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Abstract

Path expressions are ubiquitous in XML processing languages such as XPath, XQuery, and
XSLT. Expressions in these languages typically include multiple path expressions, some of
them correlated. Existing approaches evaluate these path expressions one-at-a-time and miss
the optimization opportunities that may be gained by exploiting the correlations among them.
In this paper, we address the evaluation and optimization of correlated path expressions. In
particular, we propose two types of optimization techniques: integrating correlated path
expressions into a single pattern graph, and rewriting the pattern graph according to a set
of rewriting rules. The first optimization technique allows the query optimizer to choose an
execution plan that is impossible by using the existing approaches. The second optimization
technique rewrites pattern graphs at a logical level and produce a set of equivalent pattern
graphs from which a physical optimizer can choose given an appropriate cost function. Under
certain conditions that we identify, the graph pattern matching-based execution approach
that we propose may be more efficient than the join-based approaches.

1 Introduction

Path expressions are ubiquitous in XML processing languages (XPath [1], XQuery [2], XSLT [3],
XPointer [4], to name a few). With a syntax that involves slash “/” separated, UNIX directory-
like notation, path expressions are used to locate elements in a collection of XML documents. For
example, path expression “/bib/book/authors” locates in the bibliography all authors who wrote
a book; “/bib/*[authors=’John Smith’]” locates all of John Smith’s publications (including
those co-authored with others) in the bibliography.

Since path expressions are usually used in conjunction with other query languages such as
XPath and XQuery, there could be multiple path expressions correlated with each other in a single
XPath or XQuery expression. Consider the example query in Figure 1 taken from XQuery Use
Cases [5]. There are four path expressions bound to four variables in the for clause, and ten more
path expressions introduced by referencing the four variables in the where clause. Note that these
path expressions are not independent, but are correlated with each other by variable referencing,
simple equality test (=), substring containment test (contains function), and equality test on
aggregation (max) of subexpressions.

Previous research on the evaluation and optimization of path expressions has focused on a
single path expression [6, 7, 8, 9, 10], and follow two approaches. A straightforward approach is to
follow the formal semantics of XPath and XQuery languages [11], and treat a path expression as a
sequence of steps, each of which takes input from the previous step and produces an output to the
next step. Although this approach seems simple, experimental results show that implementations
following this approach suffer from exponential runtime in the size the of path expressions in the
worst case [10].

Another approach is to reduce the problem of evaluating path expressions against XML
documents to the problem of matching pattern trees against subject trees, where the subject
tree is a simplified data model for an XML document, and the pattern tree is an abstraction
for a fragment of path expression. This problem is called the tree pattern matching (TPM)
problem. Intuitively, the TPM problem is to find all mappings δi from the nodes of the pattern
tree to the nodes of the subject tree, such that δi is label-preserving and relationship-preserving
(child-parent, descendant-ancestor, and sibling-ordering relationships). Using proper labeling
techniques [6, 7, 8, 12, 13], TPM can be evaluated reasonably efficiently. However, it has not
been shown that a complete path expression (including all thirteen axes) can be translated into
a pattern tree. In fact, we shall show that a complete path expression cannot be translated into
a pattern tree but can be translated into a directed graph, which we call the pattern graph. More
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23. } </result> 

22.   sort by {itemno}

21.     </jones_bike>

20.       <high_bidder>{ $buyer/name }</high_bidder>

19.       <high_bid>{ $highbid/bid }</high_bid>

18.       { $item/description }

17.       { $item/itemno }

16.     <jones_bike>

15.   return

14.               return decimal($x) )

13.              //bid_tuple[itemno=$item/itemno]/bid

12.         max( for $x in document("bids.xml")

11.     and $highbid/bid =

10.     and $highbid/userid = $buyer/userid

9.      and $item/itemno = $highbid/itemno

8.      and contains($item/description,"Bicycle")

7.      and $seller/userid = $item/offered_by

6.    where $seller/name = "Tom Jones"

5.        $highbid in document("bids.xml")//bid_tuple

4.        $item in document("items.xml")//item_tuple,

3.        $buyer in document("users.xml")//user_tuple,

2.    for $seller in document("users.xml")//user_tuple,

1.  <result> {

Figure 1: A Sample XQuery Expression in XQuery Use Cases [5] (Q5 in the use case “R”)

generally, we shall show that multiple path expressions can be translated into a pattern graph,
which is the basis for our optimization of correlated path expressions.

Both of the previous approaches can be easily extended to handle correlated path expressions:
evaluate each path expression one-by-one, and decide whether to materialize/cache the results
of path expressions to variable bindings. However, they omit the connections between path ex-
pressions, thus missing the optimization opportunities based on these connections. For example,
in Figure 1, the path expression document("users.xml")//user tuple in line 2 is correlated
to the path expression $seller/name in line 6 since the latter references the variable $seller,
which is bound to the former path expression. Due to this correlation, the two path expressions,
together with the comparison expression between the second path expression and “Tom Jones”,
can be rewritten to a single path expression document("users.xml")//user tuple[name="Tom
Jones"] Instead of evaluating the two path expressions one-at-a-time and then evaluating
the comparison expression, the query optimizer can choose an access plan that evaluates
//user tuple[name="Tom Jones"] directly from XML document users.xml.

In this paper, we propose a new way of evaluating multiple path expressions by exploiting
the correlations among them. Our optimization methodology is illustrated in Figure 2. We start
by converting multiple correlated path expressions to a pattern graph. The identification of the
correlated path expressions is outside the scope of this paper, and will be the subject of our future
work. The pattern graph is then rewritten (using rules introduced in the paper) to generate a
set of equivalent pattern graphs from which the physical optimizer can choose. In particular, one
rewriting rule partitions the pattern graph into quasi-ordered pattern trees, which are passed to
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a tree pattern matching algorithm. The results of the tree pattern matchings are joined together
to generate the final result for pattern graph matching.

In summary, our contributions are as follows:

• We define a pattern graph and give a linear time algorithm to convert multiple correlated
path expressions to a pattern graph. Therefore, evaluating multiple path expressions can
be transformed to the problem of matching a directed graph against an ordered tree. We
call this the graph pattern matching (GPM) problem.

• We present rewriting rules that can be applied to a pattern graph to produce a set of
equivalent pattern graphs from which the physical algebra optimizer can choose based on
an appropriate cost function.

• In one of the rewriting techniques, a pattern graph is divided into connected components
each of which is evaluated by a tree pattern matching (TPM) operator. We develop an
Θ(nm) algorithm for the TPM operator, where n and m are the size of XML document
and pattern tree, respectively.
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Figure 2: Overview of Optimization Steps

The rest of paper is organized as follows. In Section 2, we introduce path expressions in
XML query languages and path expressions in object-oriented databases. In Section 3 we give
the definitions and introduce the mapping from correlated path expressions to pattern graph.
In Section 4, we present the rewriting techniques based on pattern graph. In Section 5, we use
the existing algorithm combined with our own algorithm to solve the TPM problem. Finally, we
introduce related works in Section 6 and conclude the paper in Section 7.

2 Background

In this section, we first introduce the syntax of path expression that is defined in the working
draft of XPath 2.0 [1]. Then we discuss path expression evaluation within the context of object
databases, since there are surface similarities and important differences.

4



2.1 Path Expressions in XPath

The syntax of path expression can be simplified as the following EBNF grammar:

Path ::= (Root ‘/’)? Step (‘/’ Step)∗
Root ::= ‘$’ QName | ‘document’ ‘(’ StringLiteral ‘)’? | ε

Step ::= Axis ‘::’ NodeTest Qualifier∗
NodeTest ::= NameTest | KindTest

Qualifier ::= ‘[’ Exp ‘]’ | ‘=>’ NameTest

NameTest ::= Name (‘|’ Name)∗
Name ::= ‘∗’ | ‘∗ :’? QName | QName ‘: ∗’?

