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Abstract— We study the problem of answering XPATH queries
using multiple materialized views. Despite the efforts on answer-
ing queries using single materialized view, answering queries
using multiple views remains relatively new. We address two
important aspects of this problem: multiple-view selection and
equivalent multiple-view rewriting. With regards to the first
problem, we propose an NFA-based approach (called VFILTER)
to filter views that cannot be used to answer a given query. We
then present the criterion for multiple view/query answerability.
Based on the output of VFILTER, we further propose a heuristic
method to identify a minimal view set that can answer a given
query. For the problem of multiple-view rewriting, we first
refine the materialized fragments of each selected view (like
pushing selection), we then join the refined fragments utilizing
an encoding scheme. Finally, we extract the result of the query
from the materialized fragments of a single view. Experiments
show the efficiency of our approach.

I. INTRODUCTION

As XML has become a universal medium for data exchange
over the Internet, efficient XPATH query processing has become
the focus of considerable research and development activities.
In addition to using structural summaries [1]–[6] and holistic
join algorithms [7]–[9] to optimize the evaluation of XPATH

queries, answering them using XML views has been studied.
There are two fundamental problems in answering queries

using materialized views: (1) View(s)/query answerability:
finding view(s) that can answer a query; and (2) Query eval-
uation on view(s): finding compensating queries (i.e., queries
that can be applied to materialized views) to obtain the result
of the original query.

These problems have been extensively studied in rela-
tional systems [10]. Views are also incorporated in many
relational database systems, e.g., ZETA [11], System R [12]
and INGRES [13]. However, addressing these problems in
XML presents new challenges. For the first problem, finding
a containment relationship between a view and a query is
coNP-complete [14], [15], even for XPATH queries with a
restricted syntax including the child-axis (/), the descendant-
axis (//), wildcards (∗) and branches ([· · · ]). Furthermore, to
select view(s) that answers a query when a large number of
views are materialized, novel techniques are required to avoid
naively comparing each view (or combinations of views) with

the query. For the second problem, applying compensating
queries on materialized views may require accessing the base
data, which may introduce high I/O cost leading to low
performance.

Many works address the first problem through finding a
containment matching (called homomorphism) from a view
to a query (e.g., [16]–[18]) in PTIME, which is sound but
incomplete. These approaches can handle a fragment of XPATH

queries including /, //, ∗ and [· · · ]. Some of these works
achieve this complexity by restricting the XPATH expression
(e.g., by eliminating “∗” [17]). Above approaches focus on the
case of single view/query answerability, where view selection
is irrelevant. Mandhani and Suciu [19] discuss single-view
selection when there are a large number of views to consider.
Answering queries using multiple views can improve query
performance and discover the potential connection between
views. However, multiple-view selection is not discussed in
previous works.

To tackle the second problem, namely query rewriting
using views, most works generate the compensating query
by stitching up the query predicates that are not satisfied by
the view in homomorphism (e.g., [16], [18]). However, these
approaches may require accessing the base data to answer a
query. For example, a query a[.//b//d]//c is contained in a
view a[.//b]//c, but it cannot be answered by the view without
accessing the base data, since only the XML fragments for
node c (not nodes a and b) of the view are materialized, due
to XPATH semantics. Alternative approaches that only utilize
the materialized fragments [17], [19] include maximal con-
tained rewriting [17] or equivalent rewriting but with limited
cases [19] (e.g. //b//c answers //b//c//d but not //b[.//d]//c or
//a//b//c). Moreover, these approaches address the problem of
rewriting using only a single view, without considering the
connection among multiple views.

In this paper, we address these problems in a more general
setting, which describes a framework of answering XPATH

queries using multiple views (see Figure 1). Here, each view
is materialized, i.e., the XML fragments for the answer node
are pre-computed and stored. (1) Given a query Q and a
view set V = {V1, · · · , Vn}, we propose a Nondeterministic
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Fig. 1. Framework Overview

Finite Automata (NFA) based approach (called VFILTER) to
filter views that cannot be used to answer a query, and obtain
a candidate view set V ′. (2) We discuss the problem of
multiple-view selection. Single-view selection requires at most
one scan of each view; for multiple-view selection, however,
we need to search all combinations of views (e.g., {V1},
{V2}, {V1, V2} · · · ) to find the minimum (i.e., smallest) view
set that can answer the query. The number of subsets of
views is O(2n). Based on the output of VFILTER, we further
propose a heuristic method to identify a minimal view set V ′′

that answers Q (i.e., �V ′′′ ⊆ V ′′ answers Q). (3) We study
equivalent multiple-view rewriting. We refine and join the
materialized fragments of views in V ′′ to extract the result
of Q.

The main contributions of this paper are the followings:

• We describe a novel NFA-based approach (called VFIL-
TER), which can efficiently filter a large number of views
that are irrelevant to answering a given query.

• We present the criterion for multiple view/query an-
swerability. We further propose a heuristic method to
efficiently identify a minimal view set to answer a query,
based on the output of VFILTER.

• We propose an approach for rewriting a query using
multiple views, which uses the materialized view frag-
ments only. Joins between different view fragments are
conducted using an encoding scheme without accessing
the base data.

• We conduct extensive experiments to show the efficiency
of our approaches.

The rest of this paper is organized as follows. We start with
an introduction of XML data and queries in Section II. Section
III describes an NFA-based approach for view filtering. Section
IV discusses multiple-view selection. Section V studies the
problem of query rewriting using multiple views. In Section
VI, we present our experimental results. We conclude this
paper in Section VII.

II. PRELIMINARIES

XML data model. We model XML data as an unordered tree
T . Each node x has a label, denoted as LABEL(x), over a
finite alphabet L. The root of T is denoted as ROOT(T ).

