3(mc): //VP/VP/NP//NN
Q4(mb): //VP[VP]//VP/NP//NN
Q5(lc): //VP//VP/NP//PP/IN
Q6(lb): //VP[//NP][//VB]//JJ

dblp (d5):
Q1: //phdthesis//author
Q2. //phdthesis[//author][//school]
Q3. //www[//url]
Q4. //www[//editor][//title][//year]
Q5. //proceedings[//editor]
Q6. //proceedings[//editor][//year][//url]

20