Axis ::= ‘child’ | ‘parent’ | ‘descendant’ | ‘ancestor’ |
‘following-sibling’ | ‘preceding-sibling’ | ‘self’ |
‘descendant-or-self’ | ‘ancestor-or-self’ |
‘following’ | ‘preceding’ | ‘attribute’ |
‘namespace’

KindTest ::= ‘processing-instruction’ ‘(’ StringLiteral? ‘)’
‘comment’ ‘(’ ‘)’ | ‘namespace’ ‘(’ ‘)’ | ‘node’ ‘(’ ‘)’

Each Path expression consists of a series of Steps separated by slashes (“/”). Each Step consists
of an Axis, a NodeTest, and zero or more Qualifiers. The Axis can be thought of as the “direction”
of this Step, representing the relationship between the previous Step and the current Step1. A
NodeTest in the path expression filters nodes by its name or kind (e.g. comment or namespace),
which are called NameTest or KindTest, respectively. Qualifiers are filters testing more complex
conditions by evaluating the “qualifier expressions” enclosed in the brackets “[ ]”.

Qualifier expressions can be of any type (arithmetic, logical, for, etc), but here we restricted
them to two types: i) path expressions, and ii) comparison expressions between path expression
and literals (numerical and string). For example, /bib/book[title=‘XML’][price<100] is a
path expression within our scope of discussion because the two qualifier expressions are compar-
isons between path expressions and literals; while /bib/book/chapter[2]/title is not, since
“2” is not a path expression nor a comparison expression between path expression and literals.
Another feature of the path expression that is outside the scope of this paper is the dereferencing
of IDREF and IDREFS indicated by the “=>” in the Qualifier.

2.2 Path Expressions in OQL

Path expressions are not unique in XML query languages, but they also appear in object-oriented
database (OODB) query languages such as OQL [14, 15]. Although they are based on different
data models (ordered tree versus directed graph), path expressions in both kinds of query lan-
guages have similarities.

In OQL, path expressions are defined as a chain of objects and methods/attributes in the
so-called object composition graph [15] (a.k.a. aggregation graph [16]). In the object com-
position graph, an object o1 has a directed edge to another object o2 if and only if o1 has
an attribute or method whose value or result is in the class of object o2. For example,

1Following the abbreviations defined in [1], we use labels “.”, “/”, and “//” to represent self, child, and
descendant-or-self axes, respectively.
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o.m1(ϕ1).m2(ϕ2). · · · .mn(ϕn) is a path expression, where o is an object instance, mi(1 ≤ i ≤ n)
is an attribute or a method of either o (if i = 1) or o.m1. · · · .mi−1 (if i > 1), ϕi is the argument
of mi if it is a method. This path expression can be thought of as a top-down path in the
breadth-first spanning tree of the object composition graph rooted at o. This is analogous to the
path expressions in XPath. However, the differences are important:

• In XPath, the XML trees on which the path expressions work (i.e., the tree representing
the documents in the XML database) are known a priori, before the path expression is
given. However, the OODB is based on a graph database, and the breadth-first spanning
tree can be obtained only after the starting point of the path expression is fixed.

• The XML tree is always ordered, while the breadth-first spanning tree of object composition
graph is always unordered. Ordering introduces differences to the query evaluation and
optimization process.

• The path expressions in XPath provide a way to query XML trees in a multitude of ways
including top-down, bottom-up, left-to-right, etc. by using axes. While in OODB, the
object composition graph can be traversed through the reference links.

• In addition to the existence of axes, path expressions in XPath differ from path expressions
in OODB in the NodeTest and qualifier expressions. In XPath path expressions, NodeTest
can select nodes either by their kind or by their names (exact matching or regular expres-
sion); while in OODB path expressions, methods mi are chosen only based on their names.
In XPath path expression, qualifier brackets “[ ]” have simple and predefined semantics: the
result of qualifier expressions in brackets are converted to boolean values by the predefined
conversion rule, and this boolean value determines whether or not the node generated by
NodeTest is filtered out. In contrast, in OODB path expressions, arguments ϕi can be any
expression and the semantics of mi varies according to the definition of types.

Path expressions in OODB are usually evaluated by joins on components along the path. The
optimization techniques are therefore concentrated on how to efficiently evaluate the joins [15].
Another optimization technique is using indexed scan on the paths when an index is available.
Optimization based on indexes are beyond the topic of this paper, and we refer the interested
readers to [16]. Join-based evaluation of XPath path expressions is possible, and we discuss it
along with an approach based on tree pattern matching (TPM), and a hybrid approach combining
the two.

3 Correlated Path Expressions and Pattern Graphs

In this section, we shall first define the correlated path expressions, the subject tree and the
pattern graph. Then we discuss the translation of correlated path expressions into a pattern
graph.

In the rest of the paper, for simplicity, we denote subject tree and pattern graph as T and
P, respectively.

3.1 Definitions

Many XML queries include multiple path expressions. In most cases, these path expressions are
not independent, but are somehow correlated. In this paper, we consider two simple yet widely
used types of correlations for query optimization. The context in which these correlations can be
used for optimization is discussed in Section 3.
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Definition 1 (Correlated Path Expressions) Path expression e is said to be correlated to
another path expression f (assuming they are bound to variables $e and $f respectively), if and
only if

1. the first Step of e is the variable reference $f, i.e. the syntax of e is $f(’/’Step)* (called
strong correlation); or

2. they are connected by a binary operator θ ∈ R (e θ f) that returns a boolean value.
The semantics of operators in R are as defined in [17] (examples are the document order
operator << and >> or the equality operator =). We call this kind of correlation weak
correlation. 2

For example, path expression $seller/userid in Figure 1 in line 7 is correlated with the
path expression document(‘users.xml’)//user tuple in line 1 since the former references the
variable binding of the latter. Also, the two path expressions in line 7 are correlated to each
other by the equality relation.

An XML document is usually modeled as a labeled ordered tree [18], where each node belongs
to one of the seven “kinds”2: document, element, attribute, namespace, processing instruction,
comment, and text. Each kind is associated with a set of methods defined as its access interface.
This is analogous to the association of data structures and methods found in object-oriented
programming languages. In our definition, subject tree is an abstract data structure for la-
beled ordered tree, where edges represent parent-child relationship between elements in the XML
document.

Definition 2 (Subject Tree) A subject tree T is a rooted, ordered, node-labeled tree, which
can be denoted by a 4-tuple T = 〈Σ,N , E , t〉 , where Σ is a finite alphabet, N and E are the sets
of nodes and edges in the tree, respectively, and t ∈ N is the root of T . A node corresponds to
an element in the XML document. A node m is child of node n iff the corresponding element of
m is a subelement of the corresponding element of n.

For each node n ∈ N ,

• the level of n, denoted by level(n), is defined by the number of edges in the path from t to
n;

• n is labeled with a character in Σ, where its label is denoted by label(n);

• n is associated with a value, which is denoted by value(n);

• the children of n are ordered from left to right. We call this local order (denoted by ¢)
since the ordering relationship only applies to siblings. There is also a total order among
all nodes in the tree — the order obtained by preorder traversal of the tree, which we call
global order (denoted by J). 2

Since a subject tree is a data structure for modeling an XML document, we need to define a
data structure to model path expressions. It turns out that tree is not a sufficient data structure
for this purpose. Consider the path expression “//a//b/ancestor-or-descendant::c”. This
cannot be translated into a pattern tree, since the tree node b has two ancestors (a and c), which
violates the definition of tree. Therefore, path expressions are converted to pattern graphs.

2This is the XPath term that roughly corresponds to a “type”.
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Definition 3 (Pattern Graph) A pattern graph is a labeled, directed graph, which is denoted
by a 4-tuple P = 〈Σ,V,A,R〉 , where Σ is a finite alphabet, V and A are the sets of vertices
and arcs (directed edges) in the graph, respectively, and R is the set of binary relations3 between
vertices as defined in Definition 1.