An XML tree for book.xml1 is shown in Figure 2, with 34
nodes. Let L = {b, t, a, s, p, f, i}, where b, t, a, s, p, f and i
are the abbreviations for book, title, author, section, paragraph,
figure and image, respectively. Numeric subscripts are used to
distinguish different nodes with the same label.

Encoding schemes. Encoding schemes (e.g., [20]–[23]) are
widely used in XML query processing to identify the relation-
ship between XML tree nodes. We adopt extended Dewey-
code [22] in this paper, and the encoding of each node, in
Figure 2, is shown on top of the label. The extended Dewey-
code of each node can be converted into a label-path, i.e., a
sequence of node labels from root to a particular node, using
a finite state transducer (FST) [22]. The FST of the XML tree
in Figure 2 is given in Figure 3.

Example 2.1: Consider the encoding 0.8.6 in Figure 2 (for
s3). The first label b can be derived, since the first number 0
in 0.8.6 satisfies 0 mod 1 = 0 from the input of FST in Figure
3. Then label s will be derived, since the second number 8
has 8 mod 3 = 2 on node b in FST. Finally, we derive label
s, since the last number 6 has 6 mod 4 = 2 on node s in FST.
The label-path of s3 is derived as b/s/s.

With the derived paths from encodings, we can determine
whether two nodes satisfy some structural condition without
accessing the base data. For example, node t4 (0.8.6.0) and
p3 (0.8.6.1) have two common ancestors labeled s, since their
common prefix is 0.8.6 that can be derived as b/s/s.

XPATH query and tree pattern. The set of XPATH queries
studied in this paper is a fragment of XPATH queries with
the child-axis (/), the descendant-axis (//), wildcards (∗) and
branches ([]). An XPATH query can be represented as a tree
pattern. A tree pattern P is an unordered tree. A node n of
P has a label, denoted as LABEL(n), over L∪ {∗} where L is
the finite alphabet of XML tree; an edge e has a label, denoted
as EDGE(e), from {/, //}, where / is the child-edge and // is
the descendant-edge. The root of P is denoted as ROOT(P ).
The answer node specifies the results returned by P , denoted
as RET(P ). A tree pattern without branches is called a path
pattern. We may use “XPATH query” and “tree pattern query”
interchangeably in this paper.

We define an embedding to be a mapping f from a tree
pattern P to an XML tree T where (1) LABEL(f(n)) =
LABEL(n) or LABEL(n) = ∗, for each node n in P ; (2) for
each edge e:(n1, n2) in P , if EDGE(e)=/, f(n1) is the parent
of f(n2) in T ; otherwise f(n1) is a proper ancestor of f(n2).
For example, there is an embedding from tree pattern b[a]//t
to the XML tree in Figure 2, with f(b) = b1, f(a) = a1 and
f(t) = t2.

We borrow the definition of containment of tree patterns
from [14]. For a tree pattern P , P (D) denotes the boolean
result of evaluating P over an XML database D. We say P (D)
is true if there exists an embedding of P in D; it is false
otherwise. For two tree patterns P, Q, P is contained in Q,

1http://www.galaxquery.com/demo/docs/book1.xml
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denoted as P � Q, iff P (D) implies Q(D), in every XML

database D. We say P and Q are equivalent, denoted as P ≡
Q, iff P � Q and Q � P .

Determining tree pattern containment is a coNP-complete
problem [14], e.g., by canonical models [15]. A commonly
used method for rewriting (in PTIME) is to compute whether
there exists a homomorphism (a mapping h) from a tree pattern
P to a tree pattern Q (e.g., [18]). Specifically, given two tree
patterns P, Q, there is a homomorphism h from P to Q if: (1)
LABEL(n) = LABEL(h(n)) or LABEL(n) = ∗ for each node
n in P . (2) for each edge (n1, n2) in P , if EDGE(n1, n2) = /
then EDGE(h(n1), h(n2))=/ in Q; otherwise EDGE(n1, n2)=
//.

The minimization of tree pattern Q is to find an equivalent
tree pattern Q′ (≡ Q) of the smallest size [24]. Existing
techniques are applicable to our proposed approach. It may
impact the efficiency but not the effectiveness of our approach.
In the following discussion, we assume that all tree patterns
have been minimized.

III. VIEW FILTERING WITH VFILTER

In this section, we study the problem of view filtering. If
a query Q is not contained in a view V , then view V cannot
be used to answer Q. Although the problem of containment
existence between Q and V is coNP-complete, the filtering
problem can be efficiently performed. The candidate view set
(V ′) obtained after filtering is a superset of the set of all views
(VQ) that contain Q. As shown in our experiment, the size of
V ′ is close to the size of VQ (i.e., V ′/VQ ≈ 1). Next we study
containment of tree patterns, followed by the discussion of
view filtering.

A. Tree Pattern Containment

We define a decomposition of a tree pattern Q, denoted by
D(Q), as a set of path patterns, each of which corresponds
to a root-to-leaf path in Q. Note that D(Q) does not contain
duplicate path patterns. For example, given a tree pattern Qe =
b[.// ∗ [f ]/t]// ∗ /t, we have D(Qe) = {b// ∗ /f, b// ∗ /t}.
We denote by |D(Q)| the cardinality of the set D(Q), e.g.,
|D(Qe)| = 2.

Determining pattern containment by homomorphisms is
sound but incomplete, since for two patterns Q, Q′ where
Q � Q′, the homomorphism may not exist from Q′ to Q
[15]. However, we have the following properties.