For each vertex v ∈ V:

• v is labeled with ∗ or a set of characters in Σ, where ∗ 6∈ Σ.

• v is associated with a list (may be empty) of 〈◦, l〉 tuples, where ◦ is a comparison operator
and l is a numerical or string literal.

Each arc (s, t) ∈ A is labeled with a relation r ∈ R, which indicates that (s, t) is in relation r. 2

In the pattern graph, we can think of the labels for vertices and arcs as query conditions or
constraints when mapping on the subject tree. Their semantics are defined in the following.

Definition 4 (GPM problem) Given a pattern graph P = 〈Σ,V,A,R〉 and a subject tree
T = 〈Σ,N , E , t〉, the GPM problem is to find all functions δi : V → N such that:

1. For any v ∈ V:

• If label(v) ⊆ Σ, then v can be mapped to any subject tree node whose label is in
label(v), i.e. label(v) ⊆ Σ =⇒ label(δi(v)) ∈ label(v).

• If label(v) = ∗, then v can be mapped to any subject tree node (we don’t care about
its label), i.e. label(v) = ∗ =⇒ ∃x ∈ N . δi(v) = x.

• If the associated 〈◦, l〉 tuple list is not empty, then value(δi(v))◦ l holds for every tuple
in the list.

If all the above conditions hold, δi(v) is called a hit of v.

2. For any (s, t) ∈ A, if the arc is labeled with the binary relation r, then 〈δi(s), δi(t)〉 satisfies
relation r in the subject tree.

If every vertex in V has a hit after the above matching process, the mapped trees in the
subject tree δi(P) are called witness trees and form the result of GPM4. In this case, we say P
is satisfiable on T . 2

For example, the following XPath expression can be converted to the pattern graph shown in
Figure 3(b).

for $b in a/*,
$a in $b/../a
$d in $b//d,
$c in $b/..//c,
$e in $c/e

where $b << $a
return

<result>
{ $d }
{ $e }

</result>
3In this paper, we don’t study ternary or higher arity relations, in which case the graph is a hypergraph.
4We don’t consider the order of witness trees in the output here, since their order is important only in the

construction process, which is outside of the scope of this paper.
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Figure 3: Example of subject tree, pattern graph, mappings, and witness trees. (a) Subject tree
T , (b) Pattern graph P, (c) Two witness trees of P

Assume an XML document that has been translated into the subject tree in Figure 3(a). The
dotted lines from V in P to N in T represent a mapping δ0 satisfying the definition of GPM.
Note that δ0 is not the only valid mapping. Another one differs from δ0 only in the mappings of
c and e (represented by dashed lines) in V, where they are mapped to the c and e, respectively,
in the right subtree of the root in T . Therefore, the results of the GPM are the two witness trees
corresponding to the two mappings in Figure 3(c).

3.2 Converting Correlated Path Expressions to a Pattern Graph

Based on the definition, converting correlated path expressions to a pattern graph can be done
in two steps: 1) convert every path expression to a pattern graph, 2) pairwise merge multiple
pattern graphs if they are correlated.

Algorithm 1 converts a path expression to a pattern graph. Based on the definition, a path
expression can be divided into a sequence of Steps, each of which consists of an axis, a NodeTest
and a sequence of qualifiers. The algorithm converts a Step of the path expression to a pattern
graph using Algorithm 2, which, in turn, uses Algorithm 3 to convert the NodeTest that is part
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Algorithm 1 ConvPath(pathExpr, r)
Input: pathExpr: a path expression consisting of a list of Steps.

r is the vertex object of previous step.
Output: the vertex object corresponding to the NodeTest of the last Step.
1: separate pathExpr into steps S;
2: tempRoot ⇐ r;
3: for each s ∈ S in left to right order do
4: v ⇐ ConvStep(s, tempRoot);
5: tempRoot ⇐ v;
6: end for
7: return tempRoot;

Algorithm 2 ConvStep(step, pNode)
Input: step: a structure consisting of axis, NodeTest and a list of qualifiers;

pNode: the vertex object corresponding to the NodeTest of the previous step
Output: the vertex object corresponding to the NodeTest in the current step
1: v ⇐ ConvNodeTest(step.NodeTest)
2: create an arc α from pNode to v;
3: label α with step.axis;
4: for each q ∈ step.qualifiers do
5: if q is a comparison expression between path expression p and a literal l then
6: s ⇐ ConvPath(p, v);
7: create a tuple 〈◦, l〉 and associate it with s; {◦ is the comparison operator}
8: else
9: s ⇐ ConvPath(q, v);

10: end if
11: end for
12: return v;

of that Step. Two pattern graphs resulting from two Steps are then merged together using a
directed arc labeled with the axis between these two Steps.

Given two pattern graphs g and h translated from two correlated path expressions, the merge
operation is straightforward: if g and h are strongly correlated and h references the variable
binding of g, then we only need to create an arc from the vertex corresponding to the NodeTest
of g to the vertex corresponding to the NodeTest of h (note that we didn’t convert the variable
reference of h in the algorithm), and label the arc with the axis connecting the variable reference
and the rest of the path expression in h. If g and h are weakly correlated, we also create an arc
from the vertex corresponding to the NodeTest of g to the vertex corresponding to the NodeTest
of h, but label it with the binary relation between them.

For example, in the pattern graph shown in Figure 4(b), the root labeled “a” and its leftmost
child, labeled “*”, and the arc connecting them is a pattern graph resulting from the path
expression a/*. The leftmost leaf, labeled with “d”, is a result of converting the path expression
$b//d without the variable reference. The arc connecting the leaf and its parent is created
by merging the two strongly correlated path expressions together. The arc between the vertex
labeled with “*” and the vertex labeled “a”, which is the child of the root, is created by the two
weakly correlated path expressions and their binary relation: “$b << $a”.
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Algorithm 3 ConvNodeTest(nodeTest)
Input: nodeTest: The NodeTest of the current step
Output: The vertex object corresponding to the NodeTest.
1: create a vertex v;
2: if nodeTest is the wildcard “*” then
3: labeled v with ∗;
4: else if nodeTest is a NameTest then
5: S ⇐ ∅;
6: for each Name separated by | do
7: if Name is the form QName then
8: map QName to a character c in Σ
9: S ⇐ S ∪ {c};

10: else if nodeTest is the form QName:* then
11: map QName to a character c in Σ;
12: S ⇐ S ∪ {“c : ∗”};
13: else if nodeTest is the form QName1:QName2 then
14: map QName1 and QName2 to c1 and c2 in Σ, respectively;
15: S ⇐ S ∪ {“c1 : c2”};
16: end if
17: labeled v with S;
18: end for
19: else if nodeTest is a KindTest then
20: map the KindTest to its corresponding special character c; {For example, we can assign

character @ to attribute, ∼ to namespace, # to comment, ! to PI, etc.}
21: label v with c;
22: end if
23: return n;

Theorem 1 Algorithm 1 translates a path expression to a pattern graph such that:

1. each NodeTest in the path expression is converted to a vertex in the pattern graph. If the
NodeTest is a NameTest, the list of Name’s corresponds to the label (a set of character in
Σ) of the vertex.

2. if two vertices u and v correspond to two NodeTests in two consecutive Steps in the left-to-
right order, then there is a directed arc (u, v) in the pattern graph and the label of the arc
is the Axis between these two Steps.

3. if vertex u corresponds to a NodeTest in a Step, and u corresponds to a NodeTest in that
Step’s Qualifier expression, then there is a directed arc (u, v) in the pattern graph and the
label of the arc is the Axis of the NodeTest in the qualifier expression. If the qualifier
expression is a comparison expression between a path expression and a literal, a tuple 〈◦, l〉
is constructed to associated with v.