Theorem 3.1: [15] Homomorphism for checking containment
Q � Q′ is complete when Q′ is a path pattern. �

Proposition 3.1: Given two tree patterns Q and Q′, the
necessary condition for Q � Q′ is that for each path pattern
P ′ ∈ D(Q′), there exists a path pattern P ∈ D(Q) where
P � P ′. �

Proof: (Proof by Contradiction.) Assume to the contrary
that for some path pattern P ′ ∈ D(Q′), there does not exist
a path pattern P ∈ D(Q) where P � P ′. We have that
Q is not contained in P ′ based on Theorem 3.1, since no
homomorphism exists from P ′ to Q and P ′ is a path pattern.
Therefore, there exists some XML database D1 where Q(D1)
is true while P ′(D1) is false.

On the other hand, we have Q′ � P ′ since P ′ ∈ D(Q′) and
a homomorphism exists from P ′ to itself on Q′ (i.e., Q′(D)
implies P ′(D)). Therefore, we have Q′(D1) = false since
P ′(D1) is false. The above result contradicts the condition,
Q � Q′, since there exists an XML database D1 where Q(D1)
is true while Q′(D1) is false. �

Proposition 3.1 states that for a query Q and a view V , if
there exists a path pattern in D(Q) that is not contained in
any path pattern in D(V ), Q is not contained in V . Based on
the above property, we build an NFA for view filtering.

B. VFILTER: An NFA-based Model

In this section, we find the candidate views by filtering
out the non-candidate ones using an NFA. However, our
filtering approach may over-filter some views. We propose a
normalization process to amend this in Section III-C.

The NFA-based model that we study is different from
previous work (e.g., [25], [26]). Their systems focus on
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finding the embeddings from path patterns to XML documents.
Our approach, however, captures the containment semantics
between path patterns, which is more complicated.

The NFA-based model proposed, called VFILTER, is repre-
sented as a 5-ary tuple: A = (S, Σ, δ̂, q0, F), where A is the
name of NFA, S is its set of states, Σ its input symbols, δ̂
its transition function, q0 its start state, and F is the set of
accepting states.

VFILTER is built based on the decomposed path patterns of
all views. We use $ to represent the //-axis, and a finite set
of alphabets of VFILTER is Σ=L∪{∗, $}. Note that the ∗, in
XPATH semantics, is the label wildcard that matches any label
but not query axis (i.e., ∗ matches Σ−{$}). The $ (for //-axis)
can only match $ but not any label.

The four basic NFA fragments for path patterns are /l, //l, /∗
and //∗, where l ∈ L. Figure 5 shows the correspondence be-
tween path patterns and their NFA fragments. The ε-transition
is used for combining the basic NFA fragments. Note that the
self-loop labeled ∗ and $ of NFA fragments (e.g., //l in Figure
5) accepts any label and edge, which is in accordance with
the //-axis semantics of pattern containment (i.e., //l contains
any path pattern ended with label l).

The automaton of a path pattern is constructed by con-
catenating its NFA fragments, turning the sink node to the
accepting state and adding a self-loop that accepts any label
or edge. The automaton A for multiple path patterns is
constructed by combining their common prefixes.

Example 3.1: Consider a view set V = {V1, · · · , V4} listed
in Table I. The decomposition D(V ) is the set of distinct path
patterns of V . Table II shows all path patterns decomposed
from V . The automaton A constructed using the path patterns
shown in Table II is given in Figure 4. All accepting states
are highlighted with double-circles.

The transformation of an input path pattern P to a string
w, denoted as w = STR(P ), is described as follows: omit /
and replace // by $. Consider a path pattern Pe = /b// ∗ /f ,
we have we = STR(Pe) = b$ ∗ f . Note that the queries as
absolute queries starting with //, thus we have STR(P ′

e)=$bs
for P ′

e =b/s, while not bs, due to XPATH semantics.
Each accepting state f corresponds to a path pattern Pf . If

the string STR(P ), for a path pattern P , is in the language
of A and f is in an accepting state after reading the string
representation for P (i.e., STR(P )), we have P � Pf since
there is a homomorphism from Pf to P . In Figure 4, instead of
maintaining path patterns at each accepting state, we maintain
corresponding views. For example, the views maintained at
state q4 are {V1, V4}, which means that the path pattern for
q4 (i.e., s/p) can be decomposed from V1 or V4.

C. False Negatives Elimination

Next we propose to eliminate false negatives by path pat-
tern normalization, since VFILTER may over-filter views that
contain a query unless path patterns are normalized. We then
describe the algorithm for view filtering.

Example 3.2: Consider a path pattern Pe : s/ ∗ //t, and
a transformed string we = STR(Pe) = $s ∗ $t. Recall that
δ̂(q0, we) represents the set of states reached by automaton
after reading we. We have δ̂(q0, $)={q1}, δ̂(q0, $s)={q1, q2},
δ̂(q0, $s∗) = {q1, q5, q7, q9}, δ̂(q0, $s ∗ $) = {q1, q7} and
δ̂(q0, $s ∗ $t)={q1, q7, q9}. The automaton A does not accept
we since {q1, q7, q9} ∩ F = ∅ (i.e., q1, q7 and q9 are not
accepting states). We have that Pe is not contained by any
path pattern maintained in A. Nevertheless, the path pattern
Pe is equivalent to P5 in Table II (i.e., Pe ≡ P5), which should
be accepted by A.

Path pattern normalization has been introduced as a query
rewriting technique for normalizing equivalent path patterns
[14], [18]. Our normalization process, as described below, is
different in that it aims at eliminating false negatives of path
pattern matching using VFILTER.

Next we address path pattern normalization for eliminating
false negatives. Given a path pattern P of the form α0l0α1 ∗
α2 ∗ · · ·αn ∗ αn+1ln+1 where αi ∈ {/, //}, ∗ is the wildcard,
l0 
= ∗ and ln+1 
= ∗, assume that the number of //-edges
from α1 to αn+1 is j where j � n + 1. If j = 0, pattern
P is already normalized; otherwise, we normalize P to P ′ :
α0l0//∗/∗ · · ·/∗/ln+1 with one //-edge only (for α1) and the
number of /-edges is n (from α2 to αn+1). We have P ≡ P ′

since they have the same result, which means that at least n
labels exist between l0 and ln+1 (in case j > 0). We say a path



pattern P is normalized, denoted as N(P ), if all subsequences
containing the label ∗ only are normalized, as stated above.
In fact, there are many ways to normalize a path pattern by
varying the number of //-edges and their positions to get an
equivalent pattern (e.g., [14], [18]). We push the //-edge to the
front for early pruning in VFILTER.

Example 3.3: Consider the path pattern Pe : s/∗//t. Although
it is equivalent to P5 in Table II, it cannot be accepted by
automaton A. This causes a false negative. By normalizing
the path pattern Pe to N(Pe) = s// ∗ /t as indicated in
Example 3.2, the pattern is now the same as P5 that can be
accepted by automaton A, and false negatives are eliminated.
It is what is being shown in Figure 4.

The path pattern P and the normalized pattern N(P ) are
equivalent, which can be proven by combining adjacent //-
edges and ∗ into a single unit (e.g., [3]). In the above example,
both s//∗/t and s/∗//t can be transformed to s//1t, where
character m in //m represents the number of // for consecutive
wildcards ∗. Thus, we have the following:

Proposition 3.2: If two path patterns are equivalent, then their
normalized patterns are the same. �

Thus, false negatives are eliminated by normalizing path
patterns when building VFILTER and reading inputs. Note that
all path patterns in Table II have been normalized.

D. View Filtering using VFILTER

In this section, we present an algorithm for view filtering.
This algorithm allows false positives but not false negatives,
as discussed above. That is, the algorithm may pick a view
Vi∈V that may not satisfy the condition Q � Vi, but it never
filters a view Vj ∈V where Q � Vj .

The algorithm VIEWFILTERING() is given in Algorithm 1,
with three inputs: a query Q, a view set V , and a VFILTER

A. Initially, the number of path patterns of a view V (i.e.,
NUM(V )) that may accept a path pattern of Q is set to 0
(line 1). Then we decompose Q into a set of path patterns
D(Q) and normalize them (lines 2-5). Next, we transform
each path pattern in D(Q) to a string and use VFILTER to
read it (lines 7-8). We increment NUM(V ) each time a path
pattern of V accepts some path pattern of Q (lines 11-12).
Finally, we output V if each path pattern of V contains some
path pattern of Q (lines 17-20).

Algorithm 1 also maintains an auxiliary structure (a sorted
list) for each path pattern of query Q (line 9). These lists are
used for multiple-view selection (see Section IV). The list of
a Pi∈D(Q) (i.e., LIST(Pi)) records a set of pairs (V, l) sorted
by l in descending order. Here, V is a view that is contained
in Pi (i.e., V �Pi) and l is the length of P (i.e., the number
of labels in P ). We update LIST(Pi) when Pi is contained in a
path pattern of V (line 13); if V is not yet in LIST(Pi), (V, l)
is inserted into LIST(Pi); otherwise, l′ is set to l if l > l′

(we record the largest length only). Finally, we remove the
maintained view information from the sorted lists if the views
are filtered (lines 22-26).

Algorithm 1 VIEWFILTERING (Q,V ,A)

1: NUM(V )← 0 for each V ∈ V ;
2: Decompose Q, D(Q) = {P1, . . . , Pk};
3: for each Pi ∈ D(Q) do
4: Normalize Pi as Pi ← N(Pi);
5: end for
6: for each Pi ∈ D(Q) do
7: Transform Pi to a string wi, wi ← STR(Pi);
8: Let R← δ̂(q0, wi) ∩ F;
9: LIST(Pi)← NULL;

10: for each state q ∈ R do
11: if view V is maintained at state q then
12: NUM(V )← NUM(V ) + 1;
13: update LIST(Pi) by a pair (V, l);
14: end if
15: end for
16: end for
17: for each V ∈ V do
18: if NUM(V ) = |D(V )| then
19: output V as a candidate view;
20: end if
21: end for
22: for each Pi ∈ D(Q) do
23: for each (V, l) pair in LIST(Pi) do
24: remove (V, l) if NUM(V ) 
= |D(V )|;
25: end for
26: end for

Example 3.4: Consider a query Qe : s[f//i][t]/p. We
decompose Qe to three path patterns s/f//i, s/t and
s/p, with transformed strings w1($sf$i), w2($st) and
w3($sp), respectively. Using VFILTER in Figure 4 to read
w1, we have δ̂(q0, $) = {q1}, δ̂(q0, $s) = {q1, q2},
δ̂(q0, $sf) = {q1, q5, q7, q9, q12}, δ̂(q0, $sf$) = {q1, q7, q12}
and δ̂(q0, $sf$i)= {q1, q7, q11, q12}. We reach the accepting
states q11 and q12, and NUM(V2) and NUM(V4) will be
incremented by 1, so that NUM(V2) = 1 and NUM(V4) = 1.
Reading w2, we have δ̂(q0, $st) = {q1, q3, q5, q7, q9}. We
reach the accepting state q3, and NUM(V1) will be incremented
by 1, so that NUM(V1)=1. Reading w3, we have δ̂(q0, $sp)=
{q1, q4, q5, q7, q8, q9}. We reach the accepting states q4 and
q8, and all NUM(Vi) (1 � i � 4) will be incremented by
1, so that NUM(V1) = 2, NUM(V2) = 2, NUM(V3) = 1 and
NUM(V4) = 2. V1 and V4 are selected as candidate views,
since NUM(V1) = D(V1) and NUM(V4) = D(V4), based on
Proposition 3.1 and Table I.