Proof Since a path expression is a list of Steps, which consists of an Axis, a NodeTest and a list
of Qualifiers. Algorithm 1 translated a path expression to a pattern graph by translating each
Step into a pattern graph and then connect two pattern graphs corresponding to two consecutive
Steps by a direct arc that is labeled with the Axis of the second Step. This guarantees the property
2 of the theorem.
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For each Step, Algorithm 1 calls Algorithm 2 to translate a Step into a pattern graph. Al-
gorithm 2 first calls Algorithm 3 to convert the NodeTest into a vertex in the pattern graph.
If there are qualifiers, Algorithm 2 checks if the qualifier expression is a path expression or a
comparison expression between a path expression and a literal. In either case, Algorithm 1 to
construct another pattern graph and connect the two pattern graphs with a directed arc labeled
with the Axis of the qualifier expression. If the qualifier expression is a comparison expression,
Algorithm 2 also construct a tuple 〈◦, l〉 from the comparison expression and associates the tuple
with the vertex corresponding to the qualifier expression. This guarantees the property 3 of the
theorem.

Algorithm 3 converts a NodeTest to a vertex in the pattern graph, with label corresponds to
the Names of the NodeTest or KindTest. This guarantees the property 1 of the theorem. �

Theorem 2 Algorithm 1 converts a path expression to a pattern graph in Θ(n) time, where n is
the number of NodeTests.

Proof The algorithms converts each NodeTest to a vertex in the pattern graph, and algorithm 3
runs in Θ(1) time, so the complexity of converting all NodeTests is Θ(n). Since there are exactly n
axes for n NodeTests, the time for creating all edges is also Θ(n). By definition, there are at most
n comparison expressions in the qualifiers, so there are O(n) 〈◦, l〉 tuples associated with vertices.
Therefore, the total time for converting a path expression is Θ(n) + Θ(n) + O(n) = Θ(n). �

Careful readers might have noted that not all correlated path expressions in an XQuery
expression are applicable to translating into pattern graph for evaluation without changing the
semantics. For example, assume that e1 and e2 are two correlated path expressions where e1

appears in a for clause and e2 appears in the where clause. If there is a construction expression
related to e1 between e1 and e2, they cannot be translated into a pattern graph. Consider the
following XPath expression:

1. for $a in document(’bib.xml’)/bib/book/authors,
2. return
3. <author>
4. { $a/first_name }
5. for $b in document(’articles.xml’)/articles
6. where $b/author/last_name = $a/last_name
7. return
8. <book> $b/title </book>
9. </author>

The path expression $a/last name in line 6 is correlated to the path expression
document(’bib.xml’)/bib/book/authors in line 1. However, they cannot be merged together
since doing so would result in a witness tree that contains a node labeled last name. This is
not equivalent to the semantics of the original XPath expression since the original outputs all
authors’ first name (line 4) even if the author does not have a last name. In this paper, we
assume that the inputs of the conversion algorithm are correlated path expressions that can be
converted to pattern graphs without changing semantics. How to identify these correlated path
expressions is among our future work.

Also note that the resulting pattern graph generated by the above algorithm may not be
a minimum one in the sense that there may be redundant vertices in the pattern graph. For
example, the two path expressions /bib/book[price<100] (which is bound to variable $b) and
$b/price convert to a pattern graph in which vertex labeled with “book” has two children, both
of which are labeled “price”. Interested readers are refereed to [19].
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Figure 4: Pattern Graph for /book[title=‘‘XML"][//price<100]

4 Optimization Based on Pattern Graphs

In this section, we discuss a general evaluation strategy for path expressions based on joins and
some optimization techniques based on pattern graphs transformation. The first optimization
technique is a set of rewriting rules that rewrite an arc labeled by any axis to a sub-pattern
graph that only contains a minimal subset of axes. The second optimization technique divides
the pattern graph into connected pattern trees of “/”-arcs. Each pattern tree can be passed to
a TPM operator instead of a set of joins.

4.1 A General Evaluation Strategy Based on Joins

A pattern graph P is a visual representation of constraints of tree nodes specified in the path ex-
pression. For example, path expression /book[title="XML"][//price<100] returns the books
whose titles are “XML” and prices are less than 100. Its semantics can be expressed using the
following conjunctive calculus expression5:

{ x | ∃y, z (child(root, x) ∧ label(x) = “book” ∧
child(x, y) ∧ label(y) = “title” ∧ value(y) = “XML” ∧
descendant-or-self(x, z) ∧ label(z) = “price” ∧ value(z) < 100)}

where root is the root of the current XML tree, child (descendant-or-self) is a predicate that
returns true if the second argument is a child (descendant-or-self) node of the first argument in
the tree. In general, any axis can be thought of as a predicate on two tree nodes. As suggested
by their names, label and value are two functions that return the label and value of the tree
node, respectively. Figure 4 is a pattern graph corresponding to the path expression and the
conjunctive calculus expression.

This conjunctive calculus can be evaluated by converting it to an expression consisting of
selection (σ) and join (1) operators similar to the ones in the relational algebra:

σϕ1(T1) 1child(T1,T2) σϕ2(T2) 1descendant-or-self(T1,T3) σϕ3(T3)

where all Ti refer to the same subject tree T , but appropriately renamed. The three selection
conditions are:

5Note that not all path expressions can be expressed by conjunctive calculus, since the latter does not allow ∨
and ¬ in the qualifier expressions.
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ϕ1: label = “book”
ϕ2: label = “title” ∧ value = “XML”
ϕ3: label = “price” ∧ value < 100

A possible access plan is to first evaluate the label and value functions and obtain three
sequences of tree nodes x, y, and z, respectively, either by index searching or by sequential scan
depending on whether there are indexes on tree node labels. Then the three sequences are “joined”
together on the child and descendant-or-self predicates. One way of actually implementing these
joins is to associate each tree node with a tuple that provides enough information for determining
axis relationships. For example, the 〈docID, preOrder, postOrder, level〉 interval encoding [6] of
subject tree nodes provides a way for judging any thirteen axis relationships between two nodes in
constant time. However, when the subject tree is updated, the cost of updating the encodings is
Θ(n) in the worst case, where n is the number of nodes in the subject tree. A recent improvement
of this encoding scheme can achieve Θ(log n) amortized update time and encoding length [13].

The problem of this approach is that every NodeTest is converted to a sequential scan or
index lookup, and every Axis (including those in the qualifier expressions) is converted to a join
on two sequences, which can seriously increase the number of joins and make it hard for the
query optimizer to choose an efficient join order. For example, in the XQuery Use Cases [5], the
total number of axes in the XQuery expressions6 varies from 1 to 21, with an average of 5.68 if
one counts the axes in construction expressions or 3.94 otherwise. In these axes, approximately
65.63% are child axes (“/”), 32.98% are descendant-or-self axes (“//”), and the rest are self axes
(“.”). Figure 5 shows the number of “/” and “//” axes in the queries in the XQuery Use Cases.

Since almost two-thirds of the axes in path expressions are child, if nodes satisfying child
relationships are stored close to each other, we can use the localization characteristics to accelerate
the queries by using tree pattern matching rather than joins. The other axes that don’t have
localization characteristics can be evaluated by joins.

4.2 Rewriting Axes Relations

The set of axes defined in the path expression is not minimal in the sense that we can identify
a subset of the axes that can express any of the eleven axes. In fact, the minimum set is not
unique. For example, {., /, //,C} is one possible set of labels for the pattern graph to represent
all the axes, while {., /, //,J} is another. We choose the second set as the “minimum” set in
this paper since “J” indicates the document order relationship, which is widely used in XPath
expression evaluation. On the other hand, if a pattern graph is very large, sometimes we would
like to reduce the number of arcs by combining a particular component of pattern graph into a
single arc. This can be done by the reverse process of the above conversion. These conversions
are provided in the form of rewriting rules in Theorem 3.

Theorem 3 (Rewriting Rules for Axes) In the pattern graph, any arc labeled with an axis
other than attribute and namespace can be converted to a subgraph whose arc labels are in the set
{., /, //,J}. Assume that (p, c) is any arc and λ(p, c) denotes that the axis associated with the
arc is “λ”, depending on its label the rewriting rules are as follows:

(a) child(p, c) ⇐⇒ label(p, c) = “/”
(b) parent(p, c) ⇐⇒ label(c, p) = “/”
(c) descendant(p, c) ⇐⇒ ∃x label(p, x) = “/” ∧ label(x, c) = “//” ∧ label(x) = ∗
(d) ancestor(p, c) ⇐⇒ ∃x label(x, p) = “/” ∧ label(c, x) = “//” ∧ label(x) = ∗

6The number is calculated by summing up all axes in all path expressions in an XQuery expression.
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Figure 5: The numbers of axes in the queries in XQuery Uses Cases

(e) self(p, c) ⇐⇒ p ∧ c
(f) descendant-or-self(p, c) ⇐⇒ label(p, c) = “//”
(g) ancestor-or-self(p, c) ⇐⇒ label(c, p) = “//”
(h) following-sibling(p, c) ⇐⇒ ∃x label(x, p) = “/” ∧ label(x, c) = “/” ∧ label(p, c) = “ J ”
(i) preceding-sibling(p, c) ⇐⇒ ∃x label(x, p) = “/” ∧ label(x, c) = “/” ∧ label(c, p) = “ J ”
(j) following(p, c) ⇐⇒ label(p, c) = “ J ”
(k) preceding(p, c) ⇐⇒ label(c, p) = “ J ”
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Their graphical representations are in Figure 6(a)–(k) in that order.

Proof The child, parent, descendant-or-self, ancestor-or-self, self, following, and preceding axes
are straightforward based on the semantics of edge labels “/”, “//”, “.” and “J”. Since ancestor
is the reverse of descendant, and preceding-sibling is the reverse of following-sibling, we prove
descendant and following-sibling only. For rule (c), by the semantics of descendant-or-self axis,
descendant-or-self(x, c) ≡ descendant(x, c) ∨ x = c. Therefore, the right-hand-side can be
rewritten to

∃x child(p, x) ∧ descendant(x, c) ∨ child(p, x) ∧ x = c

⇐⇒ ∃x descendant(p, c) ∨ child(p, c)
⇐⇒ descendant(p, c)

which is the left hand side.
Rule (h) is straightforward since the right-hand-side is exactly the semantics of following-

sibling axis. �

The purpose of rewriting axes is twofold: to convert an arc labeled by any axis to a subgraph
in Figure 6 (forward rewrite), or vice versa, and to convert a subgraph in Figure 6 to a single arc
(backward rewrite). Whether the query optimizer should take one direction or the other depends
on the cost of the two plans. Usually the costs vary depending on the underlying physical storage
structure. If the XML documents are shredded (e.g. using the interval encoding scheme [6]) and
then the pieces are stored in a relational database system, backward rewrite may result in a more
efficient physical plan since each arc in the pattern graph is translated into a join in the relational
system [6, 7, 8], and the conversion reduces the number of the joins.

On the other hand, if the subject tree nodes are not shredded but clustered in the physical
storage according to the parent-child relationship, then the forward rewrite may lead to a more
efficient physical plan, since we can use the rewriting rules presented in the next subsection
to divide a pattern graph into connected pattern trees. For each pattern tree, a tree pattern
matching algorithm may need only one sequential scan of the data to find all witness trees. The
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total cost (I/O cost plus the TPM algorithm in main memory) may be less than the cost of many
sequential scans to find the nodes first and then many joins to get the final witness trees.

4.3 Partitioning Pattern Graph into Pattern Trees

Another type of rewriting rule is to partition the pattern graph into connected components such
that there are no “/”-arcs connecting vertices in different components. Based on the properties of
“/”-arcs, we can further transform each component such that the “/”-arcs form a tree structure,
and all “//”-arcs are safely removed. Therefore, every resulting component is a tree (with optional
“J”-arcs between tree nodes) if we only consider “/”-arcs. We call this component pattern tree
(CPT).

By rewriting each component as a CPT, we can match the CPT against the subject tree first.
Then all the resulting witness trees corresponding to the CPTs are joined together according to
arcs connecting them. The purpose of removing “//”-arcs is to reduce the size of the CPT and
make the TPM algorithm more efficient.

Algorithm 4 DecomposePG(P)
Input: P = 〈Σ,V,A,R〉: the pattern graph.
Output: P is rewritten, or return UNSATISFIABLE if the pattern graph is unsatisfiable on any

subject tree.
{Initialization}

1: S ⇐ R ⇐ ∅;
2: for each vertex v ∈ V do
3: v.color = WHITE;
4: v.level = 0;
5: if v’s indegree of “/”-arcs is 0 then
6: S ⇐ S ∪ {v};
7: end if
8: end for
9: if S = ∅ then

10: return UNSATISFIABLE;
11: end if

{Partition the pattern graph into components and comb each component into
pattern tree.}

12: nComp ⇐ 0;
13: for each r ∈ S do
14: R ⇐ R ∪ Comb(P, r, nComp);
15: nComp ⇐ nComp + 1;
16: end for

{Remove “//”-arcs in the pattern trees.}
17: for each r ∈ R do
18: RmAD(P, r);
19: end for

The decomposition process is shown in Algorithm 4. The algorithm first colors each vertex
as WHITE and initializes its level (the number of “/”-arcs along the path from the root) to 0.
The initialization also keeps record of all vertices that have no incoming “/”-arcs and the total
number of vertices whose indegree is non-zero. If no vertex has zero indegree of “/”-arcs, either
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there is no “/”-arc at all or there exists a cycle of “/”-arcs. In the former case, every vertex is a
component and thus a trivial CPT. For the latter case, since any “/”-arc is mapped to an edge in
the subject tree, which has no cycles, the existence of a cycle in P implies that it is unsatisfiable
on any subject tree.

The zero indegree vertices are candidates to be the roots of the resulting pattern trees.
Therefore, for each of these vertices, the decomposition algorithm calls function Comb (shown
in Algorithm 5) to explore the pattern graph using depth-first search (DFS) and manipulate the
“/”-arcs to form a tree structure. The output of Comb is the real root of the pattern tree. After
getting all of the roots of pattern trees, the decomposition algorithm calls function RmAD (shown
in Algorithm 6) to remove “//”-arcs in the component. Both functions check the satisfiability of
the pattern graph, and call function MergePaths (shown in Algorithm 7) to merge two paths to
eliminate the cycle or redundant “//”-arcs in the “/” tree.

Algorithm 5 Comb(P, r, nC)
Input: P = 〈Σ,V,A,R〉: the pattern graph.

r the starting vertex (root) of the pattern tree.
nC the component #;

Output: P is rewritten or UNSATISFIABLE is returned.
1: r.color ⇐ GREY ;
2: r.nComp ⇐ nC;
3: for each “/”-arc α(r, v) ∈ A do
4: if v.color = WHITE then
5: v.level ⇐ r.level + 1;
6: v.predecessor ⇐ r;
7: Comb(P, v);
8: else if v.color = GREY then
9: return UNSATISFIABLE; {there is a directed “/” cycle}

10: else if v.level 6= r.level + 1 then
11: return UNSATISFIABLE; {there is a undirected “/” cycle, and v’s level based on two

paths are different, so unable to merge paths.}
12: else
13: MergePaths(P, v.predecessor, r);
14: end if
15: end for
16: r.color ⇐ BLACK;
17: return r;

The MergePaths function merges two paths in the pattern tree into one path. It takes two
vertices, which have the same level, as input and test whether they are “compatible” or not.
Two vertices are compatible if they can be mapped to the same node in the subject tree, i.e. the
intersection of the labels of the two vertices is not empty, where “*” is treated as the set universe.
If they are compatible, these two vertices are merged. The merging process continues recursively
to the parents of the two vertices until it reaches the common ancestor of the two original two
vertices.