Moreover, the sorted lists maintained for the three path pat-
terns of Qe are the followings: {(V4, 2)} for s/f//i, {(V1, 2)}
for s/t, and {(V1, 2), (V4, 2)} for s/p.

The benefits of using NFA-based implementation for view
filtering are threefold. (1) We use PTIME path pattern contain-
ment test for view/query containment filtering. (2) The space
complexity of VFILTER is O(mn) where m is the number of
views and n is the size of the largest view (i.e., the number



of nodes). The NFA-based implementation has a tremendous
reduction in path states by sharing their common path prefixes.
(3) As pointed out in [26], NFA has low time complexity in
inserting/deleting states/transitions, and performing the transi-
tions using a hash table.

IV. MULTIPLE-VIEW SELECTION

The problems we study in this section are the followings:
given a view set V ′ and a query Q, where Q is contained in
each view of V ′, what is the criterion for Q to be answerable
by view set V ′, and how to select V ′ from a candidate view
set V . Although finding containment by computing homo-
morphisms is sound but incomplete, it is rare to find where
containment holds but no homomorphism exists. In this paper,
we check containment using homomorphisms. Our concern is
to discover the potential connection between multiple views
to optimize a query.

A. Query Answerability Criterion

We introduce leaf-cover for a view V and a query Q,
denoted as LC(V, Q), where a homomorphism (h) exists from
V to Q. The intuition behind leaf-cover is that, if a leaf node
set (N ) of Q can be covered by V , all ancestors of N can
be identified from V , by either examining the materialized
fragments of V or verifying encodings. If a view set V ′ covers
all leaf nodes of Q, then all predicates for Q can be identified,
and Q is answerable by V ′. The materialized fragments of
different views are associated by joins.

We define LF(Q) = LEAF(Q) ∪ {∆}, where LEAF(Q) is
the set of all leaf nodes of a tree pattern Q, and ∆ is a special
character for the answer node. The leaf-cover, LC(V, Q), is
defined as follows:

1) ∆ ∈ LC(V, Q) if the mapped answer node of V is an
ancestor-or-self node of the answer node of Q;

2) a leaf node n of Q is in LC(V, Q), if n is a descendant-
or-self node of the mapped answer node of V , or the
predicates for n and its ancestors hold on V ;

3) LC(V, Q) = LF(Q) iff condition 1 holds, and the
predicates of Q that are not under h(RET(V )) (i.e., the
node of V mapped by Q’s answer node) hold on V .

In condition 1, ∆ means that the query result is contained
in and may be derived from the view result. In condition 2,
a leaf node in the leaf-cover means that this node and all its
ancestors either can be identified from the view result or hold
on view. Condition 3 states that a single view can answer a
query, if the query result can be identified from the view result,
and all predicates either can be derived from the view result
or are satisfied by the view via a homomorphism. Note that
LC(V, Q)=∅ if Q is not contained in V .

Consider four materialized XPATH views in Figure 6(a-d)
and two XPATH queries in Figure 6(e-f), where answer nodes
are circled. We have the following:
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Fig. 6. Sample views, queries and XML tree (a) V1 : a[.//b[c]/d]/e
(b) V2 : a//b/d (c) V3 : a//b[d] (d) V4 : a[.//b[c]/d]//e (e) Q1 :
a[e/f ]//b[c]/d (f) Q2 : a[.//b[c]/d]/e/f (g) an XML tree T

LC(V1, Q1) = {f} LC(V1, Q2) = {∆, c, d, f}
LC(V2, Q1) = {∆, d} LC(V2, Q2) = {d}
LC(V3, Q1) = {∆, c, d} LC(V3, Q2) = {c, d}
LC(V4, Q1) = {f} LC(V4, Q2) = {∆, f}

(1)

Criterion for answerability: A view set V can answer a query
Q if

⋃
V ∈V LC(V, Q) = LF(Q).

Above criterion states that if a group of views can answer a
query, all predicates of query leaves and their ancestors (i.e.,
the whole query) either hold through homomorphism, or can
be identified from view results. V � Q denotes that a view set
V can answer a query Q. Based on this criterion and Equation
1, we can easily derive the cases listed in Equation 2. Here,
LF(Q1) = {∆, c, d, f} and LF(Q2) = {∆, c, d, f}.

(V1, V2) � Q1 (V1, V3) � Q1 (V1) � Q2

(V2, V4) � Q1 (V3, V4) � Q1 (V3, V4) � Q2
(2)

Example 4.1: Consider the views and queries in Figure 6.
Each query (Q1 or Q2) is contained in every one of the views
(V1 to V4). However, no single view can be used to answer Q1.
The result of Q1 is not contained in the materialized fragments
of V1 and V4; V2 and V3 cannot be utilized even if their results
contain Q1’s result. Consider V3 for example. We cannot tell
which materialized b-nodes have an ancestor a that satisfies
the predicate [e/f ]; the reason for V2 is similar. Only V1 can
be used to answer Q2. V4 cannot answer Q2, since we cannot
identify which materialized e-nodes of V4 have a parent a that
satisfies [.//b[c]/d]. The result of Q2 is not contained in the
results of V2 and V3 and cannot be answered by V2 or V3.

Consider, however, V1, V3 and Q1. Assume that we can
identify the materialized e-nodes of V1 that have child f , and
b-nodes of V3 that have children c and d. If the identified b-
nodes of V3 have ancestors a that are, in turn, parents of those
identified e-nodes of V1, we can extract Q1’s result from the



refined materialized fragments of V3 since all predicates of Q1

hold (i.e., (V1, V3) � Q1).