Figure 7 shows an example of dividing a pattern graph into pattern trees. Figure 7(a) is
a pattern graph consisting of “/”-arcs, “//”-arc, and “J”-arc. The decomposition algorithm
first finds the two vertices, a and g, and passes them to the function Comb individually. Comb
removes all directed and undirected “/”-cycles in the left component and results in a pattern tree
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Algorithm 6 RmAD(P, r)
Input: P = 〈Σ,V,A,R〉: the pattern graph.

r the starting vertex (root) of the pattern tree.
Output: “//”-arcs in the component are removed or UNSATISFIABLE is returned.
1: r.color ⇐ GREY ;
2: for each “//”-arc α(r, v) ∈ A ∧ r.nComp = v.nComp do
3: if v.color = GREY ∧ r 6= v ∨ v.level < r.level then
4: return UNSATISFIABLE;
5: end if
6: find v’s ancestor u s.t. u.level = r.level
7: MergePaths(P, r, u);
8: remove α;
9: end for

10: if there is a “/”-arcs (r, w) s.t. w.color = BLACK then
11: RmAD(P, w);
12: end if
13: r.color ⇐ WHITE;

Algorithm 7 MergePaths(P, u, v)
Require: u.level = v.level
Input: P = 〈Σ,V,A,R〉: the pattern graph.

u, v the two end vertices of “/” paths whose lengths are equal.
Output: Two paths starting from the root to u and v, respectively, are merged or UNSATIS-

FIABLE is returned.
1: i ⇐ u;
2: j ⇐ v;
3: while i 6= j do
4: if label(i) ∩ label(j) 6= ∅ then
5: label(i) ⇐ label(i) ∩ label(j);
6: append the value constraint tuple associated with j to i;
7: remove arc (j.predecessor, j);
8: else
9: return UNSATISFIABLE;

10: end if
11: i ⇐ i.predecessor;
12: j ⇐ j.predecessor;
13: end while

in the left hand side of “J” arc shown in Figure 7(b). Then the decomposition algorithm calls
function RmAD to remove all “//”-arcs. In the example, the only “//”-arc is removed since it
is redundant with the “/”-arcs (g, h), (h, j).

Lemma 1 Algorithm 7 merges two paths into one path if they are compatible, or return UN-
SATISFIABLE otherwise.

Proof Given two vertices i and j, we want to merge them into one vertex k such that a node
in any subject tree is mapped from both i and j iff it can be mapped from k. By definition
of GPM, k is mapped to a node m in the subject tree iff label(m) ∈ label(k) and m satisfies
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Figure 7: Decompose a Pattern Graph to Pattern Trees. (a) the original pattern graph (b) the
two connected CTPs (c) the two connected quasi-ordered pattern tree

the value constraint associated with k. Similarly, m is mapped from i and j iff label(m) ∈
label(i) ∧ label(m) ∈ label(j) and m satisfies the value constraints associated with both i and j.
Therefore, we should label k and associate value constraints such that label(k) = label(i)∩label(j)
and the value constraint is the conjunction of two constraints associated with i and j, respectively.
A special case arises if one of i or j’s label is “*”. In this case, the result of the intersection is the
label of the other vertex, i.e. “*” is treated as a set universe here. If the intersection of label(i)
and label(j) is empty, that means that there is no node in the subject tree that can be mapped
from both i and j; thus the path graph is unsatisfiable on any subject tree. �

Lemma 2 Algorithm 7 merges two paths of pattern graph in O(l∗|Σ|) time, where l is the length
of the path from the common ancestor of u and v to u or v.

Proof The complexity of Algorithm 7 is straightforward: the loop is executed at most l times.
In each loop, the most time-consuming process is to find the intersection of label(i) and label(j).
Since the upper bound of label(i) and label(j) is |Σ|, finding the intersection can be done in
O(|Σ|) if the labels are sorted. Thus the complexity of the algorithm is O(l ∗ |Σ|). �

Although the complexity result of Algorithm 7 is disappointing especially when the size of Σ is
very large, the bound should be much tighter in practice since most vertex labels are expected
to be a single character in Σ or “*”, in which case, the complexity is only Θ(l).
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Lemma 3 Algorithm 5 divides the pattern graph into connected components, where the “/”-arcs
form a tree structure in each of the connected components.

Proof Algorithm 5 is based on depth-first search (DFS). At first, all vertices are colored WHITE.
During the DFS exploration, if a vertex is first visited by a “/”-arc, it is colored GREY. When
all its “/”-arcs are visited, the vertex is colored BLACK. In each loop of the algorithm, a vertex
r is picked up and all its “/”-arcs (r, v) are examined. If the adjacent vertex v is WHITE, then
a normal DFS call is applied to v recursively. If v’s color is GREY, it means that v is one of
the ancestors of r, which forms a directed cycle (illustrated in Figure 8(a)). Therefore, it is
unsatisfiable on any subject tree. If v’s color is BLACK, that means v has already been visited
along another path. Therefore the indegree of “/”-arcs of v is greater than 1. Since any indegree
of a tree node in the subject tree is 1 except the root, the only possibility for the pattern graph to
be satisfiable is that the two parents of v actually map to the same node in the subject tree, thus
the two parents are compatible and should be merged into one vertex. If the two levels are equal
(illustrated in Figure 8(b)), then the algorithm calls function MergePath to merge the two paths
into one. The result of the merge is that the indegrees of “/”-arcs for v and all its ancestors are
1. If the two paths assign different levels to v (illustrated in Figure 8(c)), it is impossible that the
two “/” paths lead to v can be merged together, and the algorithm returns UNSATISFIABLE.
Since all the directed/undirected “/” cycles in the pattern graph can be broken, after the DFS
all vertices have indegree of “/”-arcs equal to 1, which follows that the “/”-arcs form a tree
structure. �

Lemma 4 Algorithm 5 runs in O(m + n ∗ |Σ|) time, where m and n are the number of “/”-arcs
and vertices in the connected component, respectively.

Proof The complexity of Algorithm 5 depends on the complexity of DFS and Algorithm 7.
For each “/”-arc, the algorithm either calls Comb recursively or calls MergePath. Since the
complexity of DFS is O(n + m) and there are at most n merges, the total complexity is O(n +
m) + O(n ∗ |Σ|) = O(m + n ∗ |Σ|). �

Also since most of the labels of vertices are single character or “*”, the above complexity
result can be as tight as Θ(m + n).

After Algorithm 5, all vertices should be colored BLACK. To save time, we do not initialize
the vertices to WHITE. Rather, in Algorithm 6, BLACK vertices indicate that they are not
visited yet, while WHITE vertices mean that they are finished visiting.
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Lemma 5 Algorithm 6 removes all “//”-arcs from the a connected component.

Proof Algorithm 6 is also based on DFS. During the DFS when a vertex r is examined, each
“//”-arc (r, v), where v is also in this connected component, is examined to see whether it is
redundant. There are three possibilities (illustrated by the four dotted lines in Figure 9) for the
location of v:

1. v is an ancestor of r (indicated by v.color = GREY and r 6= v): this contradicts the
constraint of (r, v) arc, which requires v is a descendant of r or r itself. So the algorithm
returns UNSATISFIABLE;

2. v.level < r.level: this contradicts the constraint of (r, v) arc, which requires v’s level is
greater or equal to r’s level. So the algorithm also returns UNSATISFIABLE;

3. v.level ≥ r.level: either v is a descendant or self of v, or r and v are in different paths
from the root, the necessary condition for the pattern graph to be satisfiable is that the
two paths from the root to r and v can be merged together. Thus the algorithm calls the
MergePaths function to merge the two paths into one, and then remove the “//”-arc.

Since all “//”-arcs are removed in all cases, the resulting component is a pattern tree consisting
of only “/”-arcs and possibly “J”-arcs. �

Lemma 6 Algorithm 6 runs in O(m+n∗|Σ|) time, where m is the number of “/” and “//”-arcs,
and n is the number of vertices in the pattern tree.

Proof The complexity analysis is similar to the analysis of Algorithm 5. The complexity for DFS
is O(m+n) and there are at most n vertices merges, so the the total complexity is O(m+n∗|Σ|).�

Theorem 4 Algorithm 4 decomposes a pattern graph into connected CPT’s.

Proof This theorem follows directed from the correctness analysis of Algorithm 5, Algorithm 6
and Algorithm 7. �

Theorem 5 Algorithm 4 decomposes a pattern graph into pattern trees in O(m + n ∗ |Σ|) time,
where n and m are the number of vertices and arc, respectively, in the pattern graph.

Proof The complexity of this algorithm also follows directed from the complexity analysis of
Algorithm 5 and Algorithm 6: O(m + n ∗ |Σ|). �
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5 Tree Pattern Matching Algorithms

Once the pattern graph is decomposed into connected CPT’s, each CPT can be evaluated by a
TPM operator (τ) that takes a pattern tree as input and produces a sequence of witness trees.
The motivation for using τ operator is that vertices connected by “/”-arcs are mapped to parent
and child nodes in the subject tree. If all adjacent nodes in the subject tree are clustered in the
physical storage, a “sequential scan” may be more efficient than a join on two sequence of nodes
based on child relationship.

The logical τ operator can be implemented as a sequential scan, or it can be converted to a
physical algebraic expression. By sequential scan, we mean a TPM algorithm that traverses the
subject tree in preorder and outputs the witness tree during the traversal. In the second case, the
pattern tree is broken up into many subtrees (could be a single vertex), such that each subtree
can be evaluated by a sequential scan or by looking up the path indexes if available. The results
of the sub-queries are joined together based on the child relationships.

Since a pattern tree obtained by the decomposition algorithm consists of “J”-arcs as well
as “/”-arcs, and “J” relation does not demonstrates locality as by “/” relation. We need to
convert “J”-arcs into “C”-arcs, which are the relation between siblings, thus more “local” than
“J” relations.

The conversion algorithm is shown in Algorithm 8, and the result of localizing Figure 7(b) is
shown in Figure 7(c).

p1

4

3

2

Figure 10: Replace “J”-arcs with “C”-arcs (solid lines represent “/”-arcs and dotted lines rep-
resent “”-arcs)

Theorem 6 Algorithm 8 removes all “J”-arcs.

Proof For every “J”-arc (p, q), there are four possibilities (illustrated in Figure 10:

1. p and q are the same vertex: p J p contradicts the irreflexive property of “J” relation, so
the pattern tree is unsatisfiable on any subject tree.

2. p is an ancestor of q: p being an ancestor of q implies that p J q. So the relation p J q is
redundant and the “J”-arc (p, q) can be safely removed without adding any “C”-arcs.

3. p is an descendant of q: p being q’s descendant implies that q J p, which contradicts p J q
since the J relation is anti-symmetric.

4. p and q are on different paths from the root: the fact that p and q are on different paths
implies that all ancestors of p and q up to (but not including) their common ancestor are
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Algorithm 8 Localize(t)
Input: t: the pattern tree.
Output: all J arcs are removed and C arcs are added
1: for each J arc (p, q) s.t. p.nComp = q.nComp do
2: if p = q then
3: return UNSATISFIABLE;
4: end if
5: i ⇐ p, j ⇐ q;
6: if i.level > j.level then
7: i ⇐ i’s ancestor s.t. i.level = j.level;
8: if i = j then
9: return UNSATISFIABLE; {p is a descendant of q =⇒ q J p, contradiction.}

10: end if
11: else
12: j ⇐ j’s ancestor s.t. i.level = j.level;
13: if i = j then
14: remove the “J”-arc (p, q);
15: continue the loop from beginning; {p is an ancestor of q, just remove the “J”-arc, no

need to add a “C”-arc.}
16: end if
17: end if
18: while i.predecessor 6= j.predecessor do
19: i ⇐ i.predecessor;
20: j ⇐ j.predecessor;
21: end while
22: add a “C”-arc (i, j) to t;
23: remove the “J”-arc (p, q);
24: end for

in the J relation. That is, if p′ and q′ are parents of p and q, respectively, and they are
different vertices, p′ J q′ holds. The same relation holds for the parents of p′ and q′, and
so on. In particular, when p′ and q′ are the ancestors of p and q, respectively, and p′ and
q′ are siblings, p′ C q′ holds. On the other hand, if we know p′ C q′, we can infer p J q as
well. Therefore, we can remove the “J”-arc and add the “C”-arc (p′, q′).

Since the above four cases are all the possibilities of relationships of p and q, and in all cases, “J”-
arcs can be replaced by “C”-arcs or return UNSATISFIABLE, the resulting connected component
has no “J”-arcs. �

Theorem 7 Algorithm 8 removes all “J”-arcs in O(l ∗ mJ) time, where mJ and l are the
number of “J”-arcs and maximum depth of pattern tree, respectively.

Proof The complexity of Algorithm 8 is straightforward: for each “J”-arc, we need at most l
upward look-up in order to find p′ and q′. So the complexity is O(l ∗mJ). �

The output of Algorithm 8 is a CPT consisting of only “/” and “C”-arcs. Since the C relation
is a quasi-order relation satisfying irreflexive and transitive properties7, we call the output of

7Notice that irreflexivity and transitivity also imply anti-symmetry. We take this definition of quasi-order
from [20]. Some other textbooks define quasi-order as a relationship satisfying reflective and transitive properties.
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Figure 11: Converting a quasi-ordered pattern tree to an unordered pattern tree and a DAG
(solid lines are “/”-arcs and dashed-directed lines are “C”-arcs

Algorithm 8 quasi-ordered pattern tree. The problem of matching a quasi-ordered pattern tree
with subject trees is called a quasi-ordered pattern matching (QTPM) problem.

A quasi-ordered pattern tree can be divided into an unordered pattern tree (UTPM), where
children of a vertex are unordered, and a set of directed acyclic graphs (DAG) consisting of only
“C”-arcs. For example, the quasi-ordered pattern tree shown in Figure 11(a) can be divided into
an unordered pattern tree and a DAG shown in Figure 11(b) and (c), respectively.

There is a significant body of literature addressing UTPM. We shall briefly discuss these in
Section 6. Since our TPM operator is at a logical level, any of the TPM implementation can be
used. The choice depends on an appropriate cost function. Physical optimization is outside the
scope of this paper and is the subject of future work.

After applying the UTPM algorithm to the subject tree, the result can be further filtered out
by a DAG pattern matching (DAGPM) operator. DAG pattern matching takes a sequence of
lists (siblings in the witness trees) and checks whether it satisfies the constraints specified by the
DAG. The algorithm is shown in Algorithm 9.

Theorem 8 Algorithm 9 matches a DAG with a totally order list.

Proof A DAG is successfully matched with a list if there exists a mapping f from the nodes of
the DAG to the nodes of the list such that whenever there is a directed edge from x to y in the
DAG, f(x) always precedes f(y) in the list. Based on this property, the algorithm scans the list
from left to right, tries to match each item in the list to the nodes in the pattern tree with zero
indegree, and deletes the matched node in pattern tree before moving to the next item in the
list. A node in the pattern tree with non-zero indegree means that there is a preceding node in
the pattern tree that failed to match with the list so far because all matched nodes are deleted.
So any zero-indegree node is free to match to the current item in the list. �

Theorem 9 Algorithm 9 matches a DAG with a totally ordered list in O(mn) time.