Next we reason by example why (V1, V2)�Q1, although it
appears to hold.

Example 4.2: Consider V1, V2 and Q1 in Figure 6. Intuitively,
we can identify the e-nodes of V1 that have child f , then join
with the d-nodes of V2 to derive Q1’s result. However, consider
the XML tree in Figure 6(g). d1, d2 are the results of V2 and
e1 is the result of V1 that has child f1. If we join d1, d2 with
e1 that have a common ancestor a, which is the parent of e1

and an ancestor of some b-node that is, in turn, the parent
of d, we obtain d1 and d2. But indeed d1 is not, since we
cannot distinguish which d-node has a parent b that, in turn,
has child c.

B. Selecting Multiple Views

Let Q be a query that is answerable by a view set V . We
say V is a minimum rewriting (for global minimum) if there
is no other view set V ′ that answers Q with fewer views than
V . We say V is a minimal rewriting (for local minimum) if no
subset V ′′ ⊆ V answers Q. In this section, we describe a naive
method to find the minimum rewriting, and a heuristic method
to compute a minimal rewriting. Homomorphisms between the
views and the query are used for rewriting (see Section V).
Next we state multiple-view selection.

Given a view set V and a query Q, find a subset V ′⊆V
with the least number of views, such that

⋃
V ∈V′ LC(V, Q) =

LF(Q) (i.e., V ′ � Q). By computing all leaf-covers from each
V ∈ V to Q, the classical NP-hard set covering problem can
be reduced to this problem.

Finding a minimum rewriting. A naive method to find the
minimum rewriting requires computing all possible combina-
tions of sets, and outputting the one with the least number of
views. This is O(2|V|) in the worst case.

A heuristic method for finding a minimal rewriting. We
propose a heuristic method to avoid computing homomor-
phisms of all views to the query, which is expensive when
the number of views is large. Given a view set V ′, a query
Q where D(Q) = {P1, · · · , Pk}, and the sorted lists (i.e.,
LIST(Pi) in Section III-D) maintained for each path pattern
Pi ∈ D(Q), multiple views are selected so that all query leaf
nodes are covered by the views and the other nodes of Q can
be identified from the views. Moreover, the result of Q can
be extracted from the result of some view (as discussed in
Section IV-A). The heuristic method requires scanning each
view once in the worst case, which is O(|V|).

The minimum view set focuses on finding the smallest view
set. The heuristic method, however, aims at finding the views
with the smallest view fragments. Our experiments show that
query performance from the heuristic method is better than the
method with minimum view set. A cost model that combines
above two factors (i.e., the number of views and the size of
view fragments) may achieve better performance. We omit this
discussion due to space limitation.

Algorithm 2 VIEWSELECTION (Q,V)

1: V ′ = ∅;
2: while leaf node set LF(Q) 
= ∅; do
3: randomly select a node u ∈ LF(Q);
4: take P ∈ D(Q) that u belongs to;
5: repeat
6: select one pair (V, l) from LIST(P );
7: compute LC(V, Q) by a homomorphism;
8: if u ∈ LC(V, Q) then
9: flag← true

10: V ′ ← V ′ ∪ {V };
11: LF(Q)← LF(Q)− LC(V, Q);
12: else
13: select the next pair (V ′, l′) from LIST(P )
14: end if
15: until flag = true or the end of LIST(P )
16: if flag = false then
17: return “the query Q is not answerable by V”;
18: end if
19: end while
20: V ′ ← V ′ − {V } if LC(V, Q) ⊆

⋃
V ′∈V′−{V } LC(V ′, Q)

21: return V ′;

We describe the heuristic multiple-view selection in Algo-
rithm 2. Initially, no view is selected (line 1). We randomly
select a leaf node u of query Q that is not yet covered by
any view (line 3). Next we take one view from the maintained
list of P (line 6), and compute the homomorphism from V
to Q (line 7). If the leaf node u is covered, we add V to the
selected view set V ′, and remove all leaf nodes covered by
V from LF(Q)(lines 8-11). Recall that the list of P is sorted
by length in descending order, where the length records the
longest path of each view that contains P . This algorithm
greedily uses a view that is as large in length as possible,
which means that the compensating query will be executed on
a smaller view result. The view is not answerable if some leaf
node is not covered by any view (lines 15-18). Finally, when
all the leaf nodes are covered (from the loop in lines 2-19),
we remove redundant views and output the view set (V ′) that
can answer Q (lines 20-21). Note that this heuristic algorithm
always finds a minimal set.

Example 4.3: Consider the last example in previous section
where we showed how it works on query Qe : s[f//i][t]/p.
Here, LF(Qe) = {∆, i, p, t}, the candidate views V ′ =
{V1, V4} are given in Table I. The lists for path patterns of
Qe are the following: {(V4, 2)} for P ′

1 : s/f//i, {(V1, 2)} for
P ′

2 :s/t, and {(V1, 2), (V4, 2)} for P ′
3 :s/p.

Next we show how to select multiple views. We first select
one leaf node from LF(Qe), e.g., i, and the path pattern P ′

1 in
which i is contained. We select the first view from LIST(P ′

1)
(i.e., V4) and compute the homomorphism from V4 : s[p]/f
to Qe. We have LC(V4, Qe) = {i, p}. Next we remove the
covered leaf nodes from LF(Qe) and get LF(Qe) = {∆, t}.
Then we select P ′

2 in which leaf t is contained. We select view



V1:s[t]/p from LIST(P ′
2) and compute LC(V1, Qe)={∆, t, p}.

Leaf node t is covered, and the result node of Qe (i.e., p) can
be mapped from the result node of V1 (i.e., p). Algorithm 2
returns {V1, V4}.