Proof There are at most n items in the list and m nodes in the DAG. For each item during
the scan, the algorithm need to look up at most m nodes in the worst case. Assuming that node
matching is done in O(1), the total complexity is O(mn). �
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Algorithm 9 Algorithm DAGPM(dag,lst)

Input: dag: the DAG of pattern tree P ;
lst: the totally ordered list of siblings in the subject tree;

Output: TRUE if dag matches lst, FALSE otherwise;
1: if dag = null then
2: return TRUE;
3: else
4: for each n ∈ lst in left-to-right order do
5: for each d ∈ dag do
6: if d.indegree = 0 ∧NodeMatch(n, d) then
7: remove d and all its incident arcs from dag;
8: end if
9: end for

10: end for
11: if dag.size = 0 then
12: return TRUE;
13: else
14: return FALSE;
15: end if
16: end if

6 Related Work

Managing ordered hierarchical data (particularly XML documents) has attracted significant re-
search and development attention [21, 22, 23]. However, on the query optimization side, there
is no agreement on an algebra for XML query languages so far, and it still needs to be clar-
ified whether a “native” XML storage is needed, or XML documents should be shredded and
stored in a relational database system. Many methods have been proposed to use various la-
beling schemes [6, 12, 13] to encode subject tree nodes such that they can be stored in a rela-
tional database system and still be able to answer structural queries (whether two nodes satisfy
the parent-child/ancestor-descendant/preceding-following-sibling, etc. relationships). However,
there is a lack of mechanisms to generate equivalent access plans for different physical storage
managers (for example, a “native” XML storage system that clusters subject tree nodes accord-
ing to the parent-child relationship). One of the purposes of this paper is to provide rewriting
rules that can be used in this process.

Another purpose of this paper is to define a subset of path expression that is widely used
in practice, and exploit the correlations among multiple of such path expressions in query op-
timization. Previous research has proposed using pattern trees (or twigs) to capture the query
conditions specified by the path expressions [6, 7, 8, 9]. However none of these works takes into
consideration multiple path expressions, nor do they give an algorithm to convert a set of path
expressions to a pattern tree. Recent research [10] provides the semantics for the complete path
expression in terms of two relations: “firstchild” and “nextsibling”. However, there is still lack
of optimization techniques based on the semantics.

In this paper, we provide optimization techniques based on pattern graph. One of the tech-
niques is to reduce the complexity of pattern graph by transforming it to connected pattern
trees. This process is similar to the process of minimizing pattern trees in [19]. However, the
latter reduces the size of pattern trees by removing redundant nodes. In our paper, we remove
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redundant arcs in the pattern graph to produce pattern trees. We can then use the minimization
technique provided in [19] on the results of our pattern trees before giving them to the TPM
operators.

The last purpose of this paper is to provide algorithms for QTPM problem. The solution com-
bines the existing UTPM algorithm and our DAGPM algorithm. Depending on the ordering of
pattern tree, the tree pattern matching problem is categorized into ordered tree pattern matching
(OTPM) problem, unordered tree pattern matching (UTMP) problem, and quasi-ordered tree
pattern matching (QTPM) problem.

OTPM problem can be solved very efficiently—a naive algorithm, which checks each node
in the subject tree for occurrence of the pattern tree, only takes O(nm) time, where n and
m are the numbers of nodes in the subject tree and pattern tree, respectively. More effi-
cient OTPM algorithms powered by suffix trees or other data structures can be as efficient
as O(n

√
m polylog m) [24, 25].

To solve UTPM problem, there are basically two approaches. One is combinatorial, relying
only on the topological structure of subject trees. The other is more “database oriented” in that
the subject tree is treated as a relation of 4-tuples, which is the interval encoding of subject tree
nodes. Relationships between two nodes are determined by querying on the interval encoding
relation.

6.1 A Combinatorial Approach to UTPM

In this approach, developed by Shasha et. al. [9] for approximate tree pattern searching, the
pattern tree is an unordered tree. In this case, if the path expression specifies sibling ordering
(e.g. using following-sibling axis), additional operators are required to check for the order among
siblings in the witness trees.

The algorithm converts the tree pattern matching problem to the string pattern matching
problem by separating the pattern and subject trees into paths (from root the leaves) so that
the trees can be considered as sets of pattern strings P and subject strings S, respectively. A
subtree rooted at r in the subject tree is said to be matched with the pattern tree if and only if all
pattern strings match some subject strings starting from r. It is reasonably efficient when all the
relationships in the pattern tree are parent-child relationships. However, if there are ancestor-
descendant relationships, one has to divide the pattern tree into subtrees by deleting ancestor-
descendant edges, so that every subtree does not contain ancestor-descendant relationships. Then
the subtrees are matched against the subject tree individually, and their witness trees are joined
together (based on the deleted ancestor-descendant relationships) to get the final witness tree.
The worst case is if all relationships in the pattern tree are ancestor-descendant relationships.
Its complexity largely depends on what join algorithm is used to join witness subtrees together.
If no appropriate labeling techniques are used it could result in exponential complexity.

6.2 A Relational Interval Encoding Approach to UTPM

The second approach tackles the problem from a rather “relational database” perspective[6, 7, 8].
The basic idea is to encode each node in the subject tree as a 4-tuple 〈d, p, q, l〉, where d is
a unique ID for document, p and q are the orders of this node in the preorder and postorder
traversal respectively, and l is the number of edges in the path starting from the root to this
node. Since the 〈preorder, postorder〉 pair represents the position interval of opening tag and
closing tag of the element, the encoding scheme is called interval encoding. After all nodes are
encoded, the subject tree can be thought of as a relation of 4-tuples. In this way, one can decide

27



any relationship denoted by the axes8 by posing a query on the relation. The conditions for
querying tree nodes that are related by axes to a given tree node are listed in Table 1. If using a
multi-way merge join, the algorithm can be implemented very efficiently. However this approach
depends on the static interval encoding scheme. When the XML tree structure is updated, the
whole relation has to be updated as well.

Axes Logical formulae on interval encod-
ing 〈d, p, q, l〉, assuming x.d = y.d

child (x.p < y.p) ∧ (x.q > y.q) ∧ (x.l = y.l − 1)
descendant (x.p < y.p) ∧ (x.q > y.q)
parent (x.p > y.p) ∧ (x.q < y.q) ∧ (x.l = y.l + 1)
self x.p = y.p
descendant-or-self (x.p ≤ y.p) ∧ (x.q ≥ y.q)
ancestor (x.p > y.p) ∧ (x.q < y.q)
following-sibling (x.p < y.p) ∧ (x.q < y.q) ∧ (x.l = y.l)
following (x.p < y.p) ∧ (x.q < y.q)
preceding-sibling (x.p > y.p) ∧ (x.q > y.q) ∧ (x.l = y.l)
preceding (x.p > y.p) ∧ (x.q > y.q)
ancestor-or-self (x.p ≥ y.p) ∧ (x.q ≤ y.q)

Table 1: Converting axes to logical formulae on interval encoding. x is a given subject tree node,
and y is the result of axis::x, 〈d, p, q, l〉 is the interval encoding.

7 Conclusion and Future Work

In this paper, we have focused on the correlations among multiple path expressions in XML
query expressions, and optimizing them by exploiting these correlations. The process converts
correlated path expressions in a pattern graph, which captures all the constraints in the path
expressions. We proposed rewriting rules that transform the pattern graph into a set of equivalent
pattern graphs and decompose the pattern graph into connected pattern trees. Each of these
pattern graphs can be thought of as a logical level algebraic expression. Given an appropriate
cost function, an XML query optimizer would be able to choose an optimal one from those access
plans depending on the physical level information.

Our future work includes the following:

• Implementing various TPM algorithms and comparing them with structural joins [7, 8] in
different situations.

• Finding appropriate cost functions for different physical storage structures (relational or
native XML) to approximate the cost of each pattern graph we generated.

• Generalizing the pattern graph or defining other operators that combines with GPM to
capture the complete path expression defined by W3C.

• Defining other algebraic operators and algorithms that capture the complete XQuery ex-
pression.

8The axes attribute and namespace cannot be determined by interval encoding.
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