V. REWRITING USING MULTIPLE VIEWS

This section describes how to find an equivalent rewriting
using multiple views. Different from the approaches on single-
view rewriting that find a compensating query only, we find
a compensating query for each materialized view and then
join the refined materialized view fragments. Also different
from the naive method that combines all materialized view
fragments first and then treats it as a single view for rewriting
the query, our approach applies the compensating query for
each view first (like pushing selection) as an optimization, and
then performs a holistic twig join on the roots of all refined
view fragments.

Figure 7 shows a view set V and a query Q that is
answerable by V . Without loss of generality, we assume that
the answer node of V1 maps to some ancestor-or-self node
of the answer node of Q. We first refine each materialized
fragment of V ∈ {V2, · · · , Vn} by applying the predicates
that are not satisfied in Q, to guarantee that the materialized
fragments satisfy these predicates. There are two cases to
consider. The first is that the tree pattern rooted at RET(V )
is equivalent to the tree pattern rooted at the mapped node
h(RET(V )) (e.g., V2), and V does not need to be refined. The
second case is when the predicates for the query are more
restrictive than those of the view, e.g., Vn. We need to refine
the result for rn by applying the predicates satisfied on y but
not on rn. The other views are handled similarly.

When views {V2, · · · , Vn} are refined, we utilize a holistic
twig join algorithm on all the answer nodes of views (i.e.,
{r1, · · · , rn}) to refine the answer node of V1 (i.e., r1) to
ensure that all predicates except those under the mapped node
of r1 (i.e., node a in Q) hold. The holistic join algorithm
is similar to TJFast that uses extended Dewey-code [22].
Finally, we apply a compensating query on the refined result
of r1 to extract the result of Q. Note that we use a holistic
join algorithm, which requires only one scan of all roots of
fragments and runs in linear time. The complete pseudo-code
for the join algorithm is not hard but long and complicated.
Due to space limitation, we omit it and only give an illustrating
example.

Example 5.1: Consider the database in Figure 2 and two
views V1 : s[t]/p, V2 : s[p]/f that may answer a query Qe :
s[f//i][t]/p. The materialized fragments for V1 are rooted at
{p1, p2, p3, p4, p5, p6, p7, p8}, and for V2 they are rooted at
{f1, f2, f3}. We first refine each materialized f node of V2

for predicate [.//i], and no node is filtered. Then we join all
these p nodes and f nodes with a common parent s using
their encodings as given in Figure 2. The parents of p1 (0.8.1)
and f1 (0.8.6.3) are 0.8 and 0.8.6, respectively. p1 is not a
result, since their parents are not identical. The case for p2

is similar and thus it is filtered. Next, consider p3 (0.8.6.1),
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Fig. 7. Views V and a query Q

whose parent (0.8.6) is identical to the parent of f1. Based
on the FST in Figure 3, we can derive the label-path for 0.8.6
as b/s/s (see Example 2.1). p3 is a result since the common
parent 0.8.6 of p3 and f1 is labeled s. Similarly, we can derive
the other results: {p4, p5, p6, p7}.

Handling comparison predicates. Our approach can be
easily extended to handle comparison predicates (i.e., pred-
icates for attributes). The only condition is that the attribute
predicates of the query must be exactly the same as those
of corresponding mapped view nodes, or can be evaluated
from the view results, since the attribute predicates can not
be handled upon the encodings.

VI. PERFORMANCE STUDY

We conduct two sets of performance tests. Firstly we
evaluate the performance of answering queries by multiple
views, as well as the actual lookup time of different selection
strategies with or without VFILTER. Secondly we evaluate the
efficiency of VFILTER, including its size, filtering time, and
filtering impact.

The experiments were conducted on a dual 2.0GHz ma-
chine with 1GB of memory, running Windows XP. The al-
gorithms were coded in C++. We used Berkeley DB2 and
Berkeley DB XML3 for storing VFILTER and XML fragments,
respectively. We used YFilter4 as the XPATH query gener-
ator, which can generate XPATH queries with assigned the
maximum depth (max depth), probabilities of wildcards ∗
(prob wild) and descendant edges // (prob dedge), the number
of predicates (num pred) and the number of nested paths
(num nestedpath). We wrote a program to find positive
queries (i.e., the result is not empty). We used a 56.2MB XML

document generated by XMark5 generator. We set the size
limit for the materialized fragments of each view to 128KB
(the same as [19]), since the query performance on large un-
indexed fragments may be worse than that on the well indexed
XML database directly.

A. Query Processing Performance

For the workloads we generated for our experiments, the
max depth is set to 4, the prob wild and prob dedge
are both set to 0.2, the num pred is set to 1 and the
num nestedpath is set to 1. We generate and select 1000

2http://www.oracle.com/database/berkeley-db.html
3http://www.oracle.com/database/berkeley-db/xml/index.html
4http://yfilter.cs.umass.edu
5http://monetdb.cwi.nl/xml



Q1 ://site/people/person[@id=“person0”]/name
Q2 ://open auction[@id=“open auction10”]

[initial][quantity]//bidder/date
Q3 ://site/regions/samerica/item[.//quantity][name]

[@featured=”yes”][@id=”item10385”]/location
Q4 :/site/regions/africa/item[@id=”item0”]

[incategory[@category=”category393”]]/name
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positive queries for materialization. The four test queries
extracted based on the XMark project are listed in Table III.
Q1 is answered by one view, Q2 and Q3 are answered by two
views and Q4 is answered by three views. Note that y-axes in
Figure 8 and 9 are logarithmic.

Figure 8 reports the query processing time of different
approaches. BN refers to executing queries directly on the XML

database with basic node index support. BF refers to executing
queries directly on the XML database with full index support
to accelerate query performance. MN and MV correspond to
answering the query with the minimum set of views using
multiple views without/with VFILTER, respectively. HV is the
heuristic algorithm with VFILTER.

From Figure 8 we can see that executing the query on the
XML database with only node index (BN) is very slow, while it
is much faster with full index support (BF). However, the full
index support for each node has very high space cost. For the
56.2MB XMark document, the database size with basic node
index is 150MB, but the size with full index support is 635MB.
The processing time of MN is even slower than running the
query on base data directly (e.g., BF). The reason is that the
time used for computing homomorphisms is high when the
number of views is large. The time complexity for computing
the homomorphism from a query Q to a view V is O(|Q|2||V |)
where |Q| is the number of nodes in the tree pattern Q. Note
however that we can achieve a comparable query performance
on a much smaller XML fragment (128KB limitation per view).
With VFILTER support, the algorithms MV and HV achieve
significant speedup. However, the heuristic method HV is
always better than MV, since HV always greedily finds the views
that have smaller materialized fragments while MV only tries to
find the least number of views, whose materialized fragments
may be larger.

Lookup performance. Next we study lookup performance for
a query Q returning a view set V that answers Q. Figure 9
reports the lookup time for the four test queries on 1000

materialized views. We can see that without the support of
VFILTER, algorithm MN always requires considerable time to
find the homomorphism of each view to the query, and then
find a minimum view set. It is obvious that the lookup time
of MN will increase exponentially as the number of views
increases, since finding a minimum set of views (e.g., MN)
is a NP-hard problem. With VFILTER to filter some views,
however, both MV and HV perform lookup very fast, since the
number of candidate views generated by VFILTER is small.
Furthermore, the filtering time dominates the lookup time
when the number of candidate views is small.

B. Performance on VFILTER

In this part, we study the performance of VFILTER. To
perform a general test, we generate large sets of views and
queries. We generate 8 test sets, V1 to V8, with the number of
queries 1000, 2000, . . ., 8000. All queries are generated with
the following parameters: max depth is set to 4, prob wild
and prob dedge are set to 0.2, num nestedpath is set to
2. Note that we do not generate attribute predicates for this
test, since we aim at verifying the efficiency of VFILTER for
structural filtering.

The first test is based on a utility function U(Q) =
|V ′|/|VQ|, where V ′ is the view set obtained from VFILTER,
and VQ is the set of views that have homomorphisms to a
given query Q. We have U(V ) � 1 since VQ ⊆ V ′. We use
V1 as the test query set on the test view sets V1 to V8. We
report the average utility value and maximum utility value in
Figure 10. The result shows that the average utility value is
very close to 1 for all views in the test view set. This indicates
that the case where each path pattern of V contains some path
pattern of Q but Q is not contained in V (i.e., Q � V ) is not
common. The max utility value in this figure shows that the
worst result obtained from VFILTER ranges from 3 to 16. We
further examine the candidate view set and find that its size
(i.e. |V ′|) is not larger than 50. This is a surprising result, since



we can always achieve a small number of candidate views with
a small cost of computation. The reason is that false positives
of VFILTER come from the fact that distinct tree patterns (e.g.,
a[b/d]/c/d and a/b[c]/d) having the same path patterns (i.e.,
a/b/c and a/b/d) appear rarely in the test queries.

Next we study the size of VFILTER constructed from 8 sets
of views, from V1 (1000 views) to V8 (8000 views). We show
the scaling performance, w.r.t. number of views in Figure 11.
We denote by S1 the database size of VFILTER constructed for
view set V1, S2 the database size of VFILTER for V2, and so
on. The scaling function is defined as Si/S1 for 1 � i � 8,
and the size of S1 is 664KB. The scaling performance is given
in Figure 11. Intuitively, the scaling performance will be linear
to the increasing number of views used to construct VFILTER.
However, the result shows that real scaling performance is
much smoother than linear scaling performance. The reason
is that, along with the increasing number of views, more path
patterns will share common prefixes. Therefore, fewer states
will be created when inserting a path pattern into a large
VFILTER. Considering S8 that maintains 8000 views, its size
is only 2050KB and S8/S1 ≈ 3.09. We may tell that the size
of VFILTER will keep compact for a larger set of views.

Lastly we study the filtering time of Q1 to Q4 (in Table III)
using automata constructed from distinct number of views.
We report the performance result in Figure 12. The first
observation is that VFILTER is efficient for all queries, with
the filtering time ranging from 15 msec to 150 msec. The
filtering time of Q2 is almost constant, since Q2 has the
smallest maximum depth among all queries, which is 3,
and fewer states will be reached in all scaled automata. For
the other queries, the filtering time increases along with the
increasing number of views maintained by VFILTER. However,
the trend of increasing filtering time is much smoother than the
increasing of number of views. Considering the curve of Q4

that is the most steep, the filtering time of VFILTER with 1000
views is 47msec, and the one with 8000 views is 150 msec,
with the approximate ratio 3.2, which is much smaller than 8
(i.e., |V8|/|V1|).

VII. CONCLUSION

We described a framework for answering XPATH queries
using multiple materialized views. We defined multiple
view/query answerability, and, by leveraging extended
Dewey-code, we can answer a given query with multiple views
without accessing the base data. We showed the correctness
of decomposing tree pattern query to path pattern queries for
filtering. Based on this decomposition, we proposed an NFA-
based approach, called VFILTER, for view filtering. We further
proposed a heuristic method to find a minimal set of views
that answers a given query Q. The performance study showed
that VFILTER was compact and efficient.

We plan to incorporate attributes into VFILTER to gain
further pruning power. In addition to the equivalent rewriting
using multiple views, we also plan to study on maximal
rewriting using multiple views in data integration scenario, and

multiple partial materialized views when exploring massive
data sets.
